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Abstract. The matrix inversion plays a significant role in engineering and sciences. Any

nonsingular square matrix has a unique inverse which can readily be evaluated via numeri-

cal techniques such as direct methods, decomposition scheme, iterative methods, etc. In this

research article, first of all an algorithm which has fourth order rate of convergency with con-

ditional stability will be proposed. Then, for solving stability issue, we introduce a coupled

stable scheme that can evaluate the matrix inversion with very acceptable accuracy. Fur-

thermore, the convergence and stability properties of the proposed schemes will be analyzed

in details. Numerical experiments are adopted to illustrate the properties of the modified

methods.
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1. Introduction

Given A ∈ Cn×n is a nonsingular matrix. Let it is possible to make a branch cut

in the complex plane from 0 to ∞ which does not intersect the set of eigenvalues

of A (or σ(A)), and Γ be a contour in the cut plane winding once around each
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eigenvalue of A. Then the inverse of A is defined as [3]

A−1 =
1

2πi

∮
Γ
z−1(zI −A)−1dz. (1)

Notice that the integral vanishes when Γ is a counter-clockwise oriented circle

centered at the origin of large enough radius. However, the matrix inversion can

not be considered as a matrix function (See Chap. 1 in [4]). Moreover, the inversion

of A is given by the matrix which is satisfied in AA−1 = In or A−1A = In. The

matrix inversion is a unique matrix.

The computation of matrix inversion has key role in practical applications like

obtaining a rational approximation to the Fermi-Dirac functions which is appear

in the density functional theory [11]. Another application of the matrix inversion

includes in some particular circumstances, for instance, serval techniques to en-

crypt a message whenever the use of coding has become especially significant more

recently [12].

It is well known that there are several approaches to the computation of ma-

trix inversion which can be categorized as three considerable groups. First, direct

methods that include Gaussian elimination with partial pivoting or Gauss-Jordan

elimination. It should be mentioned that direct methods cannot correctly tackle

sparse matrices possessing sparse inverses turn out in the numerical solution of

integral equations. In order to solve this issue, some numerical procedures such

as Conjugate Gradient for symmetric positive definite matrices and GMRES are

effective for large sparse linear systems. However, when the coefficient matrix is

ill-conditioned, solving a linear system of equations based on inversion is problem-

atic. To antitode this, one can utilize an appropriate preconditioner to the system.

Second part of the category is decomposition methods such as LU decomposition

or QR factorization which require an affordable CPU time for computing the in-

verse when the dimension of the matrices is large. The last but not least, iterative

approaches are drown mostly based on root finding methods. The other types of

schemes, which can be considered as iterative methods. In such iterative meth-

ods, at each iteration an approximate inverse of a matrix can readily be yielded.

Subsequently, the users have the ability to solve, for example, the linear systems

iteratively or use the approximate inverses in Sensitivity analysis and the precon-

ditioning of a linear system.

During past decade, several authors have been investigated the iterative methods

for approximating the matrix inversion based on root finding methods. A funda-

mental iterative method introduced by Li [8] which can be used to compute an

approximate inner inverse (see Def. 1.2) of a matrix for a given initial approxima-

tion:

Xk+1 = Xk

(
ℓI − ℓ(ℓ− 1)

2
AXk + · · ·+ (−1)ℓ−1(AXk)

ℓ−1

)
, ℓ = 1, 2, . . . (2)

Whenever ℓ = 2, then it is straightforward (2) is the well-known Newton’s iteration
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as

Xk+1 = Xk (2I −AXk) , k = 0, 1, 2, . . . (3)

and for the case ℓ = 3, the particular case of (2) is the following important case:

Xk+1 = Xk

(
3I − 3AXk + 3(AXk)

2
)
, k = 0, 1, 2, . . . (4)

Moreover, Krishnamurthy and Sen [6] provided the iterative method given by

Xk+1 = Xk (I + (I + Yk(I + Yk(I + Yk)))) , k = 0, 1, 2, . . . (5)

where, Yk = I − AXk. Several years later, this iteration is modified for larger

rate of convergency which applying Schroder’s general method and often called

Schroder-Traub’s sequence as (one can refer to [10, 15])

Xk+1 = Xk

(
I + Yk + Y 2

k + · · ·+ Y n−1
k

)
, k = 0, 1, 2, . . . (6)

or

Xk+1 = Xk (I + (I + Yk(I + Yk(. . .+ Yk) . . .))) , k = 0, 1, 2, . . . (7)

whereas it is requiring n Horner’s matrix multiplications.

An important trouble in computing matrix inversion by utilizing iterative meth-

ods is that the most algorithms suffer stability issue. In the present work, we will

introduce some iterative approaches for computing inverse of a square matrix A via

concentrating on a particular scalar root finding method given in [1]. It is proven

that by considering an appropriate initial matrix, the matrix iteration is convergent

with the rate of convergency four. Furthermore, the stability of the proposed iter-

ation is studied in details by proving some theorems. For solving instability of the

algorithm, utilizing axillary variable, a new coupled iterative method is introduced

which is stable. It was established that the numerical results will be very feasible

for matrices with eigenvalues less that one. This strategy is applied for computing

matrix square root and matrix pth roots in [5, 9]. For this purpose, normalization of

the matrices has been used for getting better accuracy. Numerical implementations

have been carried out to reveal the properties of the modified theory.

The organization of the paper is as follows: Section 2 reveal the basic concept

of deriving iteration and its convergency. We will study the stable iteration by

combining the normalization of the matrices in Sec. 3. In Section 4, we draw some

numerical experiments to examine the proposed recursions. Concluding remarks

will be given in Section 5. Throughout this paper, the following notation will be

appeared. If W ∈ Cn×n with eigenvalues λ1, . . . , λn, then the spectrum of W is

defined by σ(W ) = {λ1, . . . , λn} and spectral radius if W is defined by ρ(W ) =

maxi |λi|.
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2. A novel iterative method

In this section, we provide some conditions to introduce new iterative method to

approximate the matrix inversion. First of all, we apply the following iterative

scheme introduced in [1]:

xℓ+1 = xℓ − Lf (xℓ)
φ(xℓ)

φ′(xℓ)
, ℓ = 1, 2, . . . (8)

wherein

Lf (xℓ) = 1 +
φ′′(xℓ)φ(xℓ)

2φ′2(xℓ)
+

φ′′′2(xℓ)φ
2(xℓ)

6φ′3(xℓ)
, (9)

to the function φ(x) = a − 1
x . Therefore, an iteration for finding the inversion of

scalar a will be attained as:

xk+1 = 4xk − 6ax2k + 4a2x3k − a3x3k, k = 1, 2, . . . (10)

This iterative scheme is fundamental recursion for proposing a new convergent

iteration to the matrix inversion, which is the main contribution of this article. Now,

considering the matrix version in Banach space, the recursive procedure would be

yielded:

Xk+1 = Xk

(
4I − 6AXk + 4A2X2

k −A3X3
k

)
, k = 1, 2, . . . (11)

It is clear that the above relation is a particular case of (2). We will illustrate

that this recursion is not convergent in general and stability is also conditional,

and therefore we solve these issues. Next lemma will be characterized that the

sequences Xk commutes with the matrix A.

Lemma 2.1 Let A ∈ Cn×n is a nonsingular matrix. If AX0 = X0A is valid, then

for the sequence {Xk}∞k=0 in (14), one has that

AXk = XkA, (12)

holds for all k = 1, 2, . . ..

Proof By using a similar strategy mentioned in [5], Lemma can easily be proven.

■

Notice that the suggested recursive procedure in (11) has forth order conver-

gency rate to compute matrix inversion. This point will be proven in the following

theorem.

Theorem 2.2 Assume A ∈ Cn×n, is nonsingular square matrix. If the initial guess

X0 satisfies ∥E0∥ = ∥I−AX0∥ < 1, therefore the iterative procedure (11) converges

to A−1 with the order of four.



A. Sadeghi/ IJM2C, 08 - 04 (2018) 227-238. 231

Proof Let Ek = I −AXk. Then, we can obtain that

Ek+1 = I −AXk+1

= I −A
(
4Xk − 6AX2

k + 4A2X3
k −A3X4

k

)
= I − 4(AXk) + 6(AXk)

2 − 4(AXk)
3 + (AXk)

4

= (I −AXk)
4

= (Ek)
4.

Subsequently, since ∥E0∥ < 1, for any subordinate matrix norm, we attain

∥Ek+1∥ ⩽ ∥Ek∥4 ⩽ . . . ⩽ ∥E0∥4
k → 0

whenever k → ∞. In other words, I −AXk → 0 or Xk → A−1 as k → ∞. Now, we

get

A−1 + ek+1 = Xk+1

= 4Xk − 6AX2
k + 4A2X3

k −A3X3
k

= (A−1 + ek)
(
4I − 6A(A−1 + ek) + 4A2(A−1 + ek)

2 −A3(A−1 + ek)
3
)

= (A−1 + ek)
(
I −Aek +A2e2k +A2e2k −A3e3k

)
= A−1 + ek +Ae2k −A2e3k + ek −Ae2k +A2e3k −A3e4k

= A−1 − ek(Aek)
3.

By removing A−1 from both sides of the equality, we have

ek+1 = −ek(Aek)
3.

After taking any subordinate norm once again, it would be yielded that

∥ek+1∥ ⩽ ∥A∥3∥ek∥4

Consequently, it is indicated that the sequence {Xk} has at least forth order rate

of convergence. ■

Theorem 2.1 illustrated that the order of convergence of the matrix sequence

{Xk}∞k=1 given by (11) is equal to 4, provided that A is a nonsingular matrix. In

Fig. 1, we depict the behavior of the scalar iteration for computing inverse of a = 1

and a = 2. Fractal behavior and divergency of scalar version of iteration can be
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observed in plotted figures. In continue, we will see that the iteration is conditional

stable.

Figure 1. The behavior of iteration (14) for a = 1 and a = 2.

It is remarkable that the initial guess is important in convergency of the iteration.

In our computation we use the following initial matrices as indicated in serval

references like[12–14, 16]:

X0 =
A∗

∥A∥1∥A∥∞
, (13)

and

X0 =
A∗

tr(AA∗)
, (14)

where W ∗ is conjugate transpose of the matrix W .

Remark 2.3 If ρ(A) > 1, then B = A/∥A∥ can be substituted. In this case, it is

clear that ρ(B) ⩽ 1.

Subsequently, we can obtain the matrix sequence {Rk}∞k=1 as following.

Algorithm (I). Let A ∈ Cn×n and B = A/∥A∥. The iterative method for

computing inverse of A with ρ(A) > 1 can be stated as:

R0 = I,

Rk+1 = Rk

(
4I − 6(ARk) + 4(ARk)

2 − (ARk)
3
)
,

Xk = ∥A∥Rk.

In Algorithm (I), it is clear that limk→∞Rk = B−1, and limk→∞Xk = A−1. We

then have

∥Xk+1 −A−1∥ = ∥A∥.∥Rk+1 −B−1∥ = O(∥Xk −A−1∥4), (15)

where O denotes big O. Notice that the matrix B could also be proposed by

B = A/ρ(A) if ρ(A) is available. Since ρ(A) ⩽ ∥A∥, it is more appropriate that the
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upper bound ∥A∥ will be considered. Now, we are interested to know that whether

the iterations in Algorithm (I) are stable or not First we give the following theorem.

Theorem 2.4 The sequence {Xk}∞k=1 introduced in Algorithm (I) is conditionally

stable.

Proof The proof would be done based on strategy which applied in [5, 7]. It is

hence omitted. ■

According to Theorem 2.1, it was seen that the proposed scheme has turn out to

be stable whenever A is ill-conditioned or the size of the input matrix A is large.

For solving this issue, two stable and convergent iterations will be proposed by

employing matrix auxiliary variables in the next section.

3. The alternative coupled stable iterative methods

In this section, new stable variant of iterative method for computing the matrix

inversion will be introduced. For this purpose, we first consider an auxiliary vari-

able in the form Mk = AXk. It can be easily shown that limk→∞Xk = I and

limk→∞Mk = A. Furthermore, each matrices Xk, Mk, and A commutes with the

others. Now, the new variant of the matrix iterations are obtained as following:

Xk+1 = Xk

(
4I − 6(AXk) + 4(AXk)

2 − (AXk)
3
)

= Xk (4I −AXk(6I −AXk(4I −AXk)))

= Xk (4I −Mk(6I −Mk(4I −Mk))) ,

and

Mk+1 = AXk+1

= AXk (4I −Mk(6I −Mk(4I −Mk)))

= Mk (4I −Mk(6I −Mk(4I −Mk))) .

Consequently, the following algorithm will be given.

Algorithm (II). Let A ∈ Cn×n. The coupled iterative method for comput-

ing the matrix inversion is defined by the recursive relation

X0 = I, M0 = A

Xk+1 = Xk (4I −Mk(6I −Mk(4I −Mk))) ,

Mk+1 = Mk (4I −Mk(6I −Mk(4I −Mk))) .
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In Algorithm (II), it is straightforward that whenever limk→∞Xk = A−1,

then limk→∞Mk = In.

In this part, we present stability analysis of the coupled iteration for comput-

ing matrix inversion. According to [2], an iteration Xk+1 = g(Xk) is stable in a

neighborhood of a solution X = g(X), if the error matrices Ek = Xk −X satisfy

Ek+1 = L(Ek) +O(∥Ek∥2), (16)

where L is a linear operator with bounded powers. In other words, there exist

a constant ε > 0 such that for all k > 0 and an arbitrary unit norm, we have

Lk(E) < ε. This means small perturbation introduced in a certain step will not be

amplified in the subsequent iterations. Thus, we give the following theorem.

Theorem 3.1 The sequences {Xk}∞k=1 and {Mk}∞k=1 in Algorithm (II) are stable.

Proof Consider the iterations in Algorithm (II) and introduce the error matrices

Ek = Xk − A−1 and Fk = Mk − I. For the sake of simplicity, we perform a first

order error analysis and we remove all the terms that are quadratic in the errors.

Assume equality up to second order terms is denoted with the symbol ≊. Thus,

from Mk = I + Fk, one has

Ek+1 = Xk+1 −A−1

= Xk (4I − (I + Fk)(6I − (I + Fk)(4I − (I + Fk))))−A−1

= Xk (4I − (3I + Fk)(3I + 2Fk))−A−1

≊ Xk (4I − (3I + Fk))−A−1

= Xk (I − Fk)−A−1

= Xk +XkFk −A−1

= Ek −XkFk.
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Furthermore, we yield

Fk+1 = Mk+1 − I

= Mk (4I −Mk(6I −Mk(4I −Mk)))− I

≊ (I + Fk)(I − Fk)− I

= I − F 2
k − I

= −F 2
k .

In conclusion, it can be written(
Ek+1

Fk+1

)
=

(
I −Xk

0 0

)(
Ek

Fk

)
= L

(
Ek

Fk

)
. (17)

The coefficient matrix L is idempotent (L2 = L) and hence has bounded powers.

Thus the proposed iterations are stable. ■

Once again if ρ(A) > 1, therefore the substitution B = A/∥A∥ can be applied.

Hence, we propose the following.

Algorithm (III). Let A ∈ Cn×n and B = A/∥A∥. The stable coupled it-

erative method for computing the inversion of A is expressed as follows:

R0 = I, M0 = A

Rk+1 = Rk (4I −Mk(6I −Mk(4I −Mk)))

Mk+1 = Mk (4I −Mk(6I −Mk(4I −Mk)))

Xk = ∥A∥.Rk.

In Algorithm (III), it is apparent that limk→∞Rk = B−1, limk→∞Xk = A−1.

Thus, the matrix inversion can be computed efficiently.

4. Numerical examples

In this section, we support the theory which has been developed so far with sev-

eral numerical implementations. All experiments have been carried out by using

MATLAB (R2018b). In addition, the accuracy is measured by means of the size

of:

Ek(X̂) =
∥AX̂k − I∥F

∥A∥F
< 10−16, (18)

whenever X̂ is the computed inverse of A and ∥ · ∥F is Frobenius norm.
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Test 1. The first example is made considering n × n lower bidiagonal ma-

trices defined as

A =



1
x1

− 1
x1

1
x2

. . .
. . .

− 1
xn−1

1
xn−1

− 1
xn

1
xn


n×n

,

whereas, x = (x1, · · · , xn)t ∈ Rn and xn > 0 for i = 1, · · · , n. The inverse of the

matrix which hs pretty form will be obtain analytically by induction as follows:

A−1 =


x1

x2 x2

x3 x3 x3
...

...
...

. . .

xn xn xn · · · xn


n×n

.

Now, considering the vectors x = (1, 2, · · · , 5)t, x = (1, 2, · · · , 10)t, and x =

(1, 2, · · · , 40)t the inverse of A is computed via using the proposed iterations and it

is compared by other approaches. The residual errors and number of iterations are

measured and reported in Table 1. It should be noted that in spite of we have used

double precision arithmetic precision, we present error by short form. According to

the results, we can see that the Algorithm (III) has very accurate advantage with

less number of iterations in comparison other methods.

Table 1. Comparison errors and iterations in Test 1.

n = 5 n = 10 n = 40

Method Iter. Err. Iter. Err. Iter. Err.

Iteration 1.4 7 4.4251e-16 11 8.2214e-16 14 8.8543e-16

Iteration 1.5 5 1.2730e-16 7 4.5801e-16 9 7.5635e-16

Algorithm I. 5 1.1232e-16 7 3.2543e-16 9 4.2596e-16

Algorithm II. 4 1.2416e-16 6 2.4563e-16 8 3.2486e-16

Algorithm III. 4 1.2314e-16 6 2.4186e-16 8 3.1873e-16

Test 2. In this example, a particular tridiagonal matrix is assumed in order to

compute the inversion. Let us consider
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A =


1 + a

a−b −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1


n×n

,

where a > 0 and b > 0. The general form of the inversion of this matrix is given

by A−1 = 1
aB, whenever B is defined for i, j = 1, 2, · · · , n as

B = (bij) = min
0⩽i,j⩽n

{ai− b, aj − b} .

In order to tackle the computation of inversion, we assumed the values of a = 2

and b = 1 for several values of n by using Algorithm III. Here, we measure the

residual error and the number of iteration. The results are demonstrated in Table

2. According to this table, it can easily be seen that by increasing the dimension,

the number of iteration should be enhanced to achieve favorable accuracy.

Table 2. Comparison errors and iterations in Test 2.

n = 10 n = 20 n = 30

Method Iter. Err. Iter. Err. Iter. Err.

Iteration 1.4 9 7.3562e-16 11 8.1536e-16 13 8.7893e-16

Iteration 1.5 7 5.4536e-16 8 6.2874e-16 9 7.1586e-16

Algorithm I. 7 5.2673e-16 8 6.2419e-16 9 7.5781e-16

Algorithm II. 6 3.1452e-16 7 4.1569e-16 8 5.2541e-16

Algorithm III. 6 3.1268e-16 7 4.1198e-16 8 5.1458e-16

5. Conclusions

In this paper, a particular root finding approach applied to derive an iterative

scheme for computing matrix inversion. The stability issue of the iteration has

been solved by using auxiliary variables. Moreover, for some matrices with

large spectral radios, the normalization of matrices is considered for circling the

eigenvalues. Numerical implementations reveal that the stable coupled method

can compute inversion with good accuracy without using the matrix A directly.
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[13] F. Soleymani and P. S. Stanimirović, A higher order iterative method for computing the Drazin

inverse, The ScientificWorld Journal, 2013 (2013), Article ID 708647, doi:10.1155/2013/708647.

[14] F. Soleymani, S. Shateyi and F. Khaksar Haghani, A numerical method for computing the prin-

cipal square root of a matrix, Abstract and Applied Analysis, 2014 (2014), Article ID 525087,

doi:10.1155/2014/525087.
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