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Abstract. This paper address a new vision for the generalized Mittag-Leffler stability of the
fractional differential equations. We mainly focus on a new method, consisting of decomposing
a given fractional differential equation into a cascade of many sub-fractional differential equa-
tions. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the
given fractional differential equation using the generalized Mittag-Leffler input stability of the
sub-fractional differential equations. In other words, we prove a cascade of fractional differen-
tial equations, which are generalized Mittag-Leffler input stables and governed by a fractional
differential equation, which is generalized Mittag-Leffler stable, is generalized Mittag-Leffler
stable. We give Illustrative examples to illustrate our main results. Note in our paper; we use
the generalized fractional derivative in Caputo-Liouville sense.
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1. Introduction

In fractional calculus, the stability analysis received many investigations in this
last decade. The different types of fractional derivatives have many impacts on
the stability analysis notions. For example, when we use a classical derivative, the
term ”exponential stability” is used, but with Riemann-Liouville derivative, the
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term ”Mittag-Leffler stability” is used. In other words, in the first case, the com-
parison function [31] is in exponential form, and in the second case, the comparison
function is a Mittag-Leffler function [31]. The nature of the fractional derivative
has a significant impact on the type of stability notions in fractional calculus. But
the principle ideas as the attractivity and the convergence do not change. There
exist in fractional calculus many type of fractional derivatives: Atangana-Baleanu-
Caputo derivative [8], Caputo-Liousville derivative find in [10], Caputo-Fabrizio
derivative [9], M-derivative, Riemann-Liousville derivative find in [10] and many
other [4, 19, 23, 24, 32]. Recently, a new classification of these above fractional
derivatives was done, see detail in [5, 13]. The stability and the convergence are
two properties that study the behaviors of the analytical solutions of the fractional
differential equations. There exist many notions related to the stability and the
convergence of fractional differential equations involving fractional derivatives. We
enumerate some of them. We can cite the asymptotic stability [16], exponential
stability, and their Lyapunov characterizations [34]. We have the Mittag-Leffler
stability introduced in [16]. We can found Many properties related to the stability
notions in fractional calculus and there Lyapunov characterizations in [25, 31]. We
have the Mittag-Leffler input stability introduced in [29] and which its Lyapunov
characterization is given as well in the context of fractional calculus. We have frac-
tional input stability recently introduced in the literature in [27] and its Lyapunov
characterization. Many other types of stability notions, which we can find in the
literature. For more investigations see in [7, 16, 17, 22].
In [18] the author, proposes the Matignon criterion for the linear fractional dif-

ferential equations described by Riemann-Liouville derivative. We introduce condi-
tional Mittag-Leffler stability with its characterization in [28]. The author proposes
Lyapunov characterization for the so-called conditional asymptotic stability in the
context of fractional calculus. In [27], the author introduces the fractional input
stability in context of fractional differential equations. We extended the fractional
input stability to the Mittag-Leffler input stability in [29]. The stability notions
with generalized fractional derivative were considered in [31]. In [25], the author
proposes exponential form for Lynunov characterization. The stability analysis for
the fractional differential equations can be found in [7, 15–17, 20, 22, 34, 35].
Finding the exact analytical solutions for the fractional differential equations is

not trivial. The numerical solutions can not be used in our context to study the
stability of the trivial solutions. Another alternative to examine the stability of the
solution is to use the energy contained in the fractional differential equation called
the Lyapunov function. The Lyapunov direct method is not possible all time due to
the fact the Lyapunov function for a fractional differential equation is complicated
to be found in high dimension. In our paper, we give a possible alternative to
avoid these difficulties. We focus on a new procedure to study the stability of the
fractional differential equation in a high dimensional space. The method described
in the next section consists of rewriting the given fractional differential equation as
a cascade of many other sub-fractional differential equations. We study the stability
notion of all sub fractional differential equations, and we provide technic to obtain
stability for the given fractional differential equation. In this investigation, all sub-
fractional differential equations are supposed to be Mittag-Leffler input stable, and
the last is Mittag-Leffler stable, we prove the given fractional differential equation is
Mittag-Leffler stable as well. In the methodology, we combine an analytical solution
and a Lyapunov function.
In Section 2, we recall the fractional calculus tools. In Section 3, we discuss

the Mittag-Leffler input stability and the stability notions used in this paper. In
Section 4, we present our main results and discuss them in their applicabilities.
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In Section 5, we give illustrative examples of our main results. In Section 6, we
provide conclusions and futures directions of this present investigation.

2. Fractional operators

In this section, we recall some definition which interests our present works. Frac-
tional calculus is a complex field in mathematics from which many types of frac-
tional derivatives exist. Presently there exist many types of fractional derivatives
with or without singular kernels. We cite the Riemann-Liouville fractional deriva-
tive, the Caputo-Liouville fractional derivative, the conformable derivative, the
proportional fractional derivatives, the Atangana-Baleanu fractional derivative, the
Caputo-Fabrizio fractional derivative, and many others [8, 9, 30]. The discrete ver-
sions of the above fractional derivatives exist too, much researches in these direc-
tions have been developed, and many results were found. For some discrete versions
of the fractional derivatives, see in [1–3]. Many generalizations of the existing frac-
tional derivatives have been investigated in the literature, see in [6, 10–12, 14].
In our paper, we particularly use the generalization done on the Caputo-Liouville
fractional derivative and the Riemann-Liouville fractional derivative. We give the
following definitions for fractional derivatives and integrals:

Definition 2.1 [6, 10–12, 14] The generalized form for Riemann-Liouville integral
of order α with ρ > 0 of a continuous function h : [0,+∞[−→ R is represented by
the following

(Iα,ρh) (t) =
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

h(s)
ds

s1−ρ
, (1)

where the function Γ(...) represents the Gamma function, for all t > 0, and 0 <
α < 1.

Definition 2.2 [6, 10–12, 14] The generalized form for Riemann-Liouville deriva-
tive of order α with ρ > 0 of a continuous function h : [0,+∞[−→ R is represented
by the following

(Dα,ρh) (t) =
(
I1−α,ρh

)
(t) =

1

Γ(1− α)

(
t1−ρ d

dt

)∫ t

0

(
tρ − sρ

ρ

)−α

h(s)
ds

s1−ρ
, (2)

where the function Γ(...) represents the Gamma function, for all t > 0, and 0 <
α < 1.

Definition 2.3 [6, 10–12, 14] The generalized form for Caputo-Liouville fractional
derivative of order α with ρ > 0 of a continuous function h : [0,+∞[−→ R is
represented by the following

(Dα,ρ
c h) (t) =

1

Γ(1− α)

∫ t

0

(
tρ − sρ

ρ

)−α

h′(s)ds, (3)

where the function Γ(...) represents the Gamma function, for all t > 0, and the
fractional order satisfies 0 < α < 1.

The Laplace transform of this fractional derivative will be used in our investiga-
tions. We define some of them for more information, refer to [10].
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Definition 2.4 [10] The so-called ”ρ-Laplace transform” of the Caputo-Liouville
generalized fractional derivative of a continuous function h : [0,+∞[−→ R is rep-
resented as the form

Lρ {(Dα,ρ
c h) (t)} = sαLρ {h(t)} − sα−1h(0), (4)

where the ρ-Laplace transform of the function h : [0,+∞[−→ R is defined as the
form

Lρ {h(t)} (s) =
∫ ∞

0
e−s tρ

ρ h(t)
dt

t1−ρ
. (5)

Definition 2.5 [10] The so-called ρ-Laplace transform of the Riemann-Liouville
generalized fractional derivative of an function h : [0,+∞[−→ R is defined by the
following expression

Lρ {(Dα,ρh) (t)} = sαLρ {h(t)} −
(
I1−α,ρh

)
(0). (6)

The Mittag-Leffler function plays an essential role in the representation of the
solution of the fractional differential equations. This function is fundamental in
fractional calculus. There exist three types of Mittag-Leffler functions: with one,
two, and three parameters. We recall these functions in the following definition.

Definition 2.6 [6, 31] The Mittag-Leffler function with two, three parameters are
defined in the following forms

Eα,β (z) =
∞∑
k=0

zk

Γ(αk + β)
, (7)

Eρ
α,β (z) =

∞∑
k=0

Γ(ρ+ k)zk

Γ(ρ)Γ(αk + β)k!
, (8)

Eρ,κ
α,β (z) =

∞∑
k=0

Γ(ρ+ kκ)zk

Γ(ρ)Γ(αk + β)k!
, (9)

where α > 0, β, κ, ρ ∈ R and z ∈ C. We recover the exponential function when
the orders satisfy the relationship α = β = κ = ρ = 1.

3. Mittag-Leffler input stability

In this section, we introduce the comparison functions which are fundamental in
our study. Nowadays, these functions are used to study the stability of some frac-
tional differential equations. In the second step, we will also recall and discuss the
generalized Mittag-Leffler stability and the generalized Mittag-Leffler input stabil-
ity recently introduced in the stability notions of fractional differential equations.
Let’s the comparison functions.

Definition 3.1 [31] The class PD function represents the set of all continuous
functions α : R⩾0 → R>0 satisfying α(0) = 0, and α(s) > 0 for all s > 0. A class
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K function is an increasing PD function. The class K∞ represents the set of all
unbounded K functions.

Definition 3.2 [31] A continuous function β : R⩾0 × R>0 → R⩾0 is said to be of
class KL if β(., t) ∈ K for any t ⩾ 0, and β(s, .) is non-increasing and tends to zero
as its arguments tend to infinity.

For the stability analysis, we recall some notions fundamental in our studies. The
first is the generalized asymptotic stability described in the following definition.

Definition 3.3 [31] The fractional differential equation represented by Dα,ρ
c x =

f(t, x) is said to be generalized globally asymptotically stable if there exist a class
KL function β such that for any initial condition ξ, the following inequality holds

∥x(t, ξ)∥ ⩽ β(∥ξ∥ , tρ − tρ0). (10)

This definition was motived in by the following reasons: the term ”generalized”
is due to the form of the used fractional derivative and the form of the β function
depends on the fractional time in the form tρ − tρ0. The trivial solution of the
fractional differential equation Dα,ρ

c x = f(t, x) is called generalized Mittag-Leffler
stable when the function β depends on the Mittag-Leffler function and the initial
condition. In other words, we have the following form

β(∥ξ∥ , tρ − tρ0) =

[
n(∥ξ∥)Eα

(
η

(
tρ − tρ0

ρ

)α)]b
, (11)

where the constants satisfy the conditions b > 0, η < 0, and a locally Lipschitz
function n satisfying the condition n(0) = 0.
The Mittag-Leffler input stability was introduced in [27] with Caputo fractional

derivative. In [31], this concept was developed and was called the generalized
Mittag-Leffler input stability due to the use of the generalized fractional derivative
and the form the fact the term tρ − tρ0 is into the β function. Let’s recall primary
the definition of the generalized fractional input stable.

Definition 3.4 [27, 31] The fractional equation represented by Dα,ρ
c x = f(x, u) is

said to be generalized fractional input stable if, for any input u ∈ Rm, there exist
a class KL function β and a K∞ function γ, such that for any initial condition ξ,
its solution satisfies

∥x(t, ξ, u)∥ ⩽ β(∥ξ∥ , tρ − tρ0) + γ(∥u∥∞). (12)

Note for the same reason when the function β is in the form (11), the fractional
differential equation Dα,ρ

c x = f(x, u) is called generalized Mittag-Leffler input sta-
ble. Two interesting properties exist with this new concept for stability analysis.
The first is when the input of the fractional differential equation converge then the
state converge as well. In other words, converging-input generates converging-state.
The second is when the input is bounded, we notice the state is bounded as well.
In other words, bounded-input generates bounded-state. The first property plays
an essential role in our present work.

4. Cascades of fractional derivative and stability analysis

In this section, we address a new vision in the stability problem. We mainly study
the generalized Mittag-Leffler stability of the fractional differential equation in the
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triangular form defined by

Dα,ρ
c x = f(x, t), (13)

where x ∈ Rn. In this section we decompose the Eq. (13) as the following form
Dα,ρ

c x1 = f1(x1, x2, ..., xn)
... =

...
Dα,ρ

c xn−1 = fn−1(xn−1, xn)
Dα,ρ

c xn = fn(xn)

(14)

where x = (x1, x2, ..., xn) ∈ Rn. Note that xj has an impact in its own fractional
dynamic and xj+1→n represents the input for each fractional sub equation consid-
ered in Eq. (14). For example, let the sub fractional differential equation defined
by

Dα,ρ
c xj = fj(xj , xj+1→n). (15)

In Eq. (15), the variable xj+1→n are considered as the input of the fractional differ-
ential equation. Eq.(14) is called cascades fractional system or triangular fractional
differential equation. Studying the stability of the fractional differential equation
(13) using the analytical solution is not trivial in general due to the complexity of
the fractional differential equation or the nonlinearity aspect. Furthermore, finding
the Lyapunov function for Eq. (13) is also no trivial. An alternative is to use the
triangular form of the fractional differential equation represented by E. (14). For
the main result of this paper, we make the following theorem.

Theorem 4.1 Let the trivial solution for the fractional differential equation

Dα,ρ
c xn = fn(xn), (16)

generalized Mittag-Leffler stable, and for all j ∈ {1, 2, ..., n− 1}, the fractional
differential equations

Dα,ρ
c xj = fj(xj , xj+1→n), (17)

are generalized Mittag-Leffler input stable respecting the input xj+1→n. Then the
cascade fractional differential equation (14) is generalized Mittag-Leffler stable.

Theorem 1 opens a new methodology in the stability analysis for fractional differ-
ential equations. Theorem 1 plays an important rule. Let for example the fractional
differential equation described by{

Dα,ρ
c x1 = −x1 + x2

Dα,ρ
c x2 = −3x2

(18)

It is straightforward to study the stability of Eq. (18). In our case, we suppose we
have no way to get the quadratic Lyapunov function for the fractional differen-
tial equation (18) described by the Caputo generalized fractional derivative. The
alternative is to use our proposed Theorem. We can observe the fractional differ-
ential equation Dα,ρ

c x2 = −3x2 with initial condition x2(0) = η, which is scalar
system is generalized Mittag-Leffler stable. Two methods can be used to prove sta-
bility. With an analytical solution. Applying the Laplace transform to both sides
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of Dα,ρ
c x2 = −3x2 we get

sαx2(s)− sα−1η = −3x2(s),

x2(s) =
sα−1η

sα + 3
. (19)

Applying the inverse of Laplace transform according to the generalized fractional
derivative in Caputo sense, the analytical solution of the fractional differential
equation Dα,ρ

c x2 = −3x2 is given by

x2(t) = ηEα

(
−3

(
tρ

ρ

)α)
. (20)

According to Definition, it follows the fractional differential equation Dα,ρ
c x2 =

−3x2 described by Caputo generalized fractional derivative is Mittag-Leffler stable.
The second way is to use the quadratic Lyapunov function defined by V (x) = 1

2x
2
2.

The derivative of the Lyapunov function along the trajectories yields

Dα,ρ
c V (x) ⩽ −3x22 = −6V (x). (21)

Using the Lyapunov characterization, it follows the fractional differential equation
Dα,ρ

c x2 = −3x2 is generalized Mittag-Leffler stable. The second step of our analysis
is to observe to the fractional differential equation defined by Dα,ρ

c x1 = −x1+2x2 is
generalized Mittag-Leffler input stable. There exist two methodologies as previously
done. By analytical solution, we apply the Laplace transform to both sides of
Dα,ρ

c x1 = −x1 + 2x2, we get

sαx1(s)− sα−1ζ = −x1(s) + 2x2(s),

x1(s) =
sα−1ζ

sα + 1
+

2x2(s)

sα + 1
. (22)

Applying the inverse of Laplace transform, we get the analytical solution given by

x1(t) = ζEα

(
−
(
tρ

ρ

)α)
+ 2

∫ t

0

(
tρ − sρ

ρ

)α−1

Eα,α

(
−
(
tρ

ρ

)α)
x2(s)

ds

s1−ρ
.

(23)

We apply the Euclidean norm to both sides of equation (23), we get the relation
defined by

∥x1(t)∥ ⩽ ∥ζ∥
∥∥∥∥Eα

(
−
(
tρ

ρ

)α)∥∥∥∥
+ 2 ∥x2∥

∫ t

0

∥∥∥∥∥
(
tρ − sρ

ρ

)α−1

Eα,α

(
−
(
tρ

ρ

)α) ds

s1−ρ

∥∥∥∥∥ . (24)

Note that, there exist a constantM > 0 [27, 28] such that, the following relationship
is helds ∫ t

0

∥∥∥∥∥
(
tρ − sρ

ρ

)α−1

Eα,α

(
−
(
tρ

ρ

)α) ds

s1−ρ

∥∥∥∥∥ ⩽ M. (25)
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The analytical solution of the fractional differential equation Dα,ρ
c x1 = −x1 + 2x2

described by the Caputo generalized fractional derivative with exogenous input
satisfies the following relationship

∥x1(t)∥ ⩽ ∥ζ∥
∥∥∥∥Eα

(
−
(
tρ

ρ

)α)∥∥∥∥+ ∥x2∥M. (26)

From which we conclude the sub-fractional differential equationDα,ρ
c x1 = −x1+2x2

is generalized Mittag-Leffler input stable. The Lyapunov direct method can also be
used here. The advantage of our Theorem is after proving the generalized Mittag-
Leffler stability and the generalized Mittag-Leffler input stability; we can use it
to conclude the fractional differential equation (18) is generalized Mittag-Leffler
stable. In other words, our Theorem gives a procedure to conclude after studying
the stability of all sub-fractional differential equations. Our example exposed in
this paper is long; what is the real advantage of our proposed method? Our proce-
dure can have advantages and inconveniences. The advantage comes from the fact
that when the fractional differential equation is in high dimensional space, finding
the analytical solution of the solution is not trivial, and also finding the Lyapunov
function is in general inaccessible. An alternative is to use our decomposition pro-
cedure. The inconvenience is the method can be very long by doing decomposition,
and the advantage is the Lyapunov function of the fractional differential equation
after decomposition become trivial. Let now give the proof of the Theorem.
Proof: In the proof, we combine the convergence of the solution and the stability

of the solution. This combination implies global asymptotic stability. We consider
the fractional differential equation defined by Eq.(14). Using the assumption, the
trivial solution of Eq. (16) is Mittag-Leffler stable, it follows

lim
t→+∞

xn(t) = 0. (27)

. From the assumption the fractional differential equation Dα,ρ
c xn−1 =

fn−1(xn−1, xn), it satisfies the CICS (converging input converging state) property,
see in. We know the input is xn and is convergent, previously proved. Thus, we
have the following identity

lim
t→+∞

xn−1(t) = 0. (28)

. We repeat the same reasoning at each step, and we have, for all j ∈
{n− 1, n− 2, ..., 2, 1}

lim
t→+∞

xi(t) = 0. (29)

. Finally, we deduce the convergence of the solution of the fractional differential
equation defined by Eq. (14), that is

lim
t→+∞

x(t) = 0. (30)

. The second step consists of proving the stability of the fractional differential equa-
tion (14). From the Mittag-Leffler stability of the fractional differential equation
(16), it follows that

∥xn(t)∥ ⩽ βn(∥ξn∥ , tρ) ⩽ βn(∥ξn∥ , 0) = ξn, (31)
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where the function βn(∥ξn∥ , tρ) = ξnEα

(
−λn

(
tρ

ρ

)α)
and note Eα(0) = 1. We use

the generalized Mittag-Leffler input stability of the fractional differential defined
by Dα,ρ

c xn−1 = fn−1(xn−1, xn). From which we get the existence of a class KL
function βn−1 = ξn−1Eα

(
−λn−1

(
tρ

ρ

)α)
and a class K∞ function γn−1, such that

for any initial condition ξn−1 ∈ R, its solution satisfies

∥xn−1(t)∥ ⩽ βn−1(∥ξn−1∥ , tρ) + γn−1(∥xn∥∞)

⩽ βn−1(∥ξn−1∥ , 0) + .γ(∥βn(∥ξ∥ , 0)∥)

⩽ ξn−1 + γ(ξn) = M. (32)

We repeat the same reasoning at each step, and we have, for all j ∈
{n− 1, n− 2, ..., 2, 1}, we have the existence of a class KL function βi =

ξiEα

(
−λi

(
tρ

ρ

)α)
and a class K∞ function γi, such that for any initial condition

ξn−1 ∈ R, its solution satisfies

∥xi(t)∥ ⩽ βi(∥ξi∥ , tρ) + γi(∥xi+1∥∞)

⩽ βi(∥ξi∥ , 0) + .γ(∥βi+1(∥ξi+1∥ , 0)∥)

⩽ ξi + γ(ξi+1) = Ni. (33)

Finally, that is equivalent to the existence of ϵ such that the following relation is
held ∥x(t)∥ ⩽ ϵ. Thus the fractional differential equation (14) is stable. For the
conclusion, we combine the stability and the asymptotic convergence. Then the
fractional differential equation defined by (14) is generalized Mittag-Leffler stable.

5. Illustrative example

Let illustrate our main result in this section. We particularly focus on the ap-
plication of the Theorem 1. For the application we consider nonlinear fractional
differential equation described by the following equation{

Dα,ρ
c x1 = −x1 +

√
x2

Dα,ρ
c x2 = −2x2

(34)

The determination of the analytical solution for the fractional differential equa-
tion (34) is complex and not trivial. The Lyapunov function of Eq. (34) is not
trivial too. Studied the Mittag-Leffler stability of this class of fractional differential
equations become very high, and no method can be applied. Our Theorem 1 offers
a useful alternative to this problem. Let describe the application of our Theorem
1 to study the Mittag-Leffler stability of the trivial solution of the fractional dif-
ferential equation described by Eq. (34). It is straightforward to see the function
V (x2) = x22/2 is a Lyapunov candidate function for the fractional differential equa-
tion defined by Dα,ρ

c x2 = −2x2. Thus the derivative of the function V along the
trajectories gives

Dα,ρ
c V (x) ⩽ −2x22 < 0. (35)

From which the Lyapunov characterization, implies the trivial solution of the frac-
tional differential equation Dα,ρ

c x2 = −2x22 is Mittag-Leffler stable. The fractional
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differential equation defined by Dα,ρ
c x1 = −x1 +

√
x2 admits as input x2. Let

the Lypunov candidate function defined by V (x2) = x21/2. The derivative of the
function V along the trajactories gives

Dα,ρ
c V (x) ⩽ −x21 + x1

√
x2

⩽ −x21 + x21/2 + x2/2

⩽ −x21/2 + x2/2

⩽ − (1− θ)
x21
2

− θx21
2

+
x2
2
, (36)

with θ ∈ (0, 1). We observe when

∥x1∥ ⩾
[
∥x2∥
θ

]1/2
=⇒ Dα,ρ

c V (x) ⩽ − (1− θ)
x21
2
. (37)

From Eq. (37) follows the generalized Mittag-Leffler input stability of fractional
differential equation defined by Dα,ρ

c x1 = −x1 +
√
x2. Combining the generalized

Mittag-Leffler input stability of Dα,ρ
c x1 = −x1 +

√
x2 respecting the input x2 and

generalized Mittag-Leffler stability of the trivial solution of Dα,ρ
c x2 = −2x2, it

follows from Theorem 1, the trivial solution of the fractional differential equation
(34) is generalized Mittag-Leffler stable.

6. Conclusion

A new vision in the stability analysis is proposed in this paper. Rewriting a system
as a cascade as proposed in this paper can have many advantages in the stability
analysis. The method avoids the difficulty of finding the exact Lyapunov function
of the given fractional differential equation. Note that the method proposed in this
paper has also some inconveniences notably when the dimension of the fractional
differential equation is high. The perspective of this work is to see the type of
stability generated by a cascade of Mittag-Leffler input stability.

References

[1] T. Abdeljawad, Different type kernel h-fractional differences and their fractional h-sums, Chaos,
Solitons & Fractals, 116 (2018) 146-156.

[2] T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial
value problems and Gronwall’s inequality, Journal of Computational and Applied Mathematics, 339
(2018) 218-230.

[3] T. Abdeljawad and D. Baleanu, Discrete fractional differences with non-singular discrete Mittag-
Leffler kernels, Advances in Difference Equations, 2016 (2016), doi:10.1186/s13662-016-0949-5.

[4] T. Abdeljawad, Q. M. A. Mdallal and F. Jarad, Fractional logistic models in the frame of fractional
operators generated by conformable derivatives, Chaos, Solitons & Fractals, 119 (2019) 94-101.

[5] T. Abdeljawad, R. Mert and A. Peterson Sturm Liouville equations in the frame of fractional
operators with exponential kernels and their discrete versions, Questiones Mathematicae, 42 (9)
(2019) 1271-1289.

[6] Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a Gronwall type
inequality with applications, Filomat, 31 (17) (2017) 5457-5473.

[7] J. Alidousti, R. K. Ghaziani and A. B. Eshkaftaki, Stability analysis of nonlinear fractional differen-
tial order systems with Caputo and Riemann-Liouville derivatives, Turkish Journal of Mathematics,
41 (2017) 1260-1278.

[8] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel:
theory and application to heat transfer model, Thermal Science, 20 (2) (2016) 763-769.

[9] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel,
Progress in Fractional Differentiation and Applications, 1 (2) (2015) 73-85.



N. Sene/ IJM2C, 10 - 01 (2020) 25-35. 35

[10] J. Fahd, and T. Abdeljawad, A modified Laplace transform for certain generalized fractional
operators, Results in Nonlinear Analysis, 2 (2018) 88-98.

[11] Y. Y. Gambo, R. Ameen, F. Jarad and T. Abdeljawad, Existence and uniqueness of solutions to
fractional differential equations in the frame of generalized Caputo fractional derivatives, Advances
in Difference Equations, 2018 (2018), doi:10.1186/s13662-018-1594-y.

[12] F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo
modification, Journal of Nonlinear Sciences and Applications, 10 (2017) 2607-2619.

[13] F. Jarad, E. U. Gurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators,
Advances in Difference Equations, 2017 (2017), doi:10.1186/s13662-017-1306-z.

[14] U. N. Katugampola, New approach to a generalized fractional integral, Applied Mathematics and
Computation, 218 (3) (2011) 860-865.

[15] C. Li, K. Chen, J. Lu and R. Tang, Stability and stabilization analysis of fractional-order linear
systems subject to actuator saturation and disturbance, IFAC-PapersOnLine, 50 (1) (2017) 9718-
9723.

[16] Y. Li, Y. Q. Chen, I. Podlubny and Y. Cao, Mittag-Leffler stability of fractional order nonlinear
dynamic Ssystems, Automatica, 45 (8) (2009) 1965-1969.

[17] A. B. Makhlouf, Stability with respect to part of the variables of nonlinear Caputo fractional
differential equations, Mathematical Communications, 23 (2018) 119-126.

[18] D. Matignon, Stability results for fractional differential equations with applications to control
processing, Computational Engineering in Systems Applications, 2 (1996) 963-968.

[19] G. Pagnini, Erdlyi-Kober fractional diffusion, Fractional Calculus and Applied Analysis, 15 (1)
(2012) 117-127.

[20] S. Priyadharsini, Stability of fractional neutral and integrodifferential systems, Journal of Fractional
Calculus and Applications, 7 (1) (2016) 87-102.

[21] D. Qian, C. Li, R. P. Agarwal and P. J. Wong, Stability analysis of fractional differential system with
Riemann-Liouville derivative, Mathematical and Computer Modelling, 52 (5-6) (2010) 862-874.

[22] H. Rezazadeh, H. Aminikhah and A. H. Sheikhani, Stability analysis of Hilfer fractional differential
systems, Mathematical Communications, 21 (2016) 45-64.

[23] M. A. F. D. Santos, Fractional Prabhakar derivative in diffusion equation with non-stochastic
resetting, Physica, 1 (2019) 40-58.

[24] N. Sene, Analytical solutions of Hristov diffusion equations with non-singular fractional
derivatives, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2) (2019) 023112,
doi:10.1063/1.5082645.

[25] N. Sene, Exponential form for Lyapunov function and stability analysis of the fractional differential
equations, Journal of Mathematics and Computer Science, 18 (4) (2018) 388-397.

[26] N. Sene, Fractional input stability for electrical circuits described by the Riemann-Liouville and the
Caputo fractional derivatives, AIMS Mathematics, 4 (1) (2019) 147-165.

[27] N. Sene, Fractional input stability of fractional differential equations and its application to neural
network, Discrete & Continuous Dynamical Systems - S, 13 (3) (2020) 853-865.

[28] N. Sene, Lyapunov characterization of the fractional nonlinear systems with exogenous input, Fractal
and Fractional, 2 (2018), doi:10.3390/fractalfract2020017.

[29] N. Sene, Mittag-Leffler input stability of fractional differential equations and its applications,
Discrete & Continuous Dynamical Systems - S, 13 (3) (2020) 867-880.

[30] N. Sene, SIR epidemic model with Mittag-Leffler fractional derivative, Chaos, Solitons & Fractals,
137 (2020), doi:10.1016/j.chaos.2020.109833.

[31] N. Sene, Stability analysis of the generalized fractional differential equations with and without
exogenous inputs, Journal of Nonlinear Sciences and Applications, 12 (9) (2019) 562-572.

[32] N. Sene, Stokes first problem for heated flat plate with AtanganaBaleanu fractional derivative,
Chaos, Solitons & Fractals, 117 (2018) 68-75.

[33] Q. Song, X. Yang, C. Li, T. Huang and X. Chen, Stability analysis of nonlinear fractional-order
systems with variable-time impulses, Journal of the Franklin Institute, 354 (7) (2017) 2959-2978.

[34] A. Souahi, A. B. Makhlouf and M. A. Hammami, Stability analysis of conformable fractional-order
nonlinear systems, Indagationes Mathematicae, 28 (6) 1265-1274 (2018).

[35] H. T. Tuan and H. Trinhy, Stability of fractional-order nonlinear systems by Lyapunov direct
method, arXiv:1712.02921v2 (2018).


