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Abstract. A human host-mosquito vector model for transmission of malaria with inflow of
infected immigrants is formulated. The mosquito population includes aquatic stages (eggs,
larvae, and pupae) and mature stages which have highly temperature and rainfall dependent
life cycles. Model analysis reveals that the model only attains two (2) endemic equilibria;
one in absence of the vector population and the other in presence of the vector population.
The endemic equilibrium without the mosquito vector population is unstable. The endemic
equilibrium with the vector population is locally stable and globally unstable. Numerical
simulations of the model reveal that the proportion of infected humans introduced into the
community does not significantly change the pattern of malaria transmission.
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1. Introduction

Malaria remains a major public health problem globally, it is one of the leading
causes of morbidity and mortality. According to the World Health Organisation
(WHO) [42], an estimated 219 million cases of malaria occurred in 2017 worldwide
with about 436000 deaths globally. Sub-Saharan Africa shares at least 80% and
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78% of the global malaria cases and deaths respectively [43]. Malaria was once
eradicated in some parts of the world, most of which are developed countries,
however, recently disease out break has been observed in previously disease free
areas [34].

Human migration is believed to be the major factor leading to the re-emergence
of malaria as infected travelers infect susceptible mosquitoes in disease free areas
(see [11, 20, 21, 37]). Human population movements have significant impact
on the transmission of vector borne diseases across spatial and temporal scales
that exceed the limits of mosquito dispersal [33, 39]. Human migrations include
voluntary and forced migrations such as refugees, it leads to the opening of
new areas for settlement and urbanisation. Migrants most likely lack immunity
against malaria, moreover acquired immunity to severe disease is life-long under
conditions of repeated human exposure to biting Anopheles mosquitoes and might
be lost with time without repeated re-exposure [13, 14, 44]. Rapid infrastructure
development has enhanced human migration, most especially in developing
countries which have high unprecedented population growth. Individuals mainly
travel due to the search for greener economic opportunities, civil unrest and
adventure. An increasing number of imported malaria cases due to migrant
inflows from malaria-endemic regions, together with competent mosquito vectors
species, favourable climatic conditions and changing climate underscores the risk
of re-emergence of autochthonous cases in regions where malaria was previously
eradicated [35]. Mobile and migrant populations, because of their higher risk to
infection contribute to the spread of the drug-resistance problem from endemic
areas to malaria-free regions. They have difficulties in staying in one region due
to the nature of their work which requires seasonal migration [10, 11, 20, 41]. The
inflow of infected individuals from higher to lower transmission areas presents
a risk of initiating malaria epidemics and may also sustain malaria parasite
populations in areas where they would otherwise be absent or being targeted for
elimination [30, 39].
Climatic conditions such as temperature, rainfall patterns, and humidity af-

fect the life cycle and survival of parasites and vectors. Seasonal factors influence
malaria transmission because mosquito vectors and malaria parasites are sensi-
tive to climatic conditions. The Anopheles mosquitoes that are responsible for
transmission of the Plasmodium parasites often breed in aquatic habitats to com-
plete their life cycle [3, 8]. The length of the Anopheles mosquito lifecycle and the
sporogenic development of the Plasmodium parasites that cause malaria depend
on temperature [12, 15, 27]. Water temperature is an important determinant of
malaria transmission because it is responsible for both aquatic survival and devel-
opment [4, 5, 18]. It has a major effect on the rate at which the immature stages of
mosquitoes develop into adults. The temperature of the environment is one of the
most important abiotic factors that affects the life of mosquitoes and also impacts
on the mosquitoes’ flight activity and host-seeking behaviour [31]. The increase in
mosquito density and incidence of malaria cases usually occur in rainy seasons.
However, immature stages of the Anopheles mosquitoes are frequently exposed
to high frequency of extreme rainfall that may cause an increase in their mortal-
ity rate [28, 32]. Seasonally dry conditions and low ambient temperatures prevent
sporogonic malaria development although abnormally warm temperatures and wet
conditions favour malaria epidemic. However, in natural situation in tropical en-
vironments perennial malaria transmission occurs during hot dry seasons [25]. It
is thus important to include temperature and rainfall dependence in a malaria
transmission model.
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Mathematical modelling and analysis is an important part of infectious disease
epidemiology. Numerous authors (see [1, 16, 23, 24, 26, 27, 29, 36, 38, 40]) have
developed models to quantify the impact of temperature and rainfall on malaria
transmission dynamics. Agusto et al. [2] used a deterministic model for assessing
the impact of changing temperature and temperature variability on short-term
malaria transmission dynamics. A delay-differential model for immature mosquito
development was developed by Beck-Johnson et al. [6] with development time in-
versely proportional to temperature. Bayoh and Lindsay [4] used non-linear models
to describe the relationship between developmental rate of the aquatic stages of
the Anopheles gambiae sensu stricto and temperature. It was revealed that adult
development rate was greatest between 28◦C and 32◦C, while adult emergence was
highest between 22◦C and 26◦C. However, there was no emergence of adults below
18◦C or above 34◦C. Makinde and Abiodun [19] formulated linear models based
on stepwise regression based on some climate variables and number of suscepti-
ble individuals to malaria. They found out that an increase in daily rain amount
and mean temperature significantly raises the chance of exposure to malaria while
number of susceptible and exposed individuals affects transmission of malaria in-
fection. Lunde et al. [17] compared six temperature dependent mortality models
for the malaria vector Anopheles gambiae sensu stricto to examine how mosquito
mortality is related to temperature. Their model suggests that transmission is most
efficient at around 25◦C. Most of the models with infective migrants (see [9, 21, 37])
ignore seasonal factor dependence in the mosquito vector population.
The influx of infective humans and with no seasonal factors have been considered

in the following studies. Brauer and van den Driessche [9] formulated simple mod-
els for disease transmission that included immigration of infective individuals and
demographic effects. It was revealed that, there is no disease free equilibrium with
a fraction of infective immigrants and there is always a unique endemic equilib-
rium which is asymptotically stable. Tumwiine et al. [37] developed a susceptible-
infective-recovered-susceptible (SIRS) and susceptible-infective (SI) in the human
population and mosquito population, respectively for malaria transmission with
influx of infective migrants. They showed that if the fraction of infective humans
is sufficiently small there exists a threshold for which the disease can be elimi-
nated. Mukandavire et al. [21] investigated the effect of seasonality in the trans-
mission rates in a malaria model with infective immigrants, which revealed that
the strength of seasonality increases the number of infective humans. Sunita and
Nisha [34] incorporated the exposed class in a malaria transmission model with
infective immigrants, they found that there are two disease free equilibrium points
which exist only if there are no infective immigrants entering into the population,
otherwise there is a unique endemic equilibrium.
In the previous work [9, 34, 37], they used deterministic models to analyse malaria

transmission in presence of infective immigrants, however the effect of seasonal
factors was ignored. Mukhtar et al. [22], Ngarakana - Gwasira et al.[24] and Yiga et
al. [45] investigated the effect of seasonal factors in absence of infective immigrants.
Temperature and rainfall dependence in the mosquito population have been ignored
in infective immigrant malaria models. Therefore, this study is an extension of
Yiga et al. [45] in which the effect of seasonal factors on malaria transmission in
absence of infected immigrants was analysed. This study incorporates the inflow of
a proportion of infected humans and mosquitoes’ aquatic stages (eggs, larva, and
pupae) that are sensitive to rainfall and temperature.
The rest of this paper is organised as follows: In Section 2 the model formulation

is presented , the model is analysed for steady states and their stability in Section
3. In Section 4, numerical simulations are presented and the paper is concluded in
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Section 5.

2. Model formulation

In this section, a human host- mosquito vector model with inflow of infected humans
and infection through an interaction coefficient between infected and susceptible
individuals is formulated. Susceptible humans become infected with interaction
coefficient βH between susceptible humans and infectious mosquitoes, similarly
susceptible mosquitoes get infected with interaction coefficient βV between suscep-
tible mosquitoes and infected humans [34]. An SEIRS and SI model for the human
and mosquito populations, respectively is formulated. The total human population
NH is divided into four compartments; susceptible SH , exposed EH , infected IH
and recovered RH humans such that

NH = SH + EH + IH +RH . (1)

The total mosquito population MT is divided into aquatic mosquitoes MA (eggs,
pupae, larvae) and adult female Anopheles mosquitoes NV such that

MT = MA +NV .

Adult femaleAnopheles mosquito populationNV is divided into two compartments;
susceptible SV and infectious IV such that

NV = SV + IV . (2)

The populations are governed by a system of ordinary differential equations below

dSH

dt
= ΛH + (1− p− q)AH − βHSHIV − µHSH + σRH ,

dEH

dt
= pAH + βHSHIV − (ρ+ µH)EH ,

dIH
dt

= qAH + ρEH − (µH + ν + δ)IH ,

dRH

dt
= νIH − (σ + µH)RH , (3)

dMA

dt
= L(T )

(
1− MA

K

)
(SV + IV )− (λ(T,R) + µA(T ))MA,

dSV

dt
= λ(T,R)MA − βV SV IH − µV (T )SV ,

dIV
dt

= βV SV IH − µV (T )IV ,

where ΛH is the human birth rate, AH is the constant immigration rate of humans
with a proportion of exposed p and infective q. µH is the natural death rate of the
human population, σ is the rate of loss of immunity by humans, ρ is the progression
rate of humans from exposed to the infectious class, ν is the recovery rate of infected
humans and δ is the rate at which infected humans die from malaria infection.
L(T ) is the egg deposition rate of adult mosquitoes, the population growth of
mosquitoes is constrained by the carrying capacity of the environment K. λ(T,R)
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is the temperature and rainfall dependent maturation rate of aquatic mosquitoes,
µA(T ) and µV (T ) are temperature dependent death rates of the aquatic and adult
mosquitoes respectively. In the above formulation it is assumed that all parameters
are positive except δ ⩾ 0.

3. Model analysis

3.1 Invariant region

The region in which the solution of the system (3) is bounded is obtained. Differ-
entiating equation (1) gives

dNH

dt
= ΛH + (1− p− q)AH − µHNH − δIH . (4)

For the disease induced death rate δ ⩾ 0 equation (4) becomes

dNH

dt
⩽ Λ− µHNH , (5)

where Λ = ΛH + (1− p− q)AH .
Solving equation (5) gives

NH(t) ⩽ Λ

µH
+

(
NH(0)− Λ

µH

)
exp(−µHt).

Evaluating as t → ∞, shows that NH(t) → Λ
µH

. Therefore the to-

tal human population is bounded by Λ
µH

, and the solution is bounded in

DH = {(SH , EH , IH , RH) ∈ R4
+ : 0 ⩽ NH ⩽ Λ

µH
}.

Similarly, for the mosquito vector population differentiating equation (2) and
substituting for dSV

dt and dIV
dt from system (3) gives

dNV

dt
= λ(T,R)MA − µV (T )NV . (6)

Solving equation (6) gives

NV (t) =
λ(T,R)MA

µV (T )
− λ(T,R)

µV (T )
exp(−µV (T )t)

∫
exp(µV (T )t)

dMA

dt
dt.

As t → ∞, NV (t) → λ(T,R)MA

µV (T ) , thus the total mosquito population is bounded

by λ(T,R)MA

µV (T ) . Therefore all the solution set of system (3) is bounded in D =

{(SH , EH , IH , RH) ∈ R4
+ : 0 ⩽ NH ⩽ Λ

µH
, (MA, SV , IV ) ∈ R3

+ : 0 ⩽ NV ⩽
λ(T,R)MA

µV (T ) }. The model is epidemiological and mathematically well posed.
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3.2 Positivity of solutions

In this subsection, it is shown that the solution of system (3) is always positive for
all time, t > 0 if the respective initial values of the populations are positive.

Theorem 3.1 For system (3) suppose SH(0) > 0, EH(0) > 0, IH(0) > 0, RH(0) >
0,MA(0) > 0, SV (0) > 0, IV (0) > 0, then SH(t) > 0, EH(t) > 0, IH(t) >
0, RH(t) > 0,MA(t) > 0, SV (t) > 0 and IV (t) > 0 for all t > 0.

Proof Define a set H = {t > 0 : SH(t) > 0, EH(t) > 0, IH(t) > 0, RH(t) >
0,MA(t) > 0, SV (t) > 0, IV (t) > 0}.
It is assumed by contradiction that if the set H defined above is bounded, then H
has a supremum τ . Now define τ as
τ = sup{t > 0 : SH(t) > 0, EH(t) > 0, IH(t) > 0, RH(t) > 0,MA(t) > 0, SV (t) >
0, IV (t) > 0, 0 ⩽ t ⩽ τ}.
Since SH(t), EH(t), IH(t), RH(t),MA(t), SV (t) and IV (t) are continuous then
τ > 0. If τ < ∞ then necessarily SH(τ) = 0 or EH(τ) = 0 or IH(τ) = 0 or
RH(τ) = 0 or MA(τ) = 0 or SV (τ) = 0 or IV (τ) = 0.
From the first equation of system (3),

dSH

dt
= a+ σRH − (βHIV + µH)SH ,

where a = ΛH + (1− p− q)AH .

Let P (t) = exp
(
µHt+

∫ t
0 βHIV (s)ds

)
and note that P (0) = 1 and P (t) > 0 for

all t > 0.

Consider,

d

dt
[SH(t)P (t)] = ṠH(t)P (t) + SH(t)Ṗ (t),

= P (t) ˙SH(t) + (µH + βHIV (t))P (t)SH(t),

= P (t)[ṠH(t) + (µH + βHIV (t))SH(t)],

= P (t)[a+ σRH ],∫ τ

0

d

dt
[SH(t)P (t)]dt =

∫ τ

0
P (t)[a+ σRH ]dt,

SH(τ)P (τ)− SH(0)P (0) =

∫ τ

0
(a+ σRH(t))P (t)dt,

SH(τ) = P (τ)−1

[
SH(0) +

∫ τ

0
(a+ σRH(t))P (t)dt

]
.

Therefore, SH(τ) > 0 since all parameters are positive. Applying the above
reasoning to the remaining equations shows that EH(τ) > 0, IH(τ) > 0, RH(τ) >
0,MA(τ) > 0, SV (τ) > 0, IV (τ) > 0 thus τ = ∞. This contradicts τ being a
supremum of H, thus H is not bounded.
This confirms the positivity of solutions for all t > 0. ■
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3.3 Equilibrium points

In this subsection, system (3) is analysed for steady states. There is no disease free
equilibrium due to the inflow of infected immigrants, thus, the disease is always
present in the population. At the equilibrium point, the right hand side (RHS) of
equations in system (3) are set to zero to give

MA

[
L(T )

(
1− MA

K

)
λ(T,R)

µV (T )
− (λ(T,R) + µA(T ))

]
= 0 (7)

From equation (7) either MA = 0 or MA = K[L(T )λ(T,R)−µV (T )(λ(T,R)µA(T ))]
L(T )λ(T,R) , the

aquatic mosquito population is independent of the infected mosquito and human
populations. This implies that the infected populations do not influence the size of
the aquatic mosquito population.
For MA = 0 it implies that SV = IV = 0 and there exists an endemic equilibrium
point without both aquatic and adult mosquito population. This means malaria
will be sustained in the population only because of the inflow of infected humans.
E1(SH , EH , IH , RH ,MA, SV , IV ) = [S∗

H , E∗
H , I∗H , R∗

H , 0, 0, 0], where

S∗
H =

1

µH

(
ΛH + (1− p− q)AH +

σν[q(ρ+ µH) + ρpAH ]

(ρ+ µH)(σ + µH)(µH + ν + δ)

)
,

E∗
H =

pAH

ρ+ µH
,

I∗H =
q(ρ+ µH) + ρpAH

(ρ+ µH)(µH + ν + δ)
,

R∗
H =

ν[q(ρ+ µH) + ρpAH ]

(σ + µH)(ρ+ µH)(µH + ν + δ)
.

It is observed from the endemic equilibrium point E1 that the population in the
infected subsystem is due to inflow of infectives, that is, if the inflow of infectives is
blocked such that p = q = 0 then the exposed, infected and recovered populations
become zero which yields a disease free equilibrium. The resulting disease free
equilibrium persists as long as there is no inflow of infectives allowed into the
community, otherwise the disease persists.

For MA = K[L(T )λ(T,R)−µV (T )(λ(T,R)+µA(T ))]
L(T )λ(T,R) , it follows that SV ̸= 0 and IV ̸= 0

provided L(T )λ(T,R)
µV (T )(λ(T,R)+µA(T )) > 1. Thus there is an equilibrium point in presence of

mosquito vectors.

Theorem 3.2 For the system (3) if MA = K[L(T )λ(T,R)−µV (T )(λ(T,R)+µA(T ))]
L(T )λ(T,R) with

L(T )λ(T,R) > µV (T )(λ(T,R) + µA(T )) then there exists a unique endemic equi-
librium.

Proof Setting the RHS of the equations in system (3) to zero gives

SH =
ΛH + (1− p− q)AH + σRH

βHIV + µH
, (8)
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EH =
pAH + βHSHIV

ρ+ µH
, (9)

IH =
qAH + ρEH

µH + ν + δ
, (10)

RH =
νIH

σ + µH
, (11)

SV =
λ(T,R)MA

βV IH + µV (T )
, (12)

IV =
βV IHSV

µV (T )
. (13)

ForMA = K[L(T )λ(T,R)−µV (T )(λ(T,R)+µA(T ))]
L(T )λ(T,R) , let d = L(T )λ(T,R)−µV (T )(λ(T,R)+

µA(T )) thus

MA =
Kd

L(T )λ(T,R)
.

Then using equations (12) and (13)

SV =
Kd

L(T )(βV IH + µV (T ))
,

and

IV =
βV IHKd

L(T )µV (T )(βV IH + µV (T ))
. (14)

Substituting equations (10) and (13) into equation (8) gives

SH =
L(T )µV (T ) ((σ + µH)[ΛH + (1− p− q)AH ] + σνIH) (βV IH + µV (T ))

(σ + µH)[(βHβV Kd+ L(T )µV (T )µHβV )IH + L(T )µHµV (T )2]
.

(15)

From equation (9)

EH =
pAH + βHSHIV

ρ+ µH
.

Substituting for SH and IV using equations (14) and (15) gives

EH =
1

(ρ+ µH)

(
pAH +

βHβV Kd((σ + µH)[ΛH + (1− p− q)AH ] + σνIH)IH
(σ + µH)[(βHβV Kd+ L(T )µV (T )µHβV )IH + L(T )µHµV (T )2]

)
.

(16)

From equation (10)

(µH + ν + δ)IH = qAH + ρEH ,

substituting for EH gives that the number of infectives at equilibrium Î∗H is given
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by the roots of the polynomial

F (Î∗H) = r1(Î
∗
H)2 + r2(Î

∗
H) + r3, (17)

where

r1 = (µH + ν + δ)(ρ+ µH)(σ + µH)βV (KβHd+ L(T )µHµV (T ))− ρβHKβV dσν,

r2 = −(A+B − C),

r3 = −L(T )µHµV (T )
2(σ + µH)AH [q(ρ+ µH) + ρp],

A = (σ + µH)AHβV (q(ρ+ µH) + ρp)[(KβHd+ L(T )µHµV (T ))],

B = ρβHKβV d(σ + µH)[ΛH + (1− p− q)AH ],

C = (µH + ν + δ)(ρ+ µH)(σ + µH)L(T )µHµV (T )
2.

It is observed that r1 > 0 because ρβHKβV dσν is a term in the expansion of
(µH + ν + δ)(ρ+ µH)(σ + µH)βV (KβHd+ L(T )µHµV (T )), and r3 < 0. Therefore
the polynomial F (I∗∗H ) has real roots since r3 < 0. For the roots to be positive
there are three possible cases.

Case I : If A + B < C then r2 > 0, there exists one positive root if
−r2 <

√
(r22 − 4r1r3) which yields 4r1r3 < 0 which is true since r1 > 0

and r3 < 0 thus there is one positive root if r2 > 0.
Case II : If A+B = C then r2 = 0, there exists one positive root.
Case III : If A + B > C then r2 < 0, there exists two positive roots if
−r2 >

√
(r22 − 4r1r3) else there is only one positive root . This yields 4r1r3 > 0

which is not possible since r1 > 0 and r3 < 0 thus there is one positive root if
r2 < 0.
Equation (17) has one positive root for any value of r2, which implies that there
exists one endemic equilibrium point when MA ̸= 0.
System (3) has an endemic equilibrium point given by

E2(SH , EH , IH , RH ,MA, SV , IV ) = (Ŝ∗
H , Ê∗

H , Î∗H , R̂∗
H , M̂∗

A, Ŝ
∗
V , Î

∗
V ),

where

Ŝ∗
H =

L(T )µV (T )[(σ + µH)(ΛH + (1− p− q)AH) + σνÎ∗H ](βV Î
∗
H + µV (T ))

(σ + µH)[(KβHd+ µHµV (T ))βV Î∗H + L(T )µHµV (T )2]
,

Ê∗
H =

1

ρ+ µH

(
pΛ +

KβHβV dÎ
∗
H [(σ + µH)(ΛH + (1− p− q)AH) + σνÎ∗H ]

(σ + µH)[(KβHd+ L(T )µHµV (T ))βV Î∗H + L(T )µHµV (T )2]

)
,

R̂∗
H =

νÎ∗H
σ + µH

,

M̂∗
A =

Kd

L(T )λ(T,R)
,

Ŝ∗
V =

Kd

L(T )(βV Î∗H + µV (T ))
,
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Î∗V =
KβV dÎ

∗
H

L(T )µV (T )(βV Î∗H + µV (T ))
.

■

3.4 Stability of the equilibrium points

The Jacobian matrix for system (3) evaluated at the endemic equilibrium E1 is
given by

JE1
=



−µH 0 0 σ 0 0 −βHS∗
H

0 −α1 0 0 0 0 βHS∗
H

0 ρ −α2 0 0 0 0
0 0 ν −α3 0 0 0
0 0 0 0 −α4 L(T ) L(T )
0 0 0 0 λ(T,R) −α5 0
0 0 0 0 0 βV I

∗
H −µV (T )


,

where α1 = ρ + µH , α2 = µH + ν + δ, α3 = µH + σ, α4 = λ(T,R) + µA(T )
and α5 = βV I

∗
H − µV (T ). The eigenvalues of the Jacobian matrix JE1

are −µH ,
−(µH + σ), −(µH + ν + σ), −(ρ+ µH) and the zero points of the polynomial;

Z3+[βV I
∗
H+2µV (T )+λ(T,R)+µA(T )]Z2+[(λ(T,R)+µA(T ))(βV I

∗
H+2µV (T ))−

L(T )λ(T,R)]Z + (βV I
∗
H + µV (T ))[µV (T )(λ(T,R) + µA(T )) − L(T )λ(T,R)] = 0,

where Z is the eigenvalue.
By the Routh-Hurwitz criterion, for local stability of the endemic equi-
librium E1, (λ(T,R) + µA(T ))(βV I

∗
H + 2µV (T )) > L(T )λ(T,R) and

µV (T )(λ(T,R) + µA(T )) > L(T )λ(T,R) must be satisfied. However it has
already been established that the endemic equilibrium E1 only exists if
µV (T )(λ(T,R) + µA(T )) < L(T )λ(T,R) which violets the condition of stability
hence the endemic equilibrium E1 is locally unstable.

The local and global stability of the endemic equilibrium E2 is investigated
using numerical simulations and illustrated in section 4.

4. Numerical simulation

In this section, numerical simulation of the model with initial conditions SH(0) =
5000, EH(0) = 200, IH(0) = 500, RH(0) = 0, MA(0) = 2000, SV (0) = 3000,
IV (0) = 100 is performed. According to Mukhtar et al. [22], the maturation rate
of aquatic mosquitoes to adulthood λ(T,R) is temperature and rainfall dependent,
governed by the total number of eggs laid per adult per oviposition ω(T ), the
daily survival probability of the rainfall dependent eggs P1(R), the daily survival
probability of the rainfall dependent larvae P2(R), the daily survival probability
of the rainfall dependent pupae P3(R), daily survival probability of the temper-
ature dependent larvae TEA(T ), and the temperature dependent duration of the
immature mosquito development TEA(T ). The temperature and rainfall dependent
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parameters obtained from Mukhtar et al. [22] are given by

ω(T ) =
−0.153T 2 + 8.61T − 97.7

µV (T )
,

P1(R) =
4 ∗ 0.93
2500

R(50−R),

P2(R) =
4 ∗ 0.25
2500

R(50−R),

P3(R) =
4 ∗ 0.75
2500

R(50−R),

P2(T ) = exp(0.06737− 0.00554T ),

TEA(T ) =
1

−0.00094T 2 + 0.049T − 0.552
.

L(T ) = −0.153T 2 + 8.61T − 97.7

λ(T,R) =
ω(T )P1(R)P2(R)P3(R)P2(T )

TEA(T )

µA(T ) = 1.0257− 0.094T + 0.0025T 2

µV (T ) = −ln(0.522− 0.000828T 2 + 0.0367T )

Temperature 25o C and rainfall 30 mm are used because these were found to be
the most effective values for malaria transmission in [45]. The rest of the parameters
used are indicated in Table 1.

Table 1. Summary of the parameter values used.

Parameter Symbol Value Reference
Birth rate of humans ΛH 0.03/day [34]
Human immigration rate AH 0.001/day Assumed
Natural death rate
of humans µH 1/21900/day [7]
Interaction coefficient
between susceptible
humans and infected mosquitoes βH 0.00021 [34]
Rate of loss of immunity σ 1/(20 ∗ 365)/day [7]
Progression rate from exposed class ρ 1/20/day [7]
Recovery rate ν 1/30/day [7]
Disease induced death rate δ 0.001/day [7]
Interaction coefficient
between susceptible
mosquitoes and infected humans βV 0.00021 [34]
Carrying capacity of
the environment K 1000000 [22]

Figure 1 (a) shows the human population change with time, it is observed that the
populations in all the four compartments attain equilibrium. Similary, it is observed
in Figure 1 (b) that the mosquito population in all the three compartments attains
equilibrium. Therefore Figure 1 shows that the endemic equilibrium point E2 is
locally stable.
In Figure 2, initial conditions I1, I2, I3, I4 and I5 are used to investigate the
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(a) (b)

Figure 1. Human population change with time (a) and mosquito population change with
time (b) over a period of 500 days.

global stabilty of the endemic equilibrium point E2. Stability is observed for the
susceptible human population in 2 (a), exposed human popultion in 2 (b), infected
human population in 2 (c), aquatic mosquito population in 2 (e) and the suscep-
tible mosquito population in 2 (f). However, Figure 2 (d) showing the recovered
human population and Figure 2 (g) showing the infectious mosquito population in-
dicate that the endemic equilibrium point E2 is not globally stable. This is because
different initial conditions result in different values at the equilibrium.
To investigate the effect of infected immigrants, different values of p (proportion

of exposed immigrants) and q (proportion of infected immigrants) are used to
perform a numerical simulation shown in Figure 3. Four cases are considered, that
is, p = q = 0, p = q = 0.2, p = 0.4 > q = 0.2 and p = 0.2 < q = 0.4. It is observed
that the proportion of infected immigrants introduced into the community does
not significantly affect the malaria infection pattern as the infection curve does not
swift neither upwards nor downwards.

5. Conclusion

A mathematical model that captures temperature and rainfall dependence in
the mosquito population and inflow of infected immigrants has been presented.
Analysis of the model reveals that the infected population does not affect the
size of the aquatic mosquito population. The model has two endemic equilibria,
one free of the mosquito vector population E1 and the other with the mosquito
vector population E2. The endemic equilibrium E1 without the mosquito vector
population represents an area of no transmission since transmission is dependent
on the mosquito vector population. The endemic equilibrium E1 is locally unstable.
It is observed that this is due to the inflow of infected immigrants such that if the
infected immigrants are blocked the endemic equilibrium E1 reduces to a disease
free equilibrium. However as long as there is inflow of infected humans into the
community the disease will persist. Therefore, for areas of no transmission it is
important that those entering into the community are screened and those found
infected treated in-order to maintain a disease free state. The endemic equilibrium
E2 is due to both inflow of infected migrants and transmission by the mosquito
vectors. The endemic equilibrium E2 is locally stable which shows that in the long
run the disease persists in the population.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2. Showing the global stability of the endemic equilibrium point for all the human
and mosquito population compartments.
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Numerical simulations show that the endemic equilibrium E2 is not globally
stable. It is also shown that a proportion of infected immigrants introduced into
the community does not significantly affect the malaria transmission pattern. Thus,
over-emphasising the role of infected immigrants and its impact on malaria patterns
is misleading for malaria eradication.

Figure 3. Showing the effect of the proportion of exposed and infected immigrants to the
total number of infectives in the population over a period of 100 days.
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