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Abstract. This article deals with the different classes of convexity and generalizations. Firstly,
we reveal the new generalization of the definition of convexity that can reduce many order
of convexity. We have showed features of algebra for this new convex function. Then after
we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally
the identity has been revealed for its by us and by using this identity, then theorems and
corollaries have been obtained.
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1. Introduction

Let f: I C R — R be a convex function defined on the interval I of real numbers
and a,b € I with a < b. The following inequality

f(““’) <! jf(w)dx< fla) + 1) (1)

2 b—a 2

holds. This double inequality is known in the literature as Hermite-Hadamard
integral inequality for convex functions. Note that some of the classical inequalities
for means can be derived from (1) for appropriate particular selections of the
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mapping f. Both inequalities hold in the reversed direction if f is concave. For
some results which generalize, improve and extend the inequalities (1) we refer the
reader to the recent papers (see [4, 8, 11, 12, 14, 15, 17, 18]).

For r € R the power mean M, (a,b) of order r of two positive numbers a and b
is defined by

arabr\ 1/
MrZMr(a,b)Z{( —zFb) , 7#0

\/@, r=0

It is well-known that M, (a,b) is continuous and strictly increasing with respect
to r € R for fixed a,b > 0 with a # b.

Let L = L(a,b) = (b—a)/(Inb—1Ina), I = I(a,b) = L (a®/t) A=
A(a,b) = (a+b)/2, G = G(a,b) = Vaband H = H (a,b) = 2ab/(a + b) be the
logarithmic, identric, arithmetic, geometric, and harmonic means of two positive
real numbers a and b with a # b, respectively. Then

1/a—b
)

min {a,b} < H (a,b) = M_1(a,b) < G (a,b) = My(a,b) < L(a,b)
< I(a,b) < A(a,b) = Mi(a,b) < max{a,b}.

Let 9 be the family of all mean values of two numbers in Ry = (0,00) . Given
M, N € 9, we say that a function f : Ry — Ry is (M, N)-convex if f (M(x,y)) <
N (f(x), f(y)) for all z,y € R,. The concept of (M, N)-convexity has been studied
extensively in the literature from various points of view (see e.g. [2, 3, 5, 19]),

Let A (a,b;t) = ta+(1—t)b, G (a,b;t) = a'b'~t, H (a,b;t) = ab/(ta+(1—1t)b) and
M, (a,b;t) = (ta? + (1 — t)bp)l/p be the weighted arithmetic, geometric, harmonic
, power of order p means of two positive real numbers a and b with a # b for
t € [0,1], respectively.

The most used class of means is quasi-arithmetic mean, which are associated to
a continuous and strictly monotonic function ¢ : I — R by the formula

My(z,y) = p <W> , for x,y € I.

Weighted quasi-arithmetic mean is given by the formula

My(z,y;t) = ¢ (to(x) + (1 — t)p(y)), for x,y € I, t €[0,1].

Here t € (0,1) and = < y always implies * < M, (z,y;t) < y. The function ¢
is called Kolmogoroff-Naguma function of M. Of special interest are the power
means M, on R, defined by

P, p#0
(p;;(l‘) = {lnﬁ,pzo :

For p = 1, we get the arithmetic mean A = My, for p = 0, we get the geometric
mean G = My and for p = —1, we get the harmonic mean H = M_.

For any two quasi-arithmetic means M, N ( with Kolmogoroff-Naguma function
¢, defined on intervals I, .J, respectively ), a function f : I — J can be called
(M, My)-convex if it satisfies

JF(My(z,y:t)) < My(f(2), f(y)it) (2)
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for all z,y € I and ¢ € [0, 1] . If the inequality in (2), then f is said to be (M, My)-
concave. If ¢ : R = R, ¥(x) = =, (ie., My(f(x), f(y);t) = A(a,b;t) ), then we
just say that f is M,A-convex.

Let f be a M,A-convex.

i) If we take ¢ : I C R — R, p(z) = z, then M,A-convexity deduce usual
convexity.

ii) If we take ¢ : I C (0,00) = R, ¢(z) = Inz, then M,A-convexity deduce
GA-convexity. (see [20, 21])

iii) If we take ¢ : I C (0,00) — R, p(z) = 7!, then M,A-convexity deduce
Harmonically convexity. (see [13])

iv) If we take ¢ : I C (0,00) = R, ¢(z) = 2P, p € R\ {0}, then M, A-convexity
deduce p-convexity. (see [16]).

The theory of (M, My)-convex functions can be deduced from the theory of
usual convex functions.

Lemma 1.1 [1] If ¢ and ¢ are two continuous and strictly monotonic functions
(on intervals I and J respectively) and 1) is increasing then a function f : 1 — J
is (Mg, My)-convez if and only if o fop™! is convex on o(I) in the usual sense.

There is a lot of works in this area. Lots of authors found out theorems and
corollary about convex, G A-convex and p-convex functions as follows:

Theorem 1.2 [? [ Let f : I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b. If | f'| is convex on [a,b], then we have

b
i [ -1 (S50 < S5 @) + ] Q0

Theorem 1.3 [? | Let f : I° C R — R be a differentiable mapping on 1°, a,b € 1°

with a < b, and let p > 1. If the mapping |f’]p/(p_1) is convexr on |[a,b], then we
have

b_la/bf(x)dm iy <“"2H)> (4)

_ 1/ _
< b—a < 4 ) p [Of’(@)‘p/(p_l) +3’f/(b)|p/(p—1)>(p 1)/p

16 \p+1

_ _1)\ (—1)/
+ (3‘f/(a)|p/(p 1) + ‘f/(b)’p/(p 1)) p—1 p]

Theorem 1.4 [? ] Let f : I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b and let p > 1. If the mapping |f’]p/(p71) is convex on [a,b], then we have

L / s (0 < () G5) i@l ron o

Lemma 1.5 Let f : I C R\ {0} — R be a differentiable function on I° and




60 S. Turhan et al./ IJM?C, 10 - 01 (2020) 57-75.

a,b e I° with 0 < a <b. If f' € L([a,b]), then

Inb — lna/f \fb) (6)

_ Inb— . Ina /t [at/le—t/Qf/ <at/2b1—t/2> _ it (al—t/th/2>} dt.
0

Corollary 1.6 [10] Let f : I C Ry — R be a differentiable mapping on I° and
1€ Lia,b] with a < b. If |f'| is GA-convex on [a,b], then

b
S (Vab) = 50— lna/fx z (Z) [C1(1) | f/(a)] + Ca(1) | £ (b)

where

I, (™

C1(1) u [(1—w)(a'7"0") + u(a"b' )] du,

I
L OY— .

/u a' ") + (1 — u)(a™b' )] du.
0

Corollary 1.7 [10] Let f : I C Ry — R be a differentiable mapping on I° and
f' € Lla,b] with a < b. If |f'|?, ¢ > 1, is GA-convex on [a,b], then the following
Hermite-Hadamard type inequality for G A-convex function is obtained

b
'f (\/&b) ~Inb i lna / f(xx) dx

iy (G Ir@ + O+ [m 1@l + o ol
2 q
(8)

In this study, we have given the new generalization of the definition of convexity
that can reduce many order of convexity. First of all, we have revealed the identity.
By taking advantage of this identity, we have given theorems and corollaries for
M, A-convex functions. The studies on this article have scrutinised the relationships
with previous studies.

~

2. Main results

2.1 MpA conver functions

Definition 2.1 Let I be a interval, ¢ : I — R be a continuous and strictly
monotonic function. f : I — R is said to be M,A convex, if

Fle! (to(a) + 1 = )e(y) <tflx)+ (1 —1)f(y) (9)
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for all z,y € I and t € [0, 1]. If the inequality in (9) is reversed, then f is said to
be M, A-concave function.

Proposition 2.2

i . Foro:1 =R, ¢p(x) =mx+n, meR\{0}, n€R, MyA-convexity reduces

to ordinary convezity on 1.

i . For ¢ : I — (0,00), ¢ (x) = lnx, M,A-convezity reduces to ordinary GA-
convexity on I.

it iii. For ¢ I — (0,00), ¢ (z) = a~', MyA-convezity reduces to ordinary
harmonically convexity on I.

iv iv. For ¢ : I — (0,00), ¢ () = 2P, p € R\ {0}, M,A-convexity reduces to
ordinary p- convexity on I.

Theorem 2.3 I C R is an interval, a,b € I with a < b. If f : [a,b] = R be a
M, A-convex function on [a,b] and finite on [a,b], then it is bounded.

Proof Firs of all, a function M,A convex and finite on closed [a,b] is bounded
from above by M = maz{f(a), f(b)}, since for any w = ¢! (Ap(a) + (1 — X)p(b))
in the interval,

F(w) S Af(a) + (1 — A\ f(b) < AM + (1 — \)M = M.

It must be showed that this function is bounded from below. So we see by writing
an arbitrary in the form ! (M + t) as follow:

I <¢_1 (so(a) ; @(b)>>

2f (@1 (@(a);rso(b)» < (@1 <<P(a)42r<p(b) t>> Ly <¢1 (@(a);rw(b) +t>>
s (()01 (so(a) ;rw(b) +t)) > o (()Ol (w(a) ;rw(b)» _ <(p1 <s0(a);so(b) _t))_

On the other hand it is known that

—f (so‘l (WLH‘N’) - t>> > — M. (10)

Theorem 2.4 If f: I — R be a M A-convez, ¢ : I — p(I) be continuous, strictly
monotonic function and ¢ satifies L-Lipschitz condition then f is a Lipschitzian
function on closed interval |a,b] with a < b contained in the interior I° of I.

Proof Firstly, we take ¢ function with strictly increasing function. Choose € > 0
so that ¢(a — €) and ¢(b + €) belong to ¢(I), and let m and M be the lower and
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upper bounds for f on [a — €,b+ €]. If z and y distinct points of [a, b], set

o) —p(z)| +e € . _ le(y) —e(x)]
2B = ool *Y T o — e * A e - o)
then it is gotten
z€la—ebte,  oy)=Ap(2) + (1= A)p(z),

and we have

fw) = f e (Ae(z) + (1= V()
fly) — f(x)

)+ A =Nf(2) = A(f(z) - f(2) + f(2)
(f(2) = f(x)) S A (M —m)

_le(y) — ()] o
= o) — @] ™

<M(M—m)

<A
<A(f

L(M —m)

€

SK‘y_xh K =

Theorem 2.5 Let I is an interval of R, ¢ : I — R be a continuous and strictly
increasing function. If f : I — R and g : I — R are M,A-convex functions and
a >0, then f+ g and af are MyA-convex on I.

Proof Let function of f and g is a M,A-convex on [a,b] C I and a < b with
a,b € R. We get, for A € (0,1),

(f+9) (7 + (1= N)g(b)))
S (o™ 1(MO( ) ( = N)ed)) + g (¢! (Apla) + (1 = Ng(b)))
<Af(a) + (1 =N f() + Agla) + (1= N)g(b) = A(f + 9)(a) + (1 = M) (f + 9)(b),

and A > 0,
(AF) (7 (@) + (1= N)e(1)) = af (¢! (p(a) + (1 = X)e(b)))
a(Af(a) + (1= A)f(b))
=A(af)(a)+ (1 =A)(af)(b)
|

Theorem 2.6 Let I be an interval of R and ¢ : I — R be a continuous, strictly
increasing function. If f,g : I — R are both nonnegative, decreasing (increasing)
and M,A-convez, then h(x) = f(x)g(x) also expose these properties.

Proof We begin by noting that for z < y,

[f(x) = f(W)]lg(y) —g(x)] <O

which implies that

f@) f(y) + fy)g(z) < f(z)g(@) + f(y)g(y)
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an inequality we use blow. Now if « > 0,6 >0 and a+ 5 =1,

F (@™ (ap(@) + Bo(y)) g (¢~ (ap(x) + Be(y)))

< (af(z) + Bf(y)) (« ($)+Bg( )

= o’ f(x)g(x) + B [f(z)g(y) + f(y)g(@)] + B f(y)g(y)
< f(x)g(x) + B [f(x)g(x) + f(v)g )] + B2 F(v)a(y)
=af(z)g(z) + Bf(y)g(y).

Theorem 2.7 Let I is an interval. If f,g : I — R be a M,A-convex, a convex
function and ¢ : I — R is continuous and strictly increasing function, then go f
be a M,A-conver function.

Proof If we go out of hypothesis, then we get
(gof) (¢7 (@) + (L= Ne®) = g (f (7" (@) + (1 = Ne(y))))

SgAfle)+ A =Nfy) <Ag(f(z) + (1= Ng (f(y))
=Agof) (@) + (1 =N (g0 f) ()

Theorem 2.8 Let fo : I — R be an arbitrary family of M,A-convex functions
and ¢ = J — @{J} be a continuous, strictly increasing function and let f(z) =
sup,, fa(2). If J={z € I : f(2) < oo} is nonempty, then J is an interval and f is
M, A-convex on J.

Proof Firstly It is showed that J is an interval. So, we must proof that [z,y] C J
for Va,y € J. Let z,y € J and z € [z,y] are arbitrary then there exist A\ € [0, 1]
such that

2= (Ae(z) + (1 - Ne(y)) € [z,y] C J.

and since f(x), f(y) < oo we have z € J

T (7 Qo) + (1= X)) = sup fa (¢7 () + (1= ()
< Sl;p Afa(z) + (1= X)faly)]
< )\sgp fa(z)+ (1= X) SIOJZP fa(y)

= Af(@) + (L= N f(y) < oo

This simultaneously that J is an interval (since it contains every point between
any two of its points) and that f is M, A-convex on it. [ ]

Theorem 2.9 Let I is an interval and x1,z9,23 € I. ¢ : I — R be a continuous,
strictly monotonic function and f: I — R be a M,A-convex function.
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(1) If ¢ is an increasing function, then we get for x; < xe < x3

1 o(x3) f(xs)
Lo(x) f(x2)| 20
L(x1) f(x1)
Proof
(1) Ifit is determination that is amplified in case of first line and thirdly column,
we get
1 o(x3) f(x3)
1 p(x2) f(x2) (11)
Lop(a1) f(21)
= fa1) (plxs) — p(x2)) — f(x2) (p(3) — @(21)) + f(23) (p(22) = $(21))

On the other hand, from z1 < x5 < x3, ¢ is a strictly monotonic function
and f be a M,A-convex function, we get for ¢ € (0,1)

w2 = @ (tp(a1) + (1 — t)p(x3)) (12)
flaa) = f (o7 (tp(z1) + (1 = t)p(x3))) < tf(z1) + (1 =) f(x3). (13)

By using (12)-(13) in (11), it is gotten

1 o(z3) f(w3)
Lp(x2) f(x2) (14)
Lo(21) f(21)

= f(z1) (p(x3) — to(r1) — (1 = )p(x3)) — f(z2) (p(73) — @(21)) (15)
)

The proof is completed.
(2) Tt is be occured that this is proved the same as ((1)).

According to We have given definition of M,A-convexity as above. Presently, we
will establish a new lemma for M, A-convexity. Using this identity, we will give
new theorems and corollaries.

By benefiting the definition of M, A-convex functions, we constitute the Hermite-
Hadamard inequality for this convexity as follow:

2.2 Hermite-Hadamard inequalities for M,A-convex

Theorem 2.10 Let f : I C (0,00) = R be a MyA-convez function, ¢ : I — R be a
continuous and strictly monotonic function and a,b € I witha <b. If f,¢' € Lla, b
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the the following inequalities holds

(e (P2 < ot /b f@)g! @)z < HTLE 1)

The above inequlaties are sharp.

Proof Since f : I C (0,00) = R be a M,A-convex function, we have, for all
z,y € I, (with ¢t = 3 in the inequality (9))

Choosing z = ¢! (tp(a) + (1 — t)p(b)), y = ¢~ (tp(b) + (1 — t)p(a)), we get

f (¢_1 <90(95) -ZF w(y))) <! (¢~ (te(a) + (1 = t)ip(b))) erf (o' (1 = t)p(a) + tp(b)))

By integrating for ¢ € [0, 1], we have

(o (23)

1 1
<% {/f (o7 (to(a) + (1 = t)p(b))) cltJr/f(@‘1 (1= t)p(a) +te(b)) dt
0 0

b
1 /
< Ma/f(x)@ (z)d.

We get the left hand side of the inequality (16). Furhermore, we observe that for
all t € [0,1]

F o7t (tpla) + (L= 1)p(b))) < tf(a) + (L —1)f(b).

By integrating this inequality with respect to ¢ over [0, 1], we have the right-hand
side of the inequality (16). Let consider the function f : (0,00) — R, f(x) = 1.

Thus
=g (o (20
= tf(a) + (1 - )f(h) =1

for all ,y € I and t € [0, 1]. Therefore f is M,A-convex on I. We also have

f <so‘1 <W>) =1, Mjf(az)gp’(x)dx =1
f(
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which reveals us the inequalities (16) are sharp. [ |

Lemma 2.11 Let f: I C [0,00) — R be a differentiable function on I°, ¢ : I — R
be a continuous and strictly monotonic function and a,b € I° with 0 < a < b. If
1" € L([a,b]), then we get

(e (*5) - e /b f)dade(19)

[ (1 ) ) + o))
’ / £ (L= ) wla) + o) 1)

B! (7 (29520)) 20

3071 ( w(a);rw(b) )

e S B (OO
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Calculating the other integral with the same method, we get

[t (bea) + (1 - 5) @(b)
B e et + (- ) ) 2
_ 2 _1 ((pla) +p(b)
ECETON <¢ %))

4

_ e ) (z)dz.

(ola) — o) b/ pave

By summing I with —I;, we obtain (18). [ ]

In other words, the lemma we have obtained can be expressed as follows:

Remark 2.12
(1) If it is taken p(z) = = in (18), then we get

f<a+b> /f
:b;“ jtf’<<1;>a+;b>dt0/1tf’<<l>b+ a>dt

(2) Tit is taken p(z) = Inx in (18), then we get [7, Lemma 2.1] as follow:

b
! (ﬂab)) B lnbilna / fng)dx
1

- L’;lm /t 1=5ps f/ ( 1-3b *) dt—/ltaibl‘éf’ (a%bl‘%> dt
0

0

1 in (18), then we get

(3) If it is taken p(z) =
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(4) If it is taken ¢(x) = 2P in (18), p € R\ {0}, the we get

«uewmam%ﬁ_jj(o—@w+@m%ﬁ
1

(L= §arsg0) ™ (=) b+ far)'

Remark 2.13 In ((1)) equation of Remark 2.12,if we use equation of (1 — 1) a +
%b =(1—-ta+t (%*b) in the first integration and we use the changing of variable
with —t = u — 1,dt = —du and equation of 15%a + 13%b = ub+ (1 — u)“TH’ in the
second integration, then we get [6, Lemma 2.1] as follow:

b

(50 -5, [ o (22)

a

1 1
— b;“ /tf’ <ta;b—|—(1—t)a> dt+/(t—1)f’ <tb+(1—t)a+b> dt
0 0

2

Theorem 2.14 f : I C [0,00) — R be differentiable on I° and a,b € I° with
a < b, o : 1 — R be a continuous and strictly monotonic function such that
oL p(I°) — I° is continuously differentiable functions. If |f'| is a M, A-convex
functions, we have

b
(el o)y 1 s
(e (*570)) so(b)—so(a)a/f( el )
< PO 41 0,0) [ (@) + Al ,0) |0
where
1 r / 2
o (™) (3p(@) + (1= 5) w(0) 5
m@%m_!;H¢ﬂ%ﬂ—@w@+%%»0—@]%
- ' .
Aafiza) = [|07) plr+ (123) 20) t_})]dt
b L+ () (L= 3) wla) + 50(0) 5
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Proof By using the M,A convexity of |f’| on [a,b] in (18), we get

_ o)~ ¢(@) / (07 (5e(@) + (1 = §) £(0)
) (% F@l+ (t=5) 17O d
1
(1= 3) ela) + 50(0))
+/ t- ﬁ ) 1f'(a \+ I >)dt] |
0
This proof is completed.
Corollary 2.15
i 1. If we take ¢(x) = mx +n to (23), we get
a+b
r(*50) - _a/f @]+ 170

it 1. If we take o(x) = Inx to (23), we get

b
1 Inb — lna
‘f (\/ab) " Inb—lna /f(x)dx S 4

a
where

_tg t t t2 t t_
Ai(t;a,b) = gaibk? + (t - 2) baa'"z | dt

_ 2 2 -
As(t;a,b) = <t—2) azh' "7 + 2b2a e | dt

S O —

[A1(t;a,b) | f'(a)| + Aa(t; a,b) | £(b)

69

(25)

(26)
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b
2ab ab f(z)
f<a—|—b>_b—a x? d

a

<P (A 110.0) | @) + At ) | 0)]
where
Al(t'ab)Z/l_ #2 | t— 4 ]dt
B O P O R N (CE F I
1 - _% t2
et = [y e

w w. If we take p(z) = 2P,p € R\ {0}, to (23), we get

b
af + 6\ /P D flx) b — aP
|f(( 2 ) )bp—ap A= < T |

where

b r 1 1 9
L2 » 1
Al(t§a7b):/ (;ap—k(l—;) bp) g—t—((l—;)a”—&-;bf’) (t—
b 117
)P dt

I +-1 2 2
Ag(t;a7b):/ (;ap+<1—;>bp) (t—g>+’;<(1—;>ap+;bp

(27)

Ai(t;a,b) | f'(a)| + Aa(t;a,b) | £'(B)|]

(28)

dt

Theorem 2.16 Let f : I C [0,00) — R be differentiable on I° and a,b € I°
with a < b, ¢ : I — R be a continuous and strictly monotonic function such that
01 (I°) — I° is continuously differentiable functions. If | f'|?, ¢ > 1, %4— % =1

is M,A- convex function on [a,b] then we get

e (755) - /b f@)e(@)de

' / /a
< #00) — p(0) {(Bl(t; 0.5 <|f (@) +3]f <b)\q>1

4 4

()9 119\ Y
© (Bat: a, b)) <3f ()| +1f(0) > }

4

(29)
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where

Bi(ta,b) = O/Itp (71 (;w(a) + (1 _ ;) w(b)) "t (30)
Bs(t;a,b) = 0/1tp (1) <(1 — ;) o(a) + ;go(b)> pdt.

Proof By taking (18) equality with absolute value and using Holder inequality,
we get

_|_

1 1/q
({ 1 (o7 (1= %) pla) + ;@(b)))‘th>

Since |f’|? is M,A-convex function, we have

f <901 <so(a) ; so(b))) 0 i ey a/bf(x)gp/(g;)dx

1 » 1/p
(2] (et + (1= 5 o) ar)
(J 1@+ =g ror ) B

1 p 1/p
(f 7 ‘(@‘1)/ ((1=35)wla) + %@(b))‘ dt)
(f ((1 a %) |f(a)]? + % |f’(b)|q) dt> 1/q

() (5e@+ (1-3)v0)

e N @+ s 1p e
) (e sirory

1/p

Pdt) <3!f’(a)\q+!f’(b)!q>1/q.

4
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The proof is completed. [ |

Corollary 2.17
i i. If we take p(z) = max +n to (29), we obtain

(33)

b—a F@ 43P O\ (31 @]+ L BN
< |(FEE) T (B

it 1. If we take o(x) = Inx to (29), we obtain

b
/ (\/ab) B lnbilna / f;x)dx

Inb —lna
<—F
4

"(a)|? AL
(Bl(t;ajb))l/p<|f( )| Ziﬂf (b)] >

+ (By(t;a,b))M/? <

31f(a)| + !f’(b)lq> ”1
4

where
Pazbl "3 dt,

Bl (t7 a, b) =

Bo(t;a,b) = [ tPa'zbzdt.

J
/

a

a? + P\ P p bf(w)
f<< 2 ) )_bp—ap e

bP — aP
4p

N

"(a)|? 1epy 19N L/a
(Bl(t;a7b))1/p<|f( ) +43yf (b)] >

()2 1)1\ 1/
© (Ba(t: a, b)) <3 )l 4170 > ]
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where

Theorem 2.18 Let f : I C [0,00) — R be differentiable on I° and a,b € I°
with a < b, ¢ : I — R be a continuous and strictly monotonic function such that
o~ (I°) — I° is continuously differentiable functions. If |f'|?, ¢ = 1, is MyA-
convex function on [a,b] then we get

b
f (sO‘l (w(a) ; W)))) TS0 =@ i (@) /f(x)w’(:c)da: (36)
< ZZED [(citia) [F @] + Cattian) [

+ (Co(t50,) |/ (@)° + Cata, ) £/0)[) 7]

where

Ci(tra,) = O/ Lo (3@ + (1-5) ) L,

Co(tr0,) = / (- g) o (3o (1-5) )|
0

cusan= [ (1) o ((1- ) e+ o),
0

Cy(ta,) = / Lo ((1-5)el@+ 500) it
0

Proof we use the power mean inequality in (18) and the |f'|?, ¢ > 1, is M, A-
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convex function then we get

1 1/q
[ E e (bo+ (1-2) )| Iy @)
2 2 2
0
This completes the proof. [ ]

3. Conclusions

In this study, we have defined a new and general convex function class. We have
given the properties of this convex function. We obtained Hermite-Hadamard in-
equality for the convex function we achieved, and in special cases we showed that
it was reduced to different convex classes.
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