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Abstract. This paper deals with a two-warehouse inventory model for deteriorating items with 
time dependent demand and partial backlogging under inflation. It is assumed that deterioration of 
items follows two-parameter Weibull distribution and demand rate varies exponentially with time. 
Shortages are allowed and partial backlogging depends on waiting time of next replenishment.  A 
numerical example is provided to illustrate the considered model. Further, sensitivity analysis has 
also been made to show the behavior of the present model. 
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1. Introduction 

Deterioration of items is one of the key factors whose impact on inventory control 
problems cannot be ignored. Deterioration is defined as decay, spoilage pilferage and loss 
of utility that results in decreasing usefulness from original one. Food items, 
pharmaceuticals, fashionable goods are few examples of the items in which appreciable 
deterioration can take place during the normal storage period and consequently this loss 
must be taken into account while analyzing the model. A considerable amount of literature 
is available regarding inventory models for deteriorating items. Goswami and Chaudhuri 
[10] presented an EOQ model for deteriorating items considering linear trend in demand. 
Pal et al. [27] developed an inventory model for deteriorating items with stock dependent 
demand. Wee [44] studied a deterministic lot-size inventory model for deteriorating items 
with shortages and a declining market. Mandal and Maiti [22] considered inventory model 
for deteriorating items with stock dependent demand and shortages. Gupta and Aggarwal 
[11] analyzed an inventory model assuming time dependent deterioration rate. Sana and 
Chaudhuri [32] proposed an economic production lot size inventory model for 
deteriorating items with shortages and variable production rate assuming demand varying 
linearly with time. Ghosh and Chaudhuri [8] discussed an order level inventory model  
with shortages assuming deterioration following Weibull distribution and demand varying 
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quadratically with time. Deng et al. [5] presented a note on the inventory models for 
deteriorating items with ramp type demand. He et al. [14] analyzed inventory models for 
deteriorating items considering the demand rate as a function of the on-hand inventory. 
Dye and Hsieh [7] discussed an optimal replenishment policy for deteriorating items with 
effective investment in preservation technology. Recently, Chauhan and Singh [2] 
developed an inventory model for deteriorating items to reflect the real situation of market 
for time dependent demand. Inventory model for deteriorating items with stock dependent 
demand has been analyzed by Tyagi et al. [43] taking variable holding cost and Goel et al. 
[9]considering shortages. Singh et al. [38] studied an EPQ model for non- instantaneous 
deteriorating items with demand dependent production rate.  They discussed two cases: 
for the first case, lifetime of produced item was greater than the production stopping time 
point and for the second case, the lifetime of produced item was less than the production 
stopping time point.  

Most of the inventory models unrealistically assume that during stock-out either all 
demand is backlogged or all is lost. In reality, often some customers are ready to wait until 
replenishment, especially if the waiting time is to be short, while others are more impatient 
and go elsewhere. Keeping this in view, Wee [45] proposed inventory models for 
deteriorating items with partial backlogging. Papachristos and Skouri [28] presented a 
partially backlogged inventory model for deteriorating items assuming that the 
backlogging rate decreases exponentially as the waiting time increases. Skouri and  
Papachristos [40] analyzed an inventory model for deteriorating items with time varying 
demand, linear replenishment cost and partial backlogging depending upon time. Zhou et 
al. [51] presented an inventory model considering time dependent demand and partial 
backlogging. Skouri et al. [41] developed an inventory model with ramp type demand and 
partial backlogging of the unsatisfied demand for deteriorating items. Sharma and Singh 
[35] analyzed an inventory model with partial backlogging for deteriorating items 
assuming stock and selling price dependent demand rate in fuzzy environment. Mishra et 
al. [23] discussed an inventory model for time dependent deterioration, demand and holing 
cost with partial backlogging. Taleizadeh and Pentico [42] developed an EOQ model with 
all units discount and partial backlogging at constant rate. Dutta and Kumar [3] presented 
an inventory model assuming time varying demand and holding cost with partial 
backlogging. Sangal et al. [33] discussed an inventory model with partial backlogging 
under the effect of fuzzy environment. Rastogi et al. [30] analyzed an inventory model for 
deteriorating items with price dependent demand, partial backlogging, credit limit policy 
and cash discount having time varying holding cost. Singh et al. [38] presented a 
production inventory model for deteriorating items with time dependent demand rate and 
demand dependent production rate assuming that shortages are allowed and partially 
backlogged. 

The classical inventory models usually assume that the available warehouse has 
unlimited capacity. But in practice, the capacity of any warehouse is limited. In many 
practical situations, there exist many factors like temporary price discounts making 
retailers buy more goods than the capacity of own warehouse (OW). In this case, retailers 
will either rent other warehouses or construct new warehouses. However, from economical 
point of view, it is usually opted to rent one or more other warehouses known as rented 
warehouses (RW). The idea of two-warehouse inventory systems was proposed by Hartely 
[13] but gained wide popularity in last decade of 20th century. Pakkala and Achary [26] 
studied the two-warehouse inventory model for deteriorating items with finite 
replenishment rate and shortages. Zhou [50] presented a two-warehouse model for 
deteriorating items with time-varying demand and shortages during the finite planning 
horizon. Lee and Ying [19] developed an optimal inventory policy for two-warehouse 
inventory model for deteriorating items with time dependent demand. Zhou and Yang [52] 
analyzed a two-warehouse inventory model with stock dependent demand.  Lee [19] 
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discussed an inventory model for two-warehouse for deteriorating items under FIFO 
dispatching policy. Rong et al. [31] considered a two-warehouse inventory model for 
deteriorating items with partially and fully backlogged shortages in fuzzy environment. 
Lee and Hsu [20] presented the two-warehouse production model for deteriorating items 
with time dependent demand. Panda et al. [25] developed the two-warehouse inventory 
models with price and stock dependent demand for the single vendor and multiple retailers. 
Maity [21] studied two-warehouse production inventory problem under fuzzy inequality 
constraints. Dem and Singh [4] discussed two-warehouse inventory systems for EPQ 
model with quality consideration. Further, Sharma et al. [36] considered the production 
model for different demands in a two-warehouse inventory system. Recently, Ranjan and 
Uthayakumar [29] presented a two-warehouse inventory model for deteriorating items 
with permissible delay considering demand increasing exponentially with time. Kumar et 
al. [17] developed two-warehouse inventory model for non-instantaneous deteriorating 
items with stock-dependent demand to determined optimal replenishment policy. 

The effects of inflation and the time value of money cannot be ignored in determining 
inventory policies. Buzacott [1] was the first researcher to include the concept of inflation 
in inventory modelling. He developed a minimum cost model for a single item inventory 
with inflation. In the last few years, many researchers developed inventory models for 
single warehouse and two-warehouses considering effects of inflation and time value of 
money. Sarker and Pan [34] assumed a finite replenishment model and analyzed the effects 
of inflation and time-value of money on order quantity when shortages are allowed. Hariga 
[12] analyzed the effects of inflation and time-value of money on an inventory model with 
shortages and time-dependent demand. Moon and Lee [24] discussed an EOQ model with 
the effects of inflation and time value of money. The effect of inflation in two-warehouse 
inventory models was first investigated by Yang [49] for deteriorating items with constant 
demand and shortages. Wee et al. [46] developed two-warehouse inventory model for 
deteriorating items assuming constant demand rate with constant partial backlogging 
under effect of inflation. Yang [47] discussed two- warehouse inventory models for 
deteriorating items considering partial backlogging and effect of inflation. Dey et al. [7] 
analyzed two-warehouse inventory problems with inflation. Jaggi and Verma [15] 
developed a two-warehouse inventory model for deteriorating items with linear trend in 
demand under the inflationary conditions considering constant deterioration rate for both 
warehouses. Singh et al. [37] discussed a production model with selling price dependent 
demand and partial backlogging under inflation. Yang and Chang [48] discussed 
two-warehouse inventory model for deteriorating items assuming partial backlogging and 
permissible delay in payment under inflation. Khurana [16] developed the two-warehouse 
inventory model for deteriorating items assuming time dependent demand under inflation. 
Singh et al. [39] analyzed inventory model for deteriorating items with multivariate 
demands in different phases, partial backlogging and inflation. 

This paper analyzes a two-warehouse inventory model for deteriorating items with time 
varying demand and partial backlogging under inflation. The rates of deterioration in both 
warehouses are different and follow a two-parameter Weibull distribution. The demand 
has been assumed to be exponential function of time. Shortages have been assumed to be 
exponential function of time and are partially backlogged. A numerical example has been 
considered to illustrate the model. Further, the effect of various parameters such as 
deterioration parameters, inflation parameter, backlogging parameter and capacity of own 
warehouse on present value of total cost per unit time has been investigated. Convexity of 
the present value of total cost per unit time has been revealed graphically. 
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2. Assumptions and notations 

To develop the mathematical model of the inventory system considered herein, the 
following assumptions have been made: 
1. The inventory system involves only one item. 
2. Deterioration of the items follows a two-parameter Weibull distribution. 
3. Deterioration occurs as soon as items are received into inventory. 
4. There is no replacement or repair of deteriorating items during the period under 

consideration. 
5. Own warehouse has fixed capacity of W units, while rented warehouse has unlimited 

capacity.  
6. The holding cost in RW is higher than that in OW. 
7. Lead-time is zero and initial inventory level is zero. 
8. The replenishment rate is infinite. 
9. Demand rate is known and is equal to aebt, where a and b (a > b) are constants. 
10. Shortages are allowed and backlogging rate is .te δ−  The backlogging parameter δ  is 

positive constant and 0 < δ << 1. 
11. Inflation is considered. 
12. 1T  is time for holding inventory in RW and 1 2T T+  is time for holding inventory in 

OW. Also 3T  is time when shortages occur in OW. 
13. ( )i iI t  is inventory level in OW at time it , 0 , 1,2,3i it T i≤ ≤ = and 1( )rI t  is inventory 

level in RW at time 1t , 1 10 t T≤ ≤ . 

In addition, the following notations have been used throughout the paper, 
W  Capacity of OW 
Ir Maximum inventory level in RW 

,α β  Deterioration parameter for OW 
,g h  Deterioration parameter for RW 

r  Inflation parameter 
c Purchasing cost per item  

oc  Ordering cost per order 

ohc  Holding cost per item per unit time in OW  

rhc  Holding cost per item per unit time in RW  

3. Network system 

The OW inventory system has been shown in Figure 1 and can be divided into three phases 
depicted by T1 to T3. Figure 2 shows the RW inventory system. First W units of items are 
stored in the OW and then rest are dispatched to the RW. Therefore RW is utilized only 
after OW is full, but stocks in RW are consumed first. Stock in the RW depletes due to 
demand and deterioration until it reaches zero at 1t T= . During that time, the inventory in 
OW decreases due to deterioration only. The stock in OW depletes due to the combined 
effect of demand and deterioration during time T2. Both warehouses are empty during the 
shortage time 3T  and part of the shortage is backlogged in the next replenishment. 
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Figure 1. The OW inventory system.  
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Figure 2. The RW inventory system. 

OW inventory system can be represented by the following differential equations: 

( )11 1
1 1 1 1 1

1

( ) , 0 ,βdI t α β t I t t T
dt

−= − ≤ ≤  (1) 

( )2 12 2
2 2 2 2 2
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( ) 33 33 3
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with boundary conditions  I1(0) = W, I1(T1) = I2(0) and I3(0) = 0. The solution of 

differential equations (1), (2) and (3) leads to   
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The RW inventory system can be represented by the following differential equation:               

( )1 11
1 1 1 1

1

( ) , 0 ,bt hr
r

dI t ae ght I t t T
dt

−= − − ≤ ≤  (7) 

with boundary condition Ir(0) = Ir . The solution of differential equation (7) provides 
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The present value of OW shortage cost  
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 The present value of RW holding cost  
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The present value of RW item cost  
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The present value of total cost per unit time during the cycle 
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(16) 

The present value of total cost per unit time TUC is a function of T1, T2 and T3. The 
objective of the problem is to determine the values of T1, T2 and T3, which minimize TUC. 
The necessary conditions for minimization of TUC are  

1 2 3
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T T T
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= = =
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The sufficient condition of minimization of total cost per unit time is that TUC is 
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The simultaneous equations (17) can be solved to obtain the values of T1, T2 and T3. The 

optimal values of T1, T2 and T3 are those values of T1, T2 and T3, which satisfy equation (18) 
or for which TUC is a convex function. Substituting these optimal values in equation (16), 
the optimal present value of TUC is obtained. 

4. Numerical Results  

By using the methodology given in the preceding section an optimal replenishment policy 
has been derived to minimize the present value of total cost per unit time. The values of 
various parameters have been taken from literature in their appropriate units. 

Example  

The input data for parameters are taken as 
a = 1000, b = 0.4, co = 100, coh = 3, crh = 4.8, cs = 30, cl = 18, c = 20, r = 0.08, W = 150,          
δ = 0.05, α = 0.08, β = 1.9, g = 0.04 and h = 0.9.  

By using MATHEMATICA 8.0, the optimal values of T1, T2, T3 and TUC have been 
obtained and are:  
T1* = 2.12829, T2* = 4.51428, T3* = 6.07156 and TUC* = 16106.7. 

It is not possible to demonstrate the convexity of total cost per unit time by theoretical 
results because equation (18) is highly nonlinear function of decision variables. Therefore, 
the convexity of the total cost per unit time with respect to decision variables has been 
shown graphically in figures .3-5.   

                               
Figure 3. Convexity of total cost per unit time TUC for *

1 2.12829T =  

 
Figure 4.  Convexity of total cost per unit time TUC for *

2 4.51428T = . 
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Figure 5. Convexity of total cost per unit time TUC for *

3 6.07156T = .                           

5.  Sensitivity analysis  

The sensitivity analysis has been performed to study how the changes in parameters affect 
the optimal solution. The optimal values T1*, T2*, T3* and TUC* for T1, T2, T3 and TUC, 
respectively, have been obtained for example give above. The new optimal values T10, T20, 
T30 and TUC0 for T1, T2, T3 and TUC, respectively, have been obtained by changing the 
values of one of  model parameters, W, δ, r, α, β, g and h by +10% and +20%, at a time 
and  keeping the remaining parameters unchanged. The percentage change in 1 2 3, ,T T T  

and TUC is given by 
** *

3 31 1 2 2
* * *

1 2 3

100, 100, 100
oo o T TT T T T

T T T
−− −

× × ×  and

0 *

* 100TUC TUC
TUC
−

× , respectively. The results of the sensitivity analysis have been 

presented in Tables 1 to 7. 

Table 1. Percentage changes in * * *
1 2 3, ,T T T  and *TUC  when W varies. 

W T10 T20 T30 TUC0 
% 

change 
in *

1T  

% 
change 
in *

2T  

% 
change 
in *

3T  

% change  
in *TUC  

120 2.12972 4.50458 6.08112 16153.2 0.0672 0.2149 0.1575 0.2887 
135 2.12900 4.50943 6.07634 16130.1 0.0334 0.1074 0.0787 0.1453 
165 2.12759 4.51912 6.06677 16083.3 0.0329 0.1072 0.0789 0.1453 
180 2.12689 4.52397 6.06192 16057.9 0.0658 0.2147 0.1588 0.3030 

Table 2. Percentage changes in * * *
1 2 3, ,T T T  and *TUC  when δ  varies. 

δ  T10 T20 T30 TUC0 
% 

change 
in *

1T  

% 
change 
in *

2T  

% 
change 
in *

3T  

% change  
in *TUC  

0.040 2.04115 4.49902 6.00763 15859.6 4.0944 0.3380 1.0529 1.5341 
0.045 2.08456 4.50663 6.03952 15982.9 2.0547 0.1695 0.5277 0.7686 
0.055 2.17234 4.52197 6.10375 16231.1 2.0697 0.1703 0.5302 0.7723 
0.060 2.21671 4.52971 6.13609 16356.0 4.1545 0.3418 1.0628 1.5478 
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Table 3. Percentage changes in * * *
1 2 3, ,T T T  and *TUC  when r varies. 

r  T10 T20 T30 TUC0 
% 

change 
in *

1T  

% 
change 
in *

2T  

% 
change 
in *

3T  

%   
change  

in *TUC  
0.064 3.41582 4.86137 8.11681 22884.4 60.4960 7.6887 33.6857 42.0800 
0.072 2.69911 4.67100 6.95645 19063.8 26.8206 3.4716 14.5743 18.3594 
0.088 1.66170 4.38282 5.37676 13736.3 21.9232 2.9121 11.4435 14.7169 
0.096 1.27229 4.27092 4.81836 11780.8 40.2201 5.3909 20.6405 26.8578 

Table 4. Percentage changes in * * *
1 2 3, ,T T T  and *TUC  when α  varies. 

α  T10 T20 T30 TUC0 
% change 

in *
1T  

% 
change 
in *

2T  

% 
change 
in *

3T  

% 
change 

in 
*TUC  

0.064 1.91389 4.82395 5.96146 14648.2 10.0738 6.8598 1.8134 9.0552 
0.072 2.02868 4.65848 6.02002 15428.3 4.6803 3.1943 0.8489 4.2119 
0.088 2.21611 4.38684 6.11738 16705.0 4.1263 2.8230 0.7547 3.7146 
0.096 2.29450 4.27293 6.15845 17238.6 7.8096 5.3464 1.4311 7.0275 

Table 5. Percentage changes in * * *
1 2 3, ,T T T  and *TUC  when β  varies. 

β  T10 T20 T30 TUC0 
% 

change in 
*

1T  

% 
change in 

*
2T  

% 
change 
in *

3T  

%   
change in 

*TUC  
1.52 1.33965 5.62494 5.69955 11682.3 37.0551 24.6033 6.1271 27.4693 
1.71 1.79033 4.99874 5.90225 14157.7 15.8794 10.7317 2.7886 12.1006 
2.09 2.39490 4.12802 6.20992 17677.5 12.5270 8.5564 2.2788 9.7525 
2.28 2.61411 3.81314 6.32059 18963.3 22.8268 15.5316 4.1016 17.7355 

Table 6. Percentage changes in * * *
1 2 3, ,T T T  and *TUC  when g  varies. 

g  T10 T20 T30 TUC0 
% 

change 
in *

1T  

% 
change 
in *

2T  

% 
change 
in *

3T  

%   
change 

in 
*TUC  

0.032 2.13598 4.51216 6.06512 16079.2 0.3613 0.0470 0.1061 0.1707 
0.036 2.13212 4.51322 6.06835 16093.0 0.1800 0.0235 0.0529 0.0851 
0.044 2.12450 4.51532 6.07474 16120.4 0.1781 0.0230 0.0524 0.0851 
0.048 2.12074 4.51635 6.07790 16134.0 0.3547 0.0459 0.1044 0.1695 

Table 7. Percentage changes in * * *
1 2 3, ,T T T  and *TUC  when h  varies. 

h  T10 T20 T30 TUC0 
% 

change 
in *

1T  

% 
change 
in *

2T  

% 
change 
in *

3T  

%   
change in 

*TUC  
0.72 2.12884 4.51413 6.07111 16107.0 0.0258 0.0033 0.0074 0.0019 
0.81 2.12857 4.51420 6.07133 16106.8 0.0132 0.0018 0.0038 0.0006 
1.08 2.12802 4.51435 6.07179 16106.6 0.0127 0.0016 0.0038 0.0006 
1.18 2.12774 4.51443 6.07202 16106.5 0.0258 0.0033 0.0076 0.0012 
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The main conclusions drawn from the sensitivity analysis are as follow: 
 
(1) Table 1 presents the values of percentage changes in * * *

1 2 3, ,T T T  and *TUC  with 

respect to capacity of own warehouse W. It is seen that * * *
1 2 3, ,T T T  and TUC  

are very less sensitive to changes in W. The values of percentage changes in 
* * *

1 2 3, ,T T T  and *TUC with respect to inflation parameter δ  have been 

presented in Table 2. It is revealed that *
1T  is fairly sensitive, while *

2T  is very 

less sensitive to changes in .δ  Moreover, *
3T  and *TUC are less sensitive to 

changes in .δ  Table 3 reflects the values of percentage changes in  * * *
1 2 3, ,T T T  

and *TUC with respect to inflation parameter .r  It is observed that * *
1 3,T T and  

*TUC are highly sensitive, while *
2T  is fairly sensitive to changes in .r   

(2) Tables 4 and 5 show the values of percentage changes in * * *
1 2 3, ,T T T  and *TUC  

with respect to deterioration parameters for own warehouses α  and β , 

respectively. It is found that * *
1 2,T T  and *TUC are fairly sensitive, whereas, *

3T  

is less sensitive to changes in .α  In addition, * *
1 2,T T and *TUC are highly 

sensitive, while *
3T  is fairly sensitive to changes in .β  Tables 6 and 7 exhibit the 

values of percentage changes in * * *
1 2 3, ,T T T  and *TUC with respect to 

deterioration parameters for rented warehouse g  and h ,  respectively. It is 

seen that * * *
1 2 3, ,T T T  and *TUC  are very less sensitive to changes in g and .h   

 
The variation of total cost per unit time TUC is analysed graphically in Figures 6-12. 

Graphs have been plotted for various values of parameters to determine the effect of these 
parameters on total cost per unit time.  

 

Figure 6. Variation of TUC w.r.t. capacity of own warehouse W. 
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Figure 7. Variation of TUC w.r.t. change in backlogging parameter δ . 

 
Figure 8. Variation of TUC w.r.t. change in inflation parameter r . 

 
Figure 9. Variation of TUC w.r.t. change in deterioration parameterα                                    

for own warehouse. 
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Figure 10. Variation of TUC w.r.t. change in deterioration parameter β                                  

for own warehouse. 

 
Figure 11. Variation of TUC w.r.t. change in deterioration parameter g                                  

for rented warehouse. 

 

Figure 12. Variation of TUC w.r.t. change in deterioration parameter h  for rented 
warehouse. 
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Figure 6 depicts the effect of capacity of own warehouse W on total cost per unit time 

TUC for W = 120, 135, 165 and 180. It is observed that TUC decreases with increasing 
values of W, but the effect of W is very-very low. Figure 7 shows the effect of backlogging 
parameter δ  on total cost per unit time TUC  for 0.04, 0.045, 0.05, 0.055δ = and 0.06. 
It is found that TUC increases fairly by increasing .δ  The effect of inflation parameter r 
on total cost per unit time TUC for 0.064, 0.072, 0.088r = and 0.096 has been depicted by 
Figure 8. It is seen that TUC decreases rapidly with increase in inflation parameter r.  

Figures 9 and 10 present the graphs of TUC versus deterioration parameters of own 
warehouse α  and β , respectively. It is observed that there a considerable increase in 
total cost per unit time TUC with increase of values of α  and β . Figures 11 and 12 
reflect the variation of total cost per unit time TUC with respect to deterioration parameters 
g and h for rented warehouse. It is seen that TUC increases with increase in g, while TUC 
decreases by increasing h, but the effect of increase in g  is very-very low while that of h
is almost negligible. 

6. Conclusion 

In this study, a two-warehouse inventory model for deteriorating items with time 
dependent demand and partial backlogging under inflation has been analyzed. The holding 
cost at rented warehouse is higher as compared to own warehouse. The rates of 
deterioration in both warehouses are different and follow a two- parameter Weibull 
distribution. A numerical example has been discussed and optimal values of T1, T2, T3 and 
present value of total cost per unit time TUC have been obtained. Convexity of TUC has 
been shown graphically. Further, sensitivity analysis has also been performed. It has been 
observed that the present value of total cost per unit time TUC can be decreased by 
decreasing the values of backlogging parameter λ, deterioration parameters α and β of own 
warehouse and scale parameter of deterioration g of rented warehouse and by increasing 
capacity W of own warehouse, inflation parameter r and shape parameter of deterioration 
of rented warehouse. Further, r, α and β affect the present value of total cost per unit time 
reasonably, while W, λ and g do not affect much. The effect of shape parameter of 
deterioration h of RW is negligible. In future research, this model can be extended by 
considering fuzzy environment, trade credit and stock dependent demand. 
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