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Abstract. In this study we model the daily rainfall occurrence using Markov Chain Ana-
logue Year model (MCAYM) and the intensity or amount of daily rainfall using three different
probability distributions; gamma, exponential and mixed exponential distributions. Combin-
ing the occurrence and intensity model we obtain Markov Chain Analogue Year gamma model
(MCAYGM), Markov Chain Analogue Year exponential model (MCAYEM) and Markov
Chain Analogue Year mixed exponential model (MCAYMEM). The models are assessed using
twenty nine-years (1987-2015) of historical records of daily rainfall data taken from three dif-
ferent locations which are obtained from Ethiopian National Meteorology Agency (ENMA).
Both maximum likelihood and least square techniques are used in the estimation of model
parameters. The results indicate that all the three model are suitable for the simulation of
precipitation process. In order to assess their performance we apply both qualitative (graph-
ical demonstration) and quantitative techniques. In the quantitative, the performance of the
three models; MCAYEM, MCAYGM and MCAYMEM are measured using mean absolute
error(MAE) and have mean absolute error of 0.45mm, 0.57 mm and 0.42mm respectively
for kiremet(June to September) rainfall which is the long rainy season in Ethiopia. These
accuracy is mainly because of the new component that is Analogue Year (AY) used in the
modeling of frequency of daily rainfall included in the Markov chain (MC) process. Based on
the results of these models we obtain an option price for Teff crop for different months. The
result shows an excellent accuracy with only maximum absolute error of 0.54 currency.
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1. Introduction

Weather derivatives are financial methods used to hedge risks caused by bad
weather condition or weather fluctuation . It states how payment will be settled
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between the parties involved based on the existing weather conditions during the
contract period [28]. Commonly weather derivatives are swaps, futures and options
based on different weather measures [2]. Unlike traditional derivatives or insur-
ance, Weather derivatives, have no underlying tradable instrument or stock and
they cannot be used to hedge price risk because the weather itself cannot be priced,
instead, they are used to hedge against other risks for instance agricultural yield
risk which are affected by bad weather conditions. Farmers in developing countries
are not covered by government sponsored insurance programs but the weather risk
is common in large scales. One of the mechanism to protect agricultural output
risk is weather derivatives.
Ethiopian economy is highly dependent on the agricultural sector, which ac-

counts around 52% of the gross domestic product (GDP), source of 85% of foreign
exchange earnings and job opportunists for about 80% the population in the coun-
try [15]. Agriculture in Ethiopia is highly dependent on rainfall, with irrigation
agriculture contribute not more than 1% of the country’s total cultivated land.
As a result, the timely distribution and the amount of rainfall during the growing
period are very important or crucial to agricultural output and cause food scarce
and famine[11]. Delay on set dates, occurrence in scarce amount and variability
of rainfall has great contribution in the reduction of crop yield with significant
amount [30]. Rainfall variability usually result in reduction of 20% production and
25% raise in poverty rates in Ethiopia [13, 34]. This rainfall variability has a great
impact on the income of every house holds rely on agriculture. In the near future
climate conditions are expected to affect the economy of Ethiopia in general and
its agriculture sector in particular in reasonable amount and cause 0.5-2.5% decline
in GDP per year; for instance rainfall fluctuation alone could contribute a loss of 2
billion USD in the sector [6]. In generally agriculture is the back bone of Ethiopian
economy, which is largely dependent on natural rainfall [4, 46]. Therefore, modeling
and pricing rainfall derivative is very important for the country in order to reduce
these risks. As per the knowledge of the researchers, such kind of work is new (the
first) in the described location, as well as in the country Ethiopia. This paper has
two main objectives, the first objective is to present a daily rainfall model and
the second objective is using the result of the daily rainfall model we calculate an
option price for rainfall derivatives. The paper is structured as follows. section 2
materials and methods including major crops and their response to water stress,
section 3 result and discussion and section 4 conclusion.

2. Materials and method

Daily rainfall data were collected from Ethiopia National Meteorology Agency
(ENMA). In this study we consider twenty nine years of daily rainfall data from
three different locations; Debre Markos, Dejen and Gonder, from January 1, 1987-
December 31, 2015. The data is classified in to two ; twenty eight years of data is
used to model fitting that is for model parameter estimation and the last year of the
recorded data is used for model validation purpose that means for comparison. In
this paper we use Markov chain analogue year (MCAY) model in order to describe
the occurrence or frequency of daily rainfall and three different distributions are
used in order to model the amount of rainfall on a wet day. The distributions are
exponential distribution, mixed exponential distribution and gamma distribution.
The inclusion of the analogue year (AY) component in the frequency modeling part
makes these models different from existing models in literature.
The following four points are the basic characteristics of a daily rainfall that

should be considered during modeling [32]. First, daily rainfall occurrence prob-
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abilities has a seasonal pattern. Second, rainy and dry days have autoregressive
property. Third the magnitude of daily rainfall changes with the season and finally
the variation in amount of daily rainfall varies with season. In this paper we model
the occurrence or nonoccurence of daily rainfall Xt and amount of daily rainfall
Yt separately and combine them to obtain a model for daily rainfall Rt on day t
which is given as the product of the occurrence Xt and the amount Yt as given in
(1). Both components of the daily rainfall model are described in detail in the next
subsections.

Rt = XtYt (1)

2.1 The occurrence process (frequency modeling)

The existence or nonexistence of daily rainfall Xt is modeled as follow [8, 19, 32]:

Xt =

{
0, if day t is dry,
1, if day t is rainy.

(2)

where Xt is a two state first order Markov chain with analogue year component so
that the probability of rainfall occurrence depends only on the situation from the
previous day. The probability of a rainy day followed by a dry day denoted by p01t
and a rainy day followed by a rainy day is represented by p11t , these probability are
known as transition probabilities and given by:

p01t = Pr{Xt = 1|Xt−1 = 0}
p11t = Pr{Xt = 1|Xt−1 = 1}

Since rainfall occurrence varies with season the transition probabilities are modelled
to change daily within a year in order to handle this variation and are approximated
by truncated Fourier series.

ψti = ai0 +Σmi

k=1

[
aikcos

(
2πtk

365

)
+ biksin

(
2πtk

365

)]
; i = 1, 2. (3)

where p01t = exp(ψt1)
1+exp(ψt1)

, p11t = exp(ψt2)
1+exp(ψt2)

and mi determines the number of cosine

and sine terms required to describe the seasonal cycles. Here we use the logistic

function that is f(x) = exp(x)
1+exp(x) for the purpose of transforming the transition

probability to the interval (0,1). Based on Akaike information criterion (AIC) and
Bayesian information criterion (BIC) we chose m = 1 for p01t and m = 2 for p11t ,
which give us better result. The coefficients of the Fourier series are estimated by
least squares method. In this paper in addition to the transition probability we use
the concept of analogue year, that is what was happened on the same date of the
previous year. Which improves the accuracy of our model and the concept is not
yet used by any other researchers and it is given by (5). In general in this study
the occurrence or nonoccurence of rain is modeled using Markov chain analogue
year (MCAY). The occurrence process Xt can be generated recursively by using a
uniform random variable u1,t ∼ u(0,1) and a starting value X0: For 1 ≤ t ≤ 365

Xt =

{
1, if px1t ≥ u1,t,
0, otherwise.

(4)
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And for 366 ≤ t ≤ n

Xt =

{
1, if Xh

(t−365) ⩾ rmin and px1t ≥ u1,t,

0, otherwise.
(5)

where px1t as an abbreviation of p01t and p11t , Xh
t the historical (observed)

rainfall on day t and rmin describes the minimal amount that is detected as
rain(0.1inch=0.254mm)
Tables 1-6 reveal the parameters of the Fourier series in (3) for Debre Markos,
Dejen and Gonder rainfall respectively.

Table 1. Coefficient of ψti for p
01
t for Debre Markose rainfall.

Coefficient a0 a1 a2
Value 3.6872 -1.9561 -3.8959

Table 2. Coefficient of ψti for p
11
t for Debre Markos rainfall.

Coefficient a0 a1 a2 a3 a4
Value 3.6872 -1.9561 1.7091 -3.8959 0.2183

Table 3. Coefficient of ψti for p
01
t for Dejen rainfall.

Coefficient a0 a1 a2
Value 3.8161 -1.9027 -4.3161

Table 4. Coefficient of ψti for p
11
t for Dejen rainfall.

Coefficient a0 a1 a2 a3 a4
Value 3.8161 -1.9027 2.1188 -4.3161 0.6243

Table 5. Coefficient of ψti for p
01
t for Gonder rainfall.

Coefficient a0 a1 a2
Value 3.1969 -1.8906 -4.0793

Table 6. Coefficient of ψti for p
11
t for Gonder rainfall.

Coefficient a0 a1 a2 a3 a4
Value 3.1969 -1.8906 1.5661 -4.0793 1.3059

2.2 Magnitude modeling

In order to model the magnitude or amount of the rainfall conditional on the fact
that it rains on that particular day is done by fitting a distribution to the data. In
order to identify a proper distribution to fit the data, first, the histogram of the
daily rainfall is examined. Different distributions with a nonnegative domain have
been proposed to fit historical rainfall data in literature. Among these distributions
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a gamma distribution is proposed by [1, 5, 10, 21, 28, 31, 44, 48, 52] and exponential
distribution was used by [37, 47, 49] while a mixed exponential distribution is
proposed by [16, 24, 38, 45, 52–54]. Woolhiser and Todorovic in 1975 were the
first who proposed the mixed exponential distribution to model rainfall amount
[52]. Mixed exponential distribution has the advantage of a better representation
to extreme events [52]. Similarly, in [33], a beta distribution is found to provide the
better fit in data. In this work we consider three nonnegative distributions, these
are gamma distribution, exponential and mixed exponential distribution to model
the intensity or amount of daily rainfall.

2.2.1 Gamma distribution

The gamma distribution function is a continuous probability distribution with
two parameters α is called the shape parameter and β is called the scale parameter
and it is defined by the following probability density function (PDF)

f(x) =

{
(x/β)α−1e−x/β

βΓ(α) , if x, α, β > 0 ,

0, otherwise.
(6)

Where

Γ(α) =

∫ ∞

0
tα−1e−tdt (7)

The value of the shape parameter is greater than zero and it determines the level of
positive skewness on the other hand the scale parameter β of gamma distribution
determines the spread of values, widening when β is large and narrowing when
β is small. Due to flexible representation of variety of distribution shapes which
involves small number of parameters that is shape and scale parameter only , the
gamma distribution commonly used to describe rainfall amount and assumed to
be appropriate distribution to represent rainfall amount [36, 39, 43, 49, 50]. The
appropriateness of the gamma distribution has been proven by different scholars
some of them are given in these references [7, 17, 18, 22, 25, 35, 57]. In Figure 1
we plot five different gamma probability distribution to demonstrate the existence
of variety of shapes in the gamma distribution. The mean and variance of gamma
distribution are αβ and αβ2 respectively.

2.2.2 Exponential distribution

The family of exponential distributions provides probability models that are
very widely used in engineering and science disciplines. A random variable X is
said to have an exponential distribution with parameter µ > 0 if the probability
distribution function(PDF) of X is

f(x) =

{
1
µe

−x

µ for µ > 0, x ≥ 0 ,

0, otherwise .
(8)

where the parameter µ is the mean of the exponential distribution distribution.
And the cumulative distribution function (CDF) of the exponential distribution is
given by

F (x) =

{
1− e

−x

µ for µ > 0, x ≥ 0 ,
0, otherwise .

(9)
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Figure 1. Gammma distribution with different shape and scale parameters.

Figure 2 reveals graph of exponential distribution with different values of µ.

Figure 2. Exponential distribution with different parameters (µ values).

2.2.3 Mixed exponential distribution

The mixed exponential distribution is a weighted combination of two exponential
distributions and inherits their properties. The mixed exponential distribution for a
random variable X is defined by the following probability density function (PDF):

fmix(X) =
α

β1
e

−X

β1 +
1− α

β2
e

−X

β2 (10)
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with 0 < β1 ⩽ β2 and 0 < α < 1 and the cumulative density function (CDF) is
defined by

Fmix(X) = αe
−X

β1 + (1− α)e
−X

β2 (11)

where, β1 and β2 are the parameters of the two exponential distribution respectively
which represents the mean of the distributions and α is the mixing parameter. The
contribution of the component probability density functions are determined by
the mixing parameter α, that means α tell us with what probability the random
variable X sampled from the individual distributions. The mean µ and variance
σ2 of the mixed exponential distribution are given by µ = αβ1 + (1 − α)β2 and
σ2 = αβ21 + (1− α)β21 + α(1− α)(β1 − β2)

2 where β1 and β2 are the means of the
component distributions. Sampling or generating a random variable X from mixed
exponential distribution is a two step procedure, first a component distribution is
chosen based on the mixing parameter α then a random variable from the selected
component distribution is generated and returned as the simulated sample from the
mixture. Since rainfall amount varies seasonally, in order to maintain its seasonality,
we determine the parameters for each month so that it varies monthly with in
a year and remains constant across different years, that is for each month we
obtain its own distribution parameters. The parameters α, β1 and β2 of the mixed
exponential distribution are estimated using maximum likelihood estimators and
the daily rainfall amount process simulated with two independent uniform random
variables u2,t, u3,t ∼ u(0, 1), independent from u1,t ∼ u(0, 1) using standard inverse
transform sampling method given in (12) [8, 28, 29].

Yt = −ϕtln(u2,t), (12)

where Yt represents the amount of rainfall on day t and ϕt is given by

ϕt =

{
β1,t, if αt,k ≥ u3,t ,
β2,t, if αt,k < u3,t .

(13)

After the estimation of the occurrence and the amount processes, they can be
combined to simulate rainfall using (1). Using this daily simulation rain fall index
is obtained. Rainfall index I(τ1, τ2) over the period (τ1, τ2) is defined as the sum
of the daily rainfall Rt for a particular location with accumulation period (τ1, τ2),
which is known as cumulative rainfall (CR) it is given by (14).

CR =

τ2∑
τ1

Rt (14)

2.2.4 Fitting distributions to daily rainfall

2.3 Parameter estimation

The maximum likelihood estimation method (MLE) is used for parameter estima-
tion because this approach performs much better than other methods [51]. The
MLE method determines a set of parameters which maximize the likelihood func-
tion (as the name suggests, the method seeks to find values of the distribution
parameters that maximize the likelihood function). The parameters are obtained
by differentiating the log likelihood function with respect to the parameters of the
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Figure 3. Comparison of the histogram of June-Septemper wet days with Exponential,
Gamma and mixed exponential probability density functions for Debremarkos, Ethiopia.

Figure 4. Histogram for June-September wet days and fitted exponential, gamma and
mixed exponential probability density function for Dejen, Ethiopia.

distribution. The likelihood function for the gamma distribution is:

L(x;α, β) =
N∏
i=1

f(xi;α, β) (15)

Since maximizing the log equivalent to maximizing the likelihood function and
working on addition is simpler than on working on multiplication we use the log-
likelihood function and it is defined as:

lnL =
N∑
i=1

(xi/β)
α−1e−xi/β

βΓ(α)
= −NlnΓ(α)−Nαlnβ+(α−1)

∑
lnxi−

∑ xi
β

(16)
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Figure 5. Comparison of the histogram of June-Septemper wet days with Exponential,
Gamma and mixed exponential probability density functions for Gonder, Ethiopia.

In the following we describe maximum likelihood estimator for mixed exponential
distribution. Probability density function (PDF) of the mixed exponential distri-
bution is given in (17).

f(x;α, β1, β2) =
α

β1
e

−x

β1 +
1− α

β2
e

−x

β2 (17)

Define the log-likelihood function

l(x;α, β1, β2) =

N∑
i=1

ln(f(xi;α, β1, β2))

=
N∑
i=1

ln

(
α

β1
e
(
−xi
β1

)
+

1− α

β2
e
(
−xi
β2

)
)

=

N∑
i=1

ln

(
α

β1

)
−

N∑
i=1

xi
β1

+

N∑
i=1

ln

(
1− α

β2

)
−

N∑
i=1

xi
β2

= Nln

(
α

β1

)
−

N∑
i=1

xi
β1

+Nln

(
1− α

β2

)
−

N∑
i=1

xi
β2

(18)

Set the derivative of (18) equal to zero to find the maximum.

∂l(xi;α, β1, β2)

∂α
= 0 (19)

∂l(xi;α, β1, β2)

∂β1
= 0 (20)

∂l(xi;α, β1, β2)

∂β2
= 0 (21)
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The derivative give us the following equations

N

α
− N

1− α
= 0 (22)

−N
β1

+

N∑
i=1

xi
β21

= 0 (23)

−N
β2

+
N∑
i=1

xi
β22

= 0 (24)

Similarly the likelihood of the exponential distribution is obtained as follow:

f(x;µ) =
1

µ
e

−x

µ (25)

Define the log-likelihood function

l(x;µ) =
N∑
i=1

ln(f(xi;β))

=
N∑
i=1

ln

(
1

µ
e

−xi
µ

)

=
N∑
i=1

ln

(
1

µ

)
−

N∑
i=1

xi
µ

= Nln

(
1

µ

)
−

N∑
i=1

xi
µ

(26)

= −Nlnµ−
N∑
i=1

xi
µ

(27)

2.4 Major crops and their response to water stress

Major crops in Ethiopia in terms of area of land coverage and contribution to
the country’s production are Teff, Maize, Sorghum, Wheat and Barely. They are
produced using rainfall as source of water supply. Defining the crop water require-
ment during its various stages of growth and development in terms of potential
evapo-transpiration and comparing these requirements with the water available at
the time can obtain the effect of rainfall on the crops. When water supply that is
rainfall does not meet crop water requirement, crops vary in their response to water
deficient. In some crops there is an increase in water utilization efficiency (amount
of harvested yield produced by the crop per unit of water evapo-transpired) whereas
for other crops it decreases with increase in water deficient [12]. When water de-
ficiency occurs during a particular part of the total growing period of a crop, the
yield response to water deficient can vary greatly depending on how sensitive the
crop is at that growing period. In general, crops are more sensitive to water defi-
cient during emergence, flowering and early yield formation than they are during
early (vegetative, after establishment) and late growing periods (ripening) [12].
However, the response of yield to water cannot be considered in isolation from
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all other agronomic factors, such as fertilizers, plant density and crop protection,
because these factors also determine the extent to which actual yield approaches
maximum yield [12]. In the following subsections, we tried to discuss some ma-
jor crops growing period, water requirement and water stress condition in Ethiopia
based on documents of Ethiopian Agricultural Research Organization (EARO) and
FAO Irrigation and Drainage papers[12].

2.4.1 Teff

Teff is one of the major cereal crops originated and diversified in Ethiopia and
it is the most common cereal crops cultivated in the country and it covers around
29% of the area of land used for cultivation of cereal crops [20, 26]. The average
yield of Teff per hectare is about 1.56 tons and it accounts 20% of the total cereal
production in the country [9]. Teff contains about 11% protin with an excellent
source of important amino acids like lysine which is the amino acid mostly scarce
in other grains. The other important feature of teff is the glycemic index is low,
so that people with Type 2 diabetes make it first choice of their diet and teff also
contains minerals such as iron, potassium, calcium and phosphorus . In addition
to these teff is consumed by gluten intolerant people since teff contains gluten
lacking the gladian fraction that causes coeliac disease [27]. Teff can be stored for
several years with out being damaged by insects. Due to these and other reasons
currently teff is cultivated outside its origin such as the United States, Netherlands,
Canada, Australia, China, India, the UK, Cameroon, South Africa, Uganda and
Kenya [42]. Areas with altitude 1700m to 2400m and average annual rainfall 1000
mm during the growing season is suitable for better production. Even though the
time of sowing varies according to the type of soil and the appearance of the big
rains, for better productivity, sowing can take place from the second week of July to
the third week of July for light soil and it is more advisable to sow later generally
during the last two weeks of the month of July [40]. Crop coefficient Kc is the
ratio of crop evapotranspiration (ETc) to reference crop evapotranspiration (ETo)
that can be established based on crop evapotranspiration and climate [3, 55]. It is
a function of climate, crop type, crop growth stages, soil moisture and irrigation
method[23, 41]. The crop coefficient relating water requirement to reference evapo-
transpiration during its growing period in Abbay basin is given in Table 7 [40]:

Table 7. Crop coefficient of Teff.

Month June July August September
Kc 0.3 0.7 1.1 0.7

2.4.2 Maize

Maize originated in Central America, where it is traditionally planted in hills.
It is an introduced crop to Ethiopia and it has been expanding widely in the
recent years because of the very favorable conditions found in large areas of the
country. Successfully, it can be grown in a wide range of altitude ranging from
lowland areas below 1000m up to 1800m above sea level. And it can be grown
preferably in areas where the annual rainfall reaches an average of 800 mm equally
distributed over the whole growing period. A major conclusion of research findings
from many experiments in EARO [12] concluded on maize during a number of
years in Ethiopia is that yield is generally influenced more by the date of sowing
than any other factor. Sowing should take place the first two weeks of May or as
early as possible at the onset of the big rains. In addition, the growth period is 4 to
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5 months even if it depends on the variety planted. The crop factor (Kc) relating
water requirement to reference evapo-transpiration (ETo) in Abbay Basin during
their growing period is given in Table 8 [40]: Growing stages of maize according to

Table 8. Crop coefficient Maize.

Month May June July August September October
Kc 0.4 0.65 0.85 1.1 0.8 0.3

FAO are classified as establishment (15-25 days), vegetative (25-40 days), flowering
(15-20 days), yield formation (35-45 days) and ripening (10-15) [16]. Maize appears
relatively tolerant to water shortage during the vegetative and ripening periods.
Greatest decrease in grain yields is caused by water deficient during the flowering
period. Water deficient during the yield formation period may also lead to reduced
yield due to a reduction in grain size. However, water deficient during ripening
period has little effect on grain yield.

2.4.3 Wheat

Wheat is a common crop in the highland of Ethiopia. It is highly sensitive to
drought and it is not recommended in dry areas. The most suitable areas for wheat
production are those with an average annual rainfall of 1200 mm with 600 mm
well distributed during the growth period. The crop coefficient (Kc) relating water
requirement to reference evapo-transpiration in Abbay basin is given in Table 9
[40]: For better yield, sowing time is the end of June or the early days of July.

Table 9. Crop coefficient of wheat

Month June July August September October
Kc 0.8 1.1 1.1 1.05 0.25

And the growing period for different verities are 115-135 days. Growing stages of
Wheat according to FAO are classified as establishment (10-15 days), vegetative
(10-30 days), flowering (15-20 days), yield formation (30-35 days) and ripening (10-
15 days) [12]. Slight water deficient in the vegetative period may have little effect on
crop development or may even somewhat hasten maturation. The flowering period
is most sensitive to water deficient. Water deficient during the yield formation
period results in reduced grain weight and, during the ripening period has a slight
effect on yield. Tables 10, 11 and 12 show the correlation between monthly average
rainfalls and cereal production in Amhara National Regional State [4].

Table 10. Correlations between production of Teff and monthly rainfalls in the ANRS.

Month June July August September
correlation 0.189 0.199 0.623 0.493

Table 11. Correlations between production of maize and monthly rainfalls in the ANRS.

Month May June July August September
correlation 0.309 0.188 0.345 0.349 0.149
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Table 12. Correlations between production of wheat and monthly rainfalls in the ANRS.

Month June July August September
correlation 0.414 0.612 0.564 0.733

2.5 Valuation of rainfall options

In this paper to obtain an option price for rainfall we follow the approach used in
[33]. To calculate a weather derivative contract we consider the following important
points [56]: Type of contract, time of contract (length of the contract period),
meteorological weather station from which the data is taken, the weather index
(I) for the weather derivative, strike level (S) or pre-negotiated threshold for the
weather index I, the amount of money k per unit index which is known as tick size
(k) or constant payment (Po) per unit index and the amount of money that you pay
for an insurance when you buy it known as premium. Call and put options are the
main types of options used in the weather risk-management market. A call contract
involves a buyer and a seller who first agree on a contract period and a weather
index (It) that serves as the basis of the contract. At the start of the contract,
the seller receives a premium from the buyer. In return, during the contract or at
the end of the contract period, if It is greater than the pre-negotiated threshold or
strike (S), the seller pays the buyer an amount given by equation (28) [32].

Pcall = k ∗max(It − S, 0) (28)

where: k (tick) is a pre-agreed upon constant factor that determines the amount
of payment per unit of weather index. A fixed amount Po is paid if It is greater
than S, or no payment is made otherwise. A put option is the same as a call option
except that the seller pays the buyer when It is less than S [33].

Pput = k ∗max(S − It, 0) (29)

A call and a put are basically equivalent to an insurance policy: the buyer pays a
premium, and in return, receives a commitment of compensation when a predefined
condition is met [14]. The price of an option (or its premium) is calculated from
the expected payoff as [2]:

c = exp(−r(τ2 − t))P (30)

where c is the premium that the hedgers (buyers) need to pay for a contract, r is
a risk-free periodic market interest rate, t is the date that the contract is issued
(purchased), and τ2 is the date the contract is claimed or the expiration date. P is
the payoffs based on the predicted rainfall. Table 13 reveals the option specifications
for pricing of rainfall derivatives which is the approach used by Oliver Musshoff
Martin et al. [33].

3. Result and discussion

In this section, we present results in terms of figures, tables and a discussion of
them. Tables 14, 15 and 16 reveal the maximum likelihood estimates of the expo-
nential, mixed exponential and gamma distribution parameters for each of the 12
months in the three locations under study. All the parameters are determined with
95% confidence level. In Figure 9a and 9b we present the comparison of the occur-
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Table 13. Specifying options.

Type Put option Call option
Payoff k ∗max(S − It, 0) k ∗max(It − S, 0)
Strike S S S
Index It Στ2t=τ1Rt Στ2t=τ1Rt
Tick value k 1 currency 1 currency
Maturation date 1 month 1month

Table 14. Estimated parameter for Debre Markos station.

Exponential Gamma Mixed Exponential
Month µ α β α β1 β2
January 4.4378 0.8746 5.0308 0.6981 2.3387 9.2892
February 4.4561 1.0363 4.2979 0.2584 1.6383 5.4376
March 5.7492 0.9904 5.7662 0.5580 3.4180 8.6938
April 6.4531 0.9322 6.7946 0.4108 3.0380 8.8503
May 7.2653 0.9832 7.6101 0.1872 3.1091 8.2228
June 7.1096 1.2121 5.8087 0.0100 4.4417 7.1365
July 9.4395 1.2184 7.6475 0.0100 6.4556 9.4667
August 10.8063 1.2481 8.5413 0.0158 10.6913 10.8080
September 10.0271 1.1205 8.8624 0.0100 5.0139 10.0738
October 9.2975 1.0122 9.0119 0.9320 2.2056 9.8152
November 5.8059 0.9174 6.4382 0.4379 2.5491 8.3434
December 6.1988 0.9706 6.2147 0.6169 3.8966 9.9052

Table 15. Estimated parameter for Dejen station.

Exponential Gamma Mixed Exponential
Month µ α β α β1 β2
January 4.9894 0.7421 6.7230 0.4391 1.6064 9.3116
February 5.1366 0.9147 5.6158 0.6793 2.5676 10.5790
March 8.9327 0.9461 9.4415 0.1951 2.7966 10.4200
April 7.3373 1.0061 7.2930 0.3914 11.9300 4.3821
May 9.2221 0.9849 9.3631 0.3083 4.4023 11.3690
June 10.3270 1.0803 9.5592 0.0193 4.3882 10.4490
July 13.9760 1.1676 11.9700 0.0010 6.6530 13.9760
August 14.5780 1.1960 12.1890 0.0018 1.5363 14.5840
September 11.9000 0.9813 12.1280 0.0100 0.8873 11.900
October 12.9520 0.9821 13.1880 0.1110 4.0851 14.0590
November 10.9880 0.8646 12.7080 0.1022 1.3836 12.0810
December 4.3653 0.9062 4.8174 0.2434 1.1398 5.4030

rence of daily rainfall with out the analogue year component that is using only the
first order Markov chain (MC) and with the analogue year component that is using
the new model Markov chain analogue year model (MCAY). Figure 9a shows the
result using MC and Figure 9b presents the occurrence using (MCAY). As clearly
observed from the figures, Figure 9b gives a better fit to observed frequency as the
plots over lap. Hence, using the analogue year (AY) component in the modeling of
the occurrence or non nonoccurence of daily rainfall has a positive significant effect
and it is appropriate. Tables from 17-25 shows the comparison of the statistics in
all the three models over the three locations. As observed from these tables the
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Table 16. Estimated parameter for Gonder station.

Exponential Gamma Mixed Exponential
Month µ α β α β1 β2
January 4.4696 0.9929 4.5015 0.4406 1.5085 6.8016
February 4.6370 1.1923 3.8890 0.0100 4.6047 4.6372
March 4.9585 0.8881 5.5831 0.8012 2.7211 13.9751
April 5.3370 0.9245 5.7726 0.8294 4.0414 11.6388
May 7.4058 0.9186 8.0620 0.5371 3.6963 11.7091
June 9.2407 0.8794 10.5078 0.3986 3.8033 12.8483
July 11.4244 1.0807 10.5713 0.0100 2.9121 11.5103
August 11.2280 1.1257 9.9738 0.0100 4.3622 11.2914
September 7.4677 1.0057 7.4253 0.1945 3.1601 8.5078
October 8.2613 0.7090 11.6517 0.4714 2.2984 13.5773
November 5.7755 0.8660 6.6690 0.4855 2.4330 8.9301
December 5.7739 0.8130 7.1021 0.7492 3.3574 12.9879

Figure 6. Plot of exponential parameter µ for Debre Markos rainfall.

Figure 7. Plot of gamma distribution parameters α and β, Debre Markos rainfall.
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Figure 8. Plot of mixed exponential parameter for each month, Debre Markos rainfall.

Figure 9. (a) Frequency of rainfall occurrence using MC (Markov chain with out analogue
year component) (b) Frequency of rainfall occurrnce using Markov chain with the analogue
year component (MCAY) model.

absolute error in the approximation of the mean for instance using MCEM, MCGM
and MCMEM (without the AY component) ranges from minimum 2.8294 to maxi-
mum 5.2657 where as in the case of MCAYEM, MCAYGM and MCAYMEM (with
the AY component) the absolute error in the approximation of the mean ranges
from minimum 0.0099 to maximum 0.1618. Therefore it is one evidence for the
goodness of the models as well as the nobility of the AY component incorporating
in the Markov chin to model the occurrence of daily rainfall. Table 26 presents
the summary of the absolute errors in the approximation of basic statistics using
existing models (without the analogue year component) and the new models (with
the analogue year component). Table 26 presents the summary of the absolute
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Table 17. Comparison of the statistic of observed with MCEM (existing model) and
MCAYEM(new model) for Dejen raifall.

Statistics observed MCEM AE MCAYEM AE
Mean 3.7851 9.0508 5.2657 3.7752 0.0099
Standard deviation 8.8384 10.9750 2.1366 8.9431 0.1047
Skewness 3.5920 2.3928 1.1992 3.6628 0.0708
Kurtosis 20.5050 11.5580 8.9470 20.70 0.1950

Table 18. Comparison of the statistic of observed with MCGM (existing model) and
MCAYGM (new model) for Dejen raifall.

Statistics observed MCGM AE MCAYGM AE
Mean 3.7851 8.8728 5.0877 3.7552 0.0299
Standard deviation 8.8384 10.6830 1.8446 8.8155 0.0229
Skewness 3.5920 2.3208 1.2712 3.7057 0.1137
Kurtosis 20.5050 10.9530 9.5520 21.9680 1.463

Table 19. Comparison of the statistic of observed with MCMEM (existing model) and
MCAYMEM(new model) for Dejen raifall.

Statistics observed MCMEM AE MCAYMEM AE
Mean 3.7851 8.3976 4.6125 3.6668 0.1183
Standard deviation 8.8384 11.1400 2.3016 8.8155 0.0553
Skewness 3.5920 2.3560 1.2360 3.6497 0.0577
Kurtosis 20.5050 10.6110 9.8940 20.301 0.2040

Table 20. Comparison of the statistic of observed with MCMEM (existing model) and
MCAYMEM (new model) for Debre Markos raifall.

Statistics observed MCEM AE MCAYEM AE
Mean 3.6573 6.5236 2.8663 3.4879 0.1694
Standard deviation 7.0854 7.9118 0.8264 7.0771 0.0083
Skewness 3.1950 2.6863 0.5087 3.4360 0.5087
Kurtosis 18.0600 15.4170 2.6430 20.1560 2.0960

Table 21. Comparison of the statistic of observed with MCGM (existing model) and
MCAYGM (new model) for Debre Markos raifall.

Statistics observed MCGM AE MCAYGM AE
Mean 3.6573 6.4867 2.8294 3.4955 0.1618
Standard deviation 7.0854 7.5721 0.4867 6.7750 0.3104
Skewness 3.1950 2.4231 0.7719 3.1853 0.0097
Kurtosis 18.0600 12.9910 5.0690 18.1840 0.124

errors in the approximation of basic statistics using existing model (without the
analogue year component) and the new model (with the analogue year component)
On the basis of the developed daily rainfall model, we obtain cumulative monthly

rainfall for each month of 2015. Tables 27, 28 and 29 reveal the estimated and
observed monthly cumulative rainfall along with the corresponding absolute error
(AE). Figure 13 shows the cumulative monthly rainfall of each station and the
graphs given in figure 14 presents the mean monthly rainfall of each station. In
order to obtain the strike rainfall for each month of the growing period of each crop
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Table 22. Comparison of the statistic of observed with MCMEM (existing model) and
MCAYMEM (new model) for Debre Markos raifall.

Statistics observed MCMEM AE MCAYMEM AE
Mean 3.6573 6.6304 2.9731 3.5957 0.0.0616
Standard deviation 7.0854 8.3334 1.2480 7.3475 0.2621
Skewness 3.1950 2.5593 0.6357 3.4895 0.2945
Kurtosis 18.0600 13.5720 4.4880 20.1160 2.0560

Table 23. Comparison of the statistic of observed with MCEM (existing model) and
MCAYEM (new model) for Gonder raifall.

Statistics observed MCEM AE MCAYEM AE
Mean 3.1838 6.3711 3.1873 3.1005 0.0833
Standard deviation 7.4994 8.2795 1.7801 7.3018 0.1976
Skewness 3.8193 2.8226 0.9967 3.9575 0.1382
Kurtosis 22.8990 16.0150 6.8440 24.4920 1.5930

Table 24. Comparison of the statistic of observed with MCMEM (existing model) and
MCAYMEM (new model) for Gonder raifall.

Statistics observed MCMEM AE MCAYEM AE
Mean 3.1838 6.3604 3.1766 3.1251 0.0587
Standard deviation 7.4994 9.0700 1.5706 7.4325 0.0669
Skewness 3.8193 2.8693 0.9500 3.7535 0.0630
Kurtosis 22.8990 14.9750 7.9240 21.7040 1.1950

Table 25. Comparison of the statistic of observed with MCGM (existing model) and
MCAYGM (new model) for Gonder raifall.

Statistics observed MCGM AE MCAYGM AE
Mean 3.1838 6.6380 3.4542 3.1993 0.0155
Standard deviation 7.4994 8.3058 0.8064 7.3067 0.1927
Skewness 3.8193 2.7578 1.0615 3.7563 0.0630
Kurtosis 22.8990 15.9450 6.9540 23.2830 0.3840

Table 26. Absolute error in the approximation of basic statistics.

Existing
model

New model

Statistics minimum maximum minimum maximum
Mean 2.8294 5.2657 0.0099 0.1618
Standard deviation 0.4867 2.3016 0.0083 0.3104
Skewness 0.5087 1.2712 0.0097 0.5087
Kurtosis 2.6430 9.8940 0.1240 2.0960

type first we find the total crop water transpiration coefficient Kc and we calculate
the ratio or percentage of the water requirement in each month for a particular
crop type. For example for Teff crop in the growing season June to September the
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Figure 10. Actual vs estimated daily rainfall of Debre Markos from 1987 to 2015 for
months June, July, August and September.

Figure 11. Actual vs estimated daily rainfall of Debre Markose from 1987 to 2015, June-
September mixed exponential.

total Kc that is:

∑
Kci = 0.3 + 0.7 + 1.1 + 0.7 = 2.8. (31)

Hence the percentage of rainfall required in month i is calculated as:

Percentage =
Kci∑
Kci

× 100% (32)
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Figure 12. Actual vs estimated daily rainfall of Debre Markose from 1987 to 2015, June-
September gamma model.

Table 27. Estimated cumulative monthly rainfall using MCAYMEM, MCAYGM,
MCAYEM and the observed monthly cumulative rainfall together with corresponding ab-
solute error (AE) in 2015 of Debre Markos station.

Months Actual MCAYMEM AE MCAYGM AE MCAYEM AE
January 0.00 0.00 0.00 0.00 0.00 0.00 0.00
February 41.80 32.86 8.94 36.99 4.82 37.03 4.77
March 65.40 65.94 0.54 64.73 0.67 65.85 0.45
April 77.50 78.34 0.84 77.10 0.40 77.48 0.02
May 344.90 344.31 0.59 343.56 1.34 344.22 0.68
June 107.90 108.90 0.56 107.35 0.55 107.38 0.52
July 285.60 285.26 0.34 284.72 0.88 286.27 0.66
August 246.60 246.78 0.18 246.60 0.00 245.83 0.77
September 193.20 193.24 0.04 192.47 0.73 193.04 0.16
October 60.50 60.76 0.26 61.16 0.66 60.52 0.02
November 7.40 0.00 7.40 0.00 7.40 0.00 7.40
December 0.00 0.00 0.00 0.00 0.00 0.00 0.00

For example for June

Percentage =
0.3

2.8
× 100% = 10.71% (33)

This means from the total amount of rainfall required for the growth of Teff 10.71%
of rainfall expected to fall in the month of June. Moreover, the strike rainfall in
each month is obtained by multiplying the total rainfall amount required during the
growing season by the corresponding percentage of each month. Table 30 presents
the crop coefficient of Teff, the corresponding percentage and amount of rainfall
required in each month. Strikes can also obtained by taking the mean of the his-
torical data of each month [14, 38]. For simplicity we take the tick size to be one
currency per unit index. Based on the option specification given in Table 13, the
option prices are given in Table 31. In this paper we use European option and
the trading date for each month is the last date of the immediate previous month.
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Table 28. Estimated cumulative monthly rainfall using MCAYMEM, MCAYGM,
MCAYEM and the observed monthly cumulative rainfall together with corresponding ab-
solute error (AE) in 2015 of Dejen station.

Months Actual MCAYMEM AE MCAYGM AE MCAYEM AE
January 0.00 0.00 0.00 0.00 0.00 0.00 0.00
February 34.20 34.54 0.34 33.47 0.73 33.43 0.77
March 10.40 10.79 0.39 11.32 0.92 10.54 0.14
April 0.00 9.17 9.17 9.53 9.53 8.20 8.20
May 185.20 184.81 0.39 185.31 0.12 186.01 0.81
June 89.90 90.78 0.88 89.44 0.46 90.55 0.65
July 129.60 129.10 0.50 129.71 0.11 129.96 0.36
August 333.40 334.35 0.95 333.66 0.26 333.70 0.30
September 166.70 166.95 0.45 167.56 0.86 166.40 0.26
October 29.90 29.09 0.81 30.08 0.18 29.64 0.26
November 110.40 110.65 0.25 110.34 0.06 108.66 1.74
December 5.00 0.00 5.00 0.00 5.00 0.00 5.00

Table 29. Estimated cumulative monthly rainfall using MCAYMEM, MCAYGM,
MCAYEM and the observed monthly cumulative rainfall together with corresponding ab-
solute error (AE) in 2015 of Gonder station.

Months Actual MCAYMEM AE MCAYGM AE MCAYEM AE
January 0.00 0.85 0.85 0.00 0.00 0.39 0.39
February 8.10 0.00 8.10 33.47 0.73 33.43 0.77
March 20.70 20.49 0.21 20.63 0.07 20.74 0.04
April 2.50 10.42 7.92 9.42 6.92 7.45 4.95
May 130.40 130.82 0.42 130.12 0.28 130.86 0.46
June 121.60 121.44 0.16 121.22 0.38 122.07 0.47
July 236.20 236.81 0.61 236.96 0.76 235.76 0.44
August 247.30 247.02 0.28 246.36 0.94 247.43 0.13
September 123.20 123.15 0.05 122.32 0.88 123.90 0.70
October 25.40 24.97 0.43 24.91 0.49 25.48 0.08
November 35.91 34.22 1.69 35.56 0.35 35.74 0.17
December 8.00 0.00 8.00 0.00 8.00 0.00 8.00

Table 30. Crop coefficient of Teff, the corresponding percentage and amount of rainfall
required in each month.

Month June July August September
Kc 0.30 0.70 1.10 0.70
Percentage(%) 10.71 25 39.28 25
Rainfall in mm 107.14 250 392.86 250

For instance for June the trading date is May 30. The result reveals an excellent
accuracy with mean absolute error of 0.54 (MCAYMEM), 0.36 (MCAYGM) and
0.34 (MCAYEM). In the same manner one can do for maize and wheat.

4. Conclusion

In this study we model daily rainfall and set an option price for Teff crop for
different months in its growing season. The modeling procedure is separated in
two parts. The first part is modeling of the occurrence or frequency of rainfall
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Figure 13. Cumulative montly rainfall using (a) MCAYMEM, (b) MCAYMEM, (c)
MCAYMEM (top to bottom) respectively and observed monthly cumulative rainfall of
Dejen, Debre Markos and Gonder in the year 2015.

Table 31. Put Option prices with r = 0.0058 using MCAYMEM, MCAYGM, MCAYEM
and the observed monthly cumulative rainfall together with corresponding absolute error
in 2015 of Dejen station.

Months observed MCAYMEM AE MCAYGM AE MCAYEM AE
June 14.48 13.74 0.74 14.87 0.46 13.94 0.54
July 101.14 101.56 0.42 101.04 0.10 100.83 0.31
August 49.95 49.15 0.80 49.73 0.22 49.69 0.26
September 69.97 69.76 0.21 69.25 0.72 70.22 0.25

and the second part is modeling of the magnitude or amount of rainfall on a wet
day. In the first part, a Markov chain with analogue year component (MCAY)
model is used in order to model the frequency of the rainfall occurrence. In the
second component of the model that is amount or magnitude modeling part, we
consider three different distributions namely exponential distribution, gamma
distribution and mixed exponential distribution. The result of the study reveals all
the three models performs very well. Both qualitative (graphical) and quantitative
techniques are used in order to assess their performance. Quantitatively the
performance of the three models; MCAYEM, MCAYGM and MCAYMEM are
measured using mean absolute error (MAE). All the three models have nearly the
same performance in all the three stations. The mean absolute errors in monthly
cumulative rainfall are 0.45mm, 0.57mm and 0.42mm respectively for kiremet
(June to September) rainfall which is the long rainy season in all parts of Ethiopia.
Based on the result of the developed rainfall models we calculated an option price
for Teff crop using monthly cumulative rainfall. The pricing results are quite
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Figure 14. Average montly rainfall using (a) MCAYMEM, (b) MCAYMEM, (c)
MCAYMEM (top to bottom) respectively and observed monthly average rainfall of Dejen,
Debre Markos and Gonder from 1987 to 2015.

accurate in all models with only maximum absolute error of 0.34 currency in
MCAYEM, 0.36 currency in MCAYGM and 0.54 currency in using MCAYMEM.
Therefore the main contribution of the paper is incorporating Analogue Year
(AY) component in the Markov chain (MC) in the modeling of frequency of daily
rainfall which improves the accuracy of the model in an excellent way.
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