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Abstract. In this paper, we study a single server Markovian queue with state dependent
accessible services, reneging and feedback of customers. The server can accommodate at the
most d customers in the service station, after which the new arrivals have to wait in the
primary queue of infinite waiting space. All arrivals demand First Essential Service (FES),
after completing FES, customers decide to join the second optional Service (SOS) with a
probability. The services occur singly according to first come first served service discipline
and service times in FES and SOS are exponentially distributed. A customer waiting in the
primary queue may get impatient and renege from the queue. However, after completing SOS,
if the customer is not satisfied with the service quality, he may join the queue again (feedback).
The system is analyzed by a quasi birth-death process and the steady state probabilities of
the model are obtained using matrix geometric method. Some performance measures and
numerical illustrations are also provided. An optimization of the cost function is performed
to find the optimal service rate that minimizes the total cost.
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1. Introduction

Recently there have been several contributions considering queueing system in
which the server may provide a second optional service. Such queueing situations
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occur in day-to-day life. For example, (a) at a barber shop every customer needs
hair cut but only few of them may opt for shave or massage (b) students admitted
in a particular department of a university want to complete their under graduate
program of study but only some of them may join the post graduate program soon
after completing the under graduate program. Such a model was first introduced
in [11] by studying an M/G/1 queue with SOS, using the supplementary variable
technique wherein general service time distribution for FES and exponential service
time distribution for SOS are considered. [14] derived the transient and steady state
solution for anM/G/1 queue with SOS using the same technique. AnM/G/1 queue
with SOS and server break downs has been analyzed in [18] and in [1] a study of
M/G/1 queue with SOS and general service time distribution is found. An infinite
capacity multi-server queue with SOS channel is analyzed in [7].
Reneging of customers due to impatience was first investigated in [2]. They stud-

ied an M/M/1/N queueing system with balking and reneging. Manoharan and
Sasi [12] investigated an M/G/1 reneging queueing system with SOS and second
optional vacation. In [3] a queueing system with returning of customers and waiting
line is presented. [16] studied a multi-server infinite capacity Markovian feedback
queue with balking, reneging and retention of reneged customers. The queueing
system with two phase service has been studied in [9]. Doshi [6] has extended [9]
into case of general service times. [4] studied time dependent solution of M [X]/G/1
queueing model with SOS, Bernoulli K− optional vacation and balking whereas in
[13] analysis of an M/G/1 feedback queueing system with SOS and second optional
vacation has been carried out. Furthermore, [17] investigated an M/G/1 feedback
queue with two types of services having general distribution.
In this paper, we consider an M/M/1 queue with second optional service, reneg-

ing and feedback of customers and two types of state dependent accessible services.
Arrivals occur according to a Poisson process. There is a service queue in the ser-
vice station with maximum limit of d customers, beyond which, the new arrivals
have to wait in the primary queue. The services(departures) occur one by one
and service times in FES and SOS are assumed to be exponentially distributed.
We have used matrix geometric method to obtain the steady state system length
distributions using rate matrices and Neuts and Rao’s [15] truncation method.
Some performance measures have been discussed and a cost model is constructed
to determine the optimum service rate using direct search method that minimizes
the cost function. The rest of the paper is organized as follows. Sections 2 and 3
present the description and mathematical formulation of the model, respectively.
Steady state solutions are presented in Section 4 followed by various performance
measures in Section 5. Section 6 presents numerical results and Section 7 concludes
the paper.

2. Model description

Let us consider an M/M/1 queueing model wherein arrivals occur according to a
Poisson distribution with parameter λ and join in the service queue whose max-
imum capacity is d. After that limit is reached, the new arrivals queue up in the
primary queue. The services/departures occur singly. The service discipline, both
for the service queue and primary queue is first-come first-served. The FES is
needed by all arriving customers, after which a customer may proceed to SOS with
probability q1 or may leave the system with the complementary probability 1− q1.
After completing SOS, a customer may again join the primary queue (feedback)
with probability q2 or depart from the system with probability 1− q2. The service
times of both FES and SOS are exponentially distributed with rates µn and η,



P. Vijaya Laxmi & E. Girija Bhavani/ IJM2C, 08 - 04 (2018) 207-216. 209

respectively, where
µn = nµ for 1 ⩽ n ⩽ d− 1, and µn = dµ, for n ⩾ d.

A customer waiting in the primary queue may get impatient and renege from the
queue if his waiting time is beyond a tolerable limit. Reneging times are also expo-
nentially distributed with parameter ξ. The average reneging rate is zero for n < d.
We assume that the arrival times and the service times are all independent and
identically distributed random variables. Further, the new arrivals and feedback
customers are treated identical.

3. Mathematical formulation of the model

Let at time t, L(t) and S(t) be the number of customers in the primary queue
and service queue respectively. Further let ζ(t) be the state of the server at time t
which is defined as

ζ(t) =

{
0, if the server is busy in FES,
1, if the server is rendering SOS.

We see that ω =
{
L(t), S(t), ζ(t)

}
defines a Markov process with state space

E =
{
(i, j, ζ(t)); i ⩾ 0, 0 ⩽ j ⩽ d, ζ(t) = 0 or 1

}
.

At steady state, let Pi,n(Qi,n), i ⩾ 0, 0 ⩽ n ⩽ d, be the probability that i
and n number of customers are present in the primary queue and service queue,
respectively and the server is busy in FES (SOS). Using Markov theory, the set of
balance equations at steady state are given by

0 = −λP0,0 + q2ηQ0,0 + (1− q1)µP0,1, (1)

0 = −(λ+ nµ)P0,n + λP0,n−1 + q2ηQ0,n + (1− q1)(n+ 1)µP0,n+1, 1 ⩽ n ⩽ d− 1,(2)

0 = −(λ+ dµ)P0,d + λP0,d−1 + (dµ(1− q1) + ξ) P1,d + q2ηQ0,d, (3)

0 = −(λ+ dµ+ ξ)Pn,d + λPn−1,d + (dµ(1− q1) + ξ)Pn+1,d + q2ηQ1,d, n ⩾ 1, (4)

0 = −(λ+ q2η)Q0,0 + q1µP0,1, (5)

0 = −(λ+ q2η)Q0,n + (n+ 1)q1µP0,n+1 + λQ0,n−1, 1 ⩽ n ⩽ d− 1, (6)

0 = −(λ+ q2η)Q0,d + dq1µP1,d + λQ0,d−1 + ξQ1,d, (7)

0 = −(λ+ q2η + ξ)Qn,d + dq1µPn+1,d + λQn−1,d + ξQn+1,d, n ⩾ 1. (8)

4. Matrix-geometric solution

The matrix geometric method allows us to deal with the models with rapid growth
of the state space introduced by the need to explicitily construct the generator
matrix of the underlying Markov process. The method can only be applied if the
system can be decomposed into two parts: the initial portion and the repetitive
portion. For example, in the present model, customers queued up has a structure
that is possibly unbounded. Typically, there exists an integer d+1 beyond which the
behavior of system for all i ⩾ d+1 is expected to be possibly same as the behavior
of the system for d + 1. Such similarity need not hold for 0, 1, ..., d. Therefore,
we can represent the system by storing the information for the initial portion
0, 1, ..., d and the repeating portion d+ 1, d+ 2, .... It is tedious to obtain a closed
form solution for the QBD process presented in section 3. In order to obtain an
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efficient and numerical stable solution, we employ matrix geometric method to
obtain the probabilities for the Markov chain. As there are repetitive block sub-
matrices in transition rate matrix, we can easily employ the matrix geometric
method to evaluate the stationary probability vector Pn.
The transition rate matrix Q of the Markov chain corresponding to the coeffi-

cients of equations (1) to (8) has the block tri-diagonal form given by:

Q =



A0 C
B1 A1 C

B2 A2 C
...

...
...

Bd Ad C
Bd+1 Ad+1 C

Bd+1 Ad+1 C
...

...
...


The rate matrix Q of the QBD process has the sub-matrices given as:

Ai =

(
−(λ+ iµ) 0

q2η −(λ+ q2η)

)
, 0 ⩽ i ⩽ d,

=

(
−(λ+ dµ+ ξ) 0,

q2η −(λ+ q2η + ξ)

)
, i > d,

Bi =

(
(1− q1)iµ iq1µ

0 0

)
, 1 ⩽ i ⩽ d,

=

(
(1− q1)dµ+ ξ dq1µ

0 ξ

)
, i > d,

C =

(
λ 0
0 λ

)
.

Let P be the corresponding steady state probability vector of Q. By partitioning
the vector P as P = {P0, P1, P2, . . .} where Pn=[Pi,j , Qi,j ], i ⩾ 0, 0 ⩽ j ⩽ d.
The vector P satisfies PQ=0 and Pe=1 where e is a 2 × 1 vector having each

element as unity. According to [15], the system is stable and the steady state
probability vector exists if and only if yCe < yBd+1e where y is an invariant
probability of the matrix M=Ad+1 +Bd+1 +C such that y satisfies the equations
yM = 0 and ye= 1. Apparently, when the stability condition is satisfied, the sub
vectors of P, corresponding to different levels satisfy

Pn = Pd+1R
n−(d+1), n ⩾ d+ 2, (9)

where matrix R is the minimal non-negative solution of the matrix quadratic equa-
tion

C+RAd+1 +R2Bd+1 = 0, (10)

which can be obtained by using the following iterative procedure.

Computational algorithm for R:
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Step 1: Set k = 1.
Step 2: Set U = Ad+1 and calculate G = (I−U)−1Bd+1.
Step 3: Increment k by 1.
Step 4: Replace U = Ad+1 +CG and G = (I−U)−1Bd+1.
Step 5: Repeat steps 3 and 4 until ∥e−Ge∥∞ < ϵ, where ϵ is a stopping tolerance.
Step 6: Calculate R = C(I−U)−1.
From the equation PQ = 0 the governing system of difference equations can be
given as

P0A0 +P1B1 = 0, (11)

Pn−1C+PnAn +Pn+1Bn+1 = 0, 1 ⩽ n ⩽ d, (12)

Pn−1C+PnAd+1 +Pn+1Bd+1 = 0, n ⩾ d+ 1, (13)

and normalizing condition

∞∑
n=0

Pne = 1. (14)

From equations (11) to (13), after some mathematical manipulations, we get

P0 = −P1B1(A
−1
0 ) = P1ϕ1, (15)

Pn−1 = −PnBn(An−1 + ϕn−1C)−1 = Pnϕn, 2 ⩽ n ⩽ d+ 1, (16)

Pd+1ϕd+1C+Pd+1Ad+1 +Pd+1RBd+1 = 0. (17)

Thus, Pn (0 ⩽ n ⩽ d) in equation (15) and (16) can be written as product form in
terms ofPd+1. To findPd+1, we use the normalization condition and equation (17).

∞∑
n=0

Pne = Pd+1[

d+1∑
j=1

m∏
i=d+1

ϕi + (I−R)−1]e = 1 (18)

Solving equations (17) and (18), we obtain Pd+1. We use equations (9),(15) and
(16), to get Pn for n ⩾ 0.

5. Performance measures

Performance measures show the behaviour of the system from various perspectives.
Expected number of customers in the system and in the queue, respectively, when
the server is busy in FES are given by

E[F ] =

d∑
n=1

nP0,n +

∞∑
n=1

(n+ d)Pn,d ;

E[QF ] =
d∑

n=1

nP0,n +
∞∑
n=1

nPn,d .



212 P. Vijaya Laxmi & E. Girija Bhavani/ IJM2C, 08 - 04 (2018) 207-216.

Expected number of customers in the system and the queue, respectively, when
the server is rendering SOS are given by

E[S] =

d∑
n=1

nQ0,n +

∞∑
n=1

(n+ d)Qn,d ;

E[QS] =
d∑

n=1

nQ0,n +
∞∑
n=1

nQn,d .

Expected reneging rate of the customer is given by

E[RC] =
∞∑
n=1

ξPn,d +
∞∑
n=1

ξQn,d .

Probability that the server is busy in FES is given by

P [F ] =
d∑

n=1

P0,n +
∞∑
n=1

Pn,d .

Probability that the server is busy in SOS is given by

P [S] =
d∑

n=1

Q0,n +
∞∑
n=1

Qn,d .

6. Numerical investigation

To demonstrate the applicability of the formulae obtained in the previous sections,
numerical computations have been carried out using Mathematica software. Some
of the numerical computations have been presented below in the form of tables and
graphs. The parameters of the model are assumed to be λ = 0.26, µ = 0.4, η =
0.6, q1 = 0.7, q2 = 0.5, ξ = 2.0, d = 5, n = 25.
Table 1 shows the effect of service rate during FES (µ) on performance measures.

We can see that as (µ) increases, E[F ] and P [F ] and E[RC] decrease. Also the
percent variation, P.V. (which is the difference between the last value and the first
value expressed as percentage) in the last row indicates the decreasing trend. This
is because, some customers may opt for SOS after completing FES resulting in the
decrease in the above performance measures. On the other hand, increasing trend
is observed for E[S] and P [S] as µ increases. E[F ] and E[S] are largely effected as
µ increases which is practically true. As observed in Table 2, a completely opposite
trend is observed. As η is increasing, more services occur in SOS, thereby the
queue lengths in SOS and busy probabilities in SOS decrease which is intuitively
true. Table 3 shows the effect of probability that number of customers entering
into SOS after getting FES (q1) on perfrmance measures. We can observe that as
q1 increases, E[S] and P [S] increase. Also the percent variation in the last row
indicates the increasing trend. Since as q1 increases, more number of customers
tend to be busy in SOS. Table 4 shows the effect of feedback probability (q2) on
performance measures. As q2 increases, E[F ], P [F ] and E[RC] increase. Also the
percent variation in the last row indicates the increasing trend. This is due to
feedback of customers from SOS to primary queue.
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Table 1. Effect of µ on performance measures.

µ E[F] E[S] P[F] P[S] E[RC]

0.4 1.29375 1.53028 0.309469 0.545636 0.216025
0.6 0.981279 1.76571 0.229791 0.621838 0.182103
0.8 0.789019 1.90928 0.182436 0.667215 0.158631
1.0 0.659311 2.00573 0.15117 0.697222 0.14153
1.2 0.566051 2.07492 0.129017 0.71851 0.128543

P.V. -72.76 54.46 -18.04 17.28 -8.7

Table 2. Effect of η on performance measures.

η E[F] E[S] P[F] P[S] E[RC]

0.5 1.24775 1.56647 0.294485 0.560017 0.213552
0.7 1.3376 1.49557 0.323724 0.531931 0.218371
0.9 1.4194 1.43026 0.350235 0.506383 0.222715
1.1 1.49412 1.36999 0.374364 0.483067 0.22665
1.3 1.56258 1.31428 0.396404 0.46172 0.230229

P.V. 31.48 -25.21 10.19 -9.82 1.66

Table 3. Effect of q1 on performance measures.

q1 E[F] E[S] P[F] P[S] E[RC]

0.3 1.94091 0.927128 0.506299 0.347771 0.244504
0.5 1.55415 1.27705 0.387072 0.46659 0.226434
0.7 1.29375 1.53028 0.309469 0.545636 0.216025
0.9 1.10679 1.72431 0.255838 0.601257 0.209926

P.V. -83.412 79.718 -25.0461 25.3486 -3.4578

Table 4. Effect of q2 on performance measures.

q2 E[F] E[S] P[F] P[S] E[RC]

0.3 1.17945 1.61975 0.272179 0.581374 0.209855
0.5 1.29375 1.53028 0.309469 0.545636 0.216025
0.7 1.39565 1.44929 0.342546 0.5138 0.221457
0.9 1.48694 1.37581 0.372049 0.485306 0.226273

P.V. 30.749 -24.394 9.987 -9.606 1.641

Figure 1 shows the effect of arrival rate λ on E[F ] for different values of µ. We
can see from the graph that as λ increases, E[F ] decreases for a constant service
rate in FES(µ). But as µ increases, the number of customers served per unit time
increases and hence E[F ] decreases. Figure 2 shows the effect of λ on E[S] for
different values of η. Generally as λ increases, E[S] also increases. But when the
service rate in SOS (η) increases, it is obvious that E[S] decreases.
The effect of µ on E[F ] and E[S] is plotted in Figure 3. It is clear from the figure

that as µ increases E[F ] decreases and E[S] increases. This is due to the fact that
after getting FES some customers tend to SOS. Moreover, for fixed value of µ, the
intersecting point of the curves of E[F ] and E[S] gives the value µ = 0.59 for which
E[F ] is minimum and E[S] is maximum.
The effect of η on E[S] and E[F ] for different values of q2 is plotted in Figure

4 and Figure 5, respectively. Generally, as η increases, E[S] decreases and E[F ]
increases. Also as q2 increases, number of customers again join the primary queue
increases. Hence we observe decreasing trend for E[S] in Figure 4 and increasing
trend for E[F ] in Figure 5 as q2 increases.
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Figure 1. Effect of λ on E[F ] for different µ.

Figure 2. Effect of λ on E[F ] for different η.

Now, we develop a total expected cost function per unit time with an objective
to determine the optimum value of µ that minimizes the expected cost function.
Let us define:
Cef ≡ Cost per unit time when the server is busy in FES,
Ces ≡ Cost per unit time when the server is busy in SOS,
Cf ≡ Cost per unit time when the server is serving in FES,
Cs ≡ Cost per unit time when the server is serving in SOS,
Crc ≡ Cost per unit time per lost customer due to reneging.

The cost minimization problem is expressed mathematically as :

F [µ] = CefE[F ] + CesE[S] + Cfµ+ Csη + CrcE[RC].

Assuming the coefficients of the cost function as Cef = 4, Ces = 2.5, Cf = 3, Cs =
1.5, Crc = 10 and the model parameters as λ = 0.26, µ = 0.4, η = 0.6, q1 =
0.7, q2 = 0.4, ξ = 2.0, d = 5, n = 25. Varying the service rate in FES (µ) such that
0.4 ⩽ µ ⩽ 1.2. Using direct search method, it is found that the minimum value
of the total expected cost function is F [µ] = 12.8063 at µ = 0.7 which is shown
graphically in Figure 6.

7. Conclusion

This paper presents a single server infinite buffer queue with second optional ser-
vice in which customers may renege due to impatience and feedback of customers
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Figure 3. Effect of µ on E[F ] and E[S] for different q1.

Figure 4. Effect of η on E[S] for different q2.

Figure 5. Effect of η on E[F ] for different q2.

may exists due to dissatisfaction with the service. Such models have applications
in hospital services, production systems, bank services, computer and communi-
cation networks, etc. We have used matrix geometric method to find steady state
probabilities and presented some performance measures along with the numerical
results. Optimization of cost function with respect to the service rate µ is also
discussed using direct search method.
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Figure 6. Effect of µ on F [µ].
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