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A Three-Point Iterative Method for Solving Nonlinear Equations
with High Efficiency Index
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Abstract. In this paper, we proposed a three-point iterative method for finding the simple
roots of non-linear equations via mid-point and interpolation approach. The method requires
one evaluation of the derivative and three(3) functions evaluation with efficiency index of
81/4 ~ 1.682. Numerical results reported here, between the proposed method with some
other existing methods shows that our method is promising.

Received: 03 April 2019, Revised: 10 June 2019, Accepted: 15 August 2019.

Keywords: Eight-order convergence; Non-linear equations; Mid-point; Efficiency index.

Index to information contained in this paper

Introduction

Method and convergence analysis
Numerical results

Discussion

TR W N

Conclusion

1. Introduction

Consider the problem of finding the root of nonlinear equation

f(z) =0, (1)

where f : R — R which is defined on an interval D, which assumed to satisfied
the following assumption:
Al. f is continuously differentiable in an open interval D C R.
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A2. There exist a solution a of (1) in D such that f(«) =
A3. The derivative f'(a) # 0.

The famous method for finding the root of (1) is the Newton’s method [17,18,16].
Newton’s method for solving nonlinear equation is a natural extension of Newton’s
method for single equation and it is the source of numerous variants methods [9].
This method generates an iterative sequence {xj} from any initial point xo in the
neighborhood of the solution «, via

I A C7D)
SR E) )

where k = 0,1,2, ... [18]. Newton method is probably the most widely used iterative
method and it is an example one-point iteration which is converges quadratically
[10].

One of the attractive area of numerical analysis is solving nonlinear equations
and mostly iterative method are used to find the solution of nonlinear equation.
Throughout this paper, we consider iterative method to find a simple root « of (1).
In the recent years, many new iterative methods have been invented to increase the
order of the convergence and efficiency index of the classical iterative methods [9].
There are numerous variants iterative methods for solving (1). For example, in 1974,
Kung and Traub in the fundamental paper [7] provide the following derivative-free
method for solving nonlinear equation by using the inverse interpolation given by

Yn = an + Bf(xn)

zn) f(Yn)
Bf( ( ) (Ecyn))’ 1 1 ®)
Tntl = 2n f(yn) fzn) [f[yn —2,] o f[zn,_yn]]‘

In 2007, Jain [6] Proposed a steffence type methods for solving nonlinear equation
which is a derivative free method of order three, in which we have three functions
evaluation given by

. (@)
{yn — FEnt =1 (4)
Tntl = Tn = [Fla, 1 f @)~ @) @)~ )]

In 2009 Bi et al. [2] Constructed a two(2) difference iterative methods of three
step with eight-order convergence for solving nonlinear equations which is given by

yn = Tn — ;/((Zil))v

N flyn) 1—t,/2
Zn = Yn — f'(yx") -m; (5)
Tp4l = Zn — Lzl

Flznynl+(zZn—Yn) fl2n,2n 2],

with weight function w(u,) = (1—ain)2/a where a € R, t,, = ;Ei’:;, Uy = }C((;:)), and
— o [f(zn)
T )1 s
Zn = Yn = [zf(xn>—5f<yn>]f/§xn;7 (6)
Tn+l = 2n — 1)/ (2

f[zn7yn]+f[zmacmxn](zn _yn),
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where u,, = f((z)) and H (t) represents real valued function with H(0) = 1, H'(0) =

2 and |H"(0)] < occ.
Also in the same year 2009, Bi et al. [3] constructed another family of eight-order
iterative method using the function difference defined by

_ _ f(zn)
Yn = Tn = F(z) ’f( :
2 — 5 @)+ (r+2)f(2n) f(zn)
ntl n f@n)+7f(zn)  flznynl+(2n—yn) fl2n,@n,2n]’
where v € R is constant, u, = g ”g, and h(t) represents a real valued function

with h(0) =1 K/(0) =2 h"(0) = 10, and h"(0) =< oc.

In 2010, Wang and Liu [13], constructed a new method for solving non linear
equation with eight-order convergence and efficiency index. The method has four
functions evaluation which is given by

_ fzn)
T
Zn = Yn — f/(g;i)'k%n? (8)

o f(zn)
Tl = 20 ol e~ FEn ) ol T 22 ([ gl (20))

Yn —Tn

In 2010, Wang and Liu [14] proposed a robust optimal eight order method by
using weight function given by:

S
o T ) s
j— x’”. y”L
= 7 1§ w) 2f W) )
e b L RICR il
5@ 8 (o) () +2f (3’
where u = G o ) )

Also in 2010, Thukral and Petkovic [12] proposed a family of three point
methods of optimal order for solving nonlinear equations as follows

yn Tn — Jl‘f/((z77 ))7

@) @) +bf (yn)
Zn = Yn Py T 062 G0y (10)
Tp+l = Zn — f/(g;L) [Q(f(in)) + v(Tn, Yn, zn)]

f(yn) _ f(xn)z _ f( ) f(zn)
where Q(7.5) = Fapar@areo w7 C@n e ) = 5 erE T AR

and Q(0) = 1, Q'(0) = 2, Q"(0) = 10 — 4b, Q" (0) = 12b* — 72b + 72. And also
develop another method using weight function given by
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Yn = Tp — ]]:/((g;,;))’
_ flyn) 148ty
Zn = Yn — f/(:iﬂe‘m’ (11)
f

Tyl = Zp — f,(':;)) [w(tn) + 25 + dun].
with weight function

5—28—(2—83+28%)t, + (1 +4B8)t2
5—26 — (12 — 1283 + 232)t, ’

w(t,) =

where o, 8 € R, t,, = % and u, = }cé;:))

In 2010, another third-order iterative algorithm had been develop by Dehghan
and Hajarian [5]

Yn = Ty — 7@ +‘]J:((xﬂ)) o
J R (E9F R (12)
L f@atf @) —fGn)

As we can see, this algorithm also includes three evaluation of the function per
iteration and therefore is not optimal with high efficiency index.

In 2010, an accurate optimal fourth-order method [8] was proposed by Liu et al.
as follows

= f(0)?
" T e T (13)
Tn+l = Yn — ot f[xy:&:] == f (Yn )

where z, = z, + f(x,). This method consists of three evaluations of the func-
tion per iteration in order to obtain fourth-order convergence. In this method
flzn, Ynls flyns 2nls flzn, 2n] are divide difference of f(z). We recall that they can
defined recursively via

Jlws] = f); flws, 5] =

) Ty 7 T

In 2011, Zheng et al. in [19] extended the approach given by Liu et al. [§] to
provide a three parameter family of iterations with optimal convergence rate four.

_ _ f(zn
Yn = Tn = o, T f(wg) T @)’ (14)
2 = yn — flEn,yn]l+(0=1) flyn,2n]—(0—1) flXn, 2] =BUn—2n) Wn—2n)  f(yn)
n+l n Fln Yn]+0fYn 2n] —Df [Tn,2n]+a(yYn—2n) (Yn—2n) Jlen—yn]’

where z, = z, + f(x,) and 3, a, p are real valued parameters.

In 2013, Sharma and Kaur [11], obtained a two-point iterative methods for solving
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nonlinear equations which is derivative free method

_ S (zx)?
Yk =Tk — flae+vf(ze))—f(zr)’ 1
_ Fy) f (@it f (@) (15)
{ka =Yk~ Gl f@)—Fu) floe]

The convergence order of these presented method is four and it is more efficient
compared to some class of two points methods using numerical example.

In 2016, Ababneh [1] constructed the two point iterative method for solving
nonlinear which has the convergence order four with two function evaluation given
by

_ ) 4 HOG @ B2 ) e (S 2
Tt = Un = 2505 T (e 48w T @+ 87w e ”

where 8 € R is a constant and n =10,1,2, ... .

2. Method and convergence analysis

In this section, we present a new three point iterative method for solving nonlinear
equation via mid-point and Newton interpolation approach.

Let f: R — R is eight times continously differentiable on an interval D € R
and has a simple zero o € D. Consider the two point iterative method that was
constructed by Ababneh [1].

— 0 f(za)
{yn T H e 5= e fw) () 2
— _ Yn Yn Tn - Yn) __ Tn)J\Yn Yn
Tntt = Un = 250yt (e B ) T@d @8 Flan)) -
where 8 € R is a constant and n = 0,1, 2, ... . In order to increase the convergence
(17), we added one Newton step and our method is given:
o 55?1)%’ @) (f (@) +(B=2)1 (yn) (@) f(yn) ( Flyn) \2
R Yn Yn Tn — Yn Tn Yn Yn
o =Un = 2560 T e G 8 ) Te U@+ 8rm Feay) 0 (18)

T = z _ Zn Qn
LT R T S (Flenzn)— S [Enn) Hf Ynsza) T 22 (f 2yl —f (@0))

Yn —Tn

where g, is the mid-point between the first two points.
The convergence analysis of the proposed method is presented in the following
theorem.

Theorem 2.1 Assume that the function f : D C R — R is sufficiently differen-
tiable and f has a simple zero o € D. If the initial point x¢ is sufficiently close to
«, then the method defined in (18) is eight-order convergence and satisfy the error
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equation

3 55
en+1 (590302 —108%c3e3 + 9665 + B35 — Scses + ches — 20% — Tcacqca

2 2

2 4 173 ; 6y 8 9
— 166¢5¢3 4 126c3cq + 248c%c3 + 6 — 1108c5¢3 + 7602)% + (e)).
(19)

Proof Consider the Taylor expansion of the function f(x,) around « which is given
by

Flan) =F(@) + 1o (@) @ — ) + 57 (@) n — @) + 317" (@) (n — @) +
+ 5 fO (@)@ — ) + olan — )’ (20)

Let e, = x, — a be the error in ! iteration with the assumption that f(a) =0
and f’(a) # 0, then we have

f(@n) = f(a)[en + coe? + czed + caep + csed + cael + crel + csed +o(ed)]. (21)
Furthermore, we have

F(xn) = f(@)[1 + 2c2e,, + 3cze? + degel + Sesel + 6egel, + Terel + 8cge!,
+ 9cge, + o(en)), (22)

where ¢, = % forn=2,3,4,... and e, = z,, — a. Then we have

=e, — 22 +2(c5 — c3)ed + (Teacz — 4¢3 — 3eq)ed +2(3¢5 — 10c3cs

+ Begcy + 4y — 2¢5)ed 4 (—16¢5 — 28c3cq + 17cseq + 52¢3c3 — co(33c3
—13¢5) — 5eg)ed + o(el).

f(@n)

Let e,y = yn—a be the error in y,, iteration where y,, = x,— o) and e, = T, —q.

Then we have

eny =Coe2 — 2(c5 — c3)ed — (Teacy — 4¢3 — 3eq)ed — 2(3¢% — 10c3¢3 + Heacy + 4ch
—2c5)ed — (—16¢5 — 28c3cy + 17czeq + 52¢3c3 — c2(33¢3 — 13¢5) — 5eg)el
+ o(el).

Also, finding the Taylor expansion of f(y,) and simplifying it, we have

flyn) = f'(@)[en, g+ cze v T 636 v T 646 y T 656 y T 666 g T 676
+ csey, +olep )] (23)

Substituting equations (20), (21) and (22) in z, above at (18) we obtained
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en. =(4c3 — cacz)ed + (12Bchcs — 26¢5 — 198¢5 — 2cacq — 28%ch + 26c5¢3
— 2c3)ej, + ofey),

but e, . = z, — a which is the error in the second point z,, and

flyn) | Fyn)(f(2n) + (B —2)f(yn)

fan) — f(an)(f(@n) + B (yn)

B f'(@n) f(yn) (
f(@n)(f(zn) + Bf(yn))

)
fr(@n)”

therefore, we have the error equation in z, as

ens = [2(2+2B)c3 — cacsled + [—(26 4 B(19 4 28))ca + 2(13 + 68)cacs — 2¢3
— 2cocqled + o(e9). (24)

Similarly, the Taylor expansion of f(z,) we have
f(Zn) :f/(oz)[emz + CQG?L,Z + C3ei,z + 646;2 + 0562,2 + 6662’2 + C7€ZL,Z

+ Cgei,z + O(evgl,z)]' (25)
Simplifying (24) we have

f(zn) =(4c3 + 2B¢3 — cacs)ed + (128c3cs — 198¢5 — 2cacy — 265 — 26¢5
+ 26c3c3 — 2B%c3)ed + (—8ches + 4B8%ch — 4Bc5es + 16¢h + 165k
+ 0263)671 + O(en)7 (26)

1 3
Gn 25626% — (C% — 03)62 + (405’ — 4eocs + 504 + Bcg)efb + (660303 + 230%03 — 170421

1
— 4¢3 — 6cacy — BPeh + 2¢5 — ?gﬁc%)ei + a(eS) + b(el) + c(ed) + o(e),
(27)

where a, b and ¢ are some terms in equation (26). Multiplying equations (25) by
(26) we have the numerator of our proposed method as follows

14 23
f(zn)an (202 — 56263 + 502)6 +(— 6264 — 20302 — ﬁ2 — ?503 + 180%03

+ 8Bc3c3 — 17c3)el + (316c5 — T2¢5¢3 + 3Bcaes — 2¢3 + 12Bc5ca + 4325

7
— 40Bches + 8ciey + 4265 + 32¢3c3 — 53¢4C2 — 26%cac3)ed + o(ed), (28)
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but the denominator of our proposed method was found to be

Den =14 (11ch — 2cacq + 68c3)el + (—cieq — BTBcS — 4ezeq + TTc5es — 2cacs
+ 40Bc3cs — T6c3 — 68%c3)ed + (—366%cacs + 196¢5 — 6¢3 + 43¢5y — 368c3cs

— Teace 4 191¢5¢3 — 2c2(33¢% — 13¢5)ca + 4835 + 15¢ac3cq — 43 + 2223¢5

+ 40Bc3cq — 13ches + 50325 — 4eses + T2Bc3cs — 318Bche3)el + a(el)

+b(ep) + ofey). (29)

Dividing equation (27) by (28) we have the error equation as

3 99
Ent1 (590302 10620 c3 + 9602 ,6’302 — 76502 + —6304 — 2c§ — Tezeqco

2

173
— 166¢5c3 + 126c3cq + 24Bc3ca + 35203 — 1108¢5¢3 + 7503)6% + (€2).
(30)

Thus, the convergence order of our proposed method is eight for any real value of
the parameter S which complete the proof of the theorem. [ ]

3. Numerical results

In this section, we test the numerical results of our new proposed method (18)
named KBD and compare with existing eight order method which develop by:
(i) Thukral and Petkovic (TP) [12]:

Yn = Tp — J{/((g;;))a

— flyn) _ 1+pt,
Zn = Yn — f/(zig TH(B—2)t,’ (31)

Tn+l = Zn — j[’(:c ))[ (tn) + 1+as + 4“'”]

with weight function

5—28—(2—83+28%)t, + (1 +4B)t2

wltn) = o (= 3B T o

where a, B € R, t,, = £Wn) g = () 5nq oy, = f(zf”’).
(ii) Salimi et al. [10]:

O H) L f@) ()G Fefw) )
U ) +f( Pl BT TG Sy (Fe)h (32)
_ zn)N(t

T Flentn]t (Za—yn) FlZn,Tn,Tn)
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with weight function

n(tn) =1- 4(2 + ﬁ)tia w(un) =14 2uy,

48 +8 1+ 3u,
t == - t = —
n(tn) T2, P(un) T1a,
1+t, — 48t 4 2
(tn) L+t, +8t3 ™ ¥lun) 14w,

where t,, = ;Egz%, Uy = }cg;:;, and 8 € R.

We apply the above methods to solve some benchmark test functions drawn from
[4]:

)
fo(x) = 22 — € — 3z + 2, a = 0.25753028543986076045536730494 and zo = 0,
() = ze® — sin®(z) + 3cos(z) + 5, = 1.2076478271309189270094167584 and

fa(z) = sin(z)e® + log(z? + 1), = 0 and z¢ = 2,
f5(x) = (x — 1)3 — 2,0 = 2.2599210498948731647672106073 and xg = 3,
() = (x 4+ 2)e” — 1, = —0.44285440100238858314132800000 and z¢ = 2,
fr(x) = sin®(z) — 2% + 1,0 = 1.4044916482153412260350868178 and zg = 2,
where « is a root fx(z) =0 for k = 1,2,....7 and zg is an initial approximation.
The numerical results reported here have been carried out in Matlab R2014a to
test our proposed method KBD and also compare with methods WL, TP, SNSP1,
SNSP2, and SNSP3. Table 1 and 2 shows the difference of the root a and the
approximate z,. The absolute values of the function |f(x,)|, number of iteration
and the computational order of convergence (COC) is also reported in the tables.
Where the COC is defined by [15]

. In|(zp, +1—a)/(x, — a)|
n|(zn — @)/ (zp — 1= )|

4. Discussion

The results presented in the tables (1) and (2) shows that our methods KBDI,
KBD2, and KBD3 converges more rapidily than the methods proposed by TP,
BEM, SNSP1, SNSP2, and SNSP3. It also shows that the new methods introduced
in this paper have at least equal performance in terms of number of iteration when
compared to the other existing eight-order methods. The total number of function
evaluation in each iteration are almost the same expect on functions f3 and fs.

5. Conclusion

A new three-point iterative method for solving nonlinear equations with high ef-
ficiency index have been constructed for approximating a simple root of a given
nonlinear equation. The method uses only four functions evaluation in each itera-
tion and a numerical comparison with some other known method shows that our
proposed method have higher convergence order.
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Table 1. Comparism of iterative methods TPM, BEM, SNSP1, SNSP2, and SNSP3 with
the new methods KSD1, KSD2, and KSD3.

METHODS | 8 lzn — af |f(zn)] ITERATION COC
fi(x) = 23 + 422 — 10, z0 =1
TP -1 1.9043e-10 3.1447e-9 3 8.0000
SNSP1 -1 3.6429e-9 6.015e-8 3 8.0000
SNSP2 0 3.6492e-9 6.0261e-8 3 8.0000
SNSP3 1 1.8385e-9 3.0360e-8 3 8.0000
KBD -1 1.3574e-11 2.2416e-10 3 8.0000
KBD 0 2.8999%e-11 4.7888e-10 3 8.0000
KBD 1 4.4371e-11 7.3270e-10 3 8.0000
fa(x) = 2% —e® — 3z + 2, xo =1
TP -1 1.2056e-10 4.5556e-10 3 8.0000
SNSP1 -1 1.7388e-13 6.5713e-13 3 8.0000
SNSP2 0 1.7390e-13 6.5721e-13 3 8.0000
SNSP3 1 8.6921e-14 3.2836e-13 3 8.0000
KBD -1 4.6899e-11 1.7722e-10 3 8.0000
KBD 0 2.7031e-11 1.0214e-10 3 8.0000
KBD 1 7.1201e-12 2.6905e-11 3 8.0000
fa(z) = ze® — sin?(z) + 3cos(z) + 5, ro = —2
TP -1 3.8156e-10 7.7486e-9 6 8.0000
SNSP1 -1 2.0113e-12 4.0877e-11 6 8.0000
SNSP2 0 1.4648e-12 2.9746e-11 6 8.0000
SNSP3 1 6.5533e-13 1.3310e-11 6 8.0000
KBD -1 1.3323e-15 2.6645e-14 6 8.0000
KBD 0 1.3323e-15 2.6645e-14 6 8.0000
KBD 1 1.3323e-15 2.6645e-14 6 8.0000
fa(z) = sin(x)e® + log(x? + 1), o = 2
TP 1 3.9092e-11 3.9030e-11 4 8.0000
SNSP1 -1 9.4697e-9 9.4698e-9 3 8.0000
SNSP2 0 1.7737e-8 1.7737e-8 3 8.0000
SNSP3 1 3.3210e-8 3.3210e-8 3 8.0000
KBD -1 8.3522e-12 8.3520e-12 3 8.0000
KBD 0 1.7008e-11 1.7008e-11 3 8.0000
KBD 1 2.5635e-11 2.5635e-11 3 8.0000

Table 2. Comparism of iterative methods TPM, BEM, SNSP1, SNSP2, and SNSP3 with
the new methods KSD1, KSD2, and KSD3.

METHODS | 8 [zn — al [f(zn)] ITERATION  COC
f5(z) = (z —1)% -2, 0 =3
TP 1 4.6838e-12 2.2306e-11 4 8.0000
SNSP1 -1 2.1758e-9 1.0362e-8 3 8.0000
SNSP2 0 4.5065e-9 2.1461e-8 3 8.0000
SNSP3 1 8.1479e-9 3.8802e-8 3 8.0000
KBD -1 1.0951e-12 5.2160e-11 3 8.0000
KBD 0 2.4047e-12 1.1453e-11 3 8.0000
KBD 1 3.7130e-12 1.7683e-11 3 8.0000
fe(x) = (z + 2)e* — 1, z0 =2
TP 1 6.4269e-9 1.0554e-8 [§ 8.0000
SNSP1 -1 4.5075e-14 7.4e-14 6 8.0000
SNSP2 0 1.0902e-13 1.79e-13 6 8.0000
SNSP3 1 1.7886e-13 2.94e-13 6 8.0000
KBD -1 1.4455e-9 2.3739e-9 6 8.0000
KBD 0 3.4964e-9 5.7419e-9 6 8.0000
KBD 1 5.5282e-9 9.0783e-9 6 8.0000
fr(x) = sin?(x) — 2% + 1, xo =1
TP 1 2.7460e-12 6.8170e-12 3 8.0000
SNSP1 -1 1.6168e-9 4.0136e-9 3 8.0000
SNSP2 0 3.1668e-9 6.5721e-9 3 8.0000
SNSP3 1 5.6023e-9 8.0987e-9 3 8.0000
KBD -1 4.2966e-13 1.0660e-12 3 8.0000
KBD 0 4.2966e-13 1.0660e-12 3 8.0000
KBD 1 4.2966e-13 1.0660e-12 3 8.0000
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