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Abstract. This paper presents the analysis of a continuous review perishable inventory sys-
tem wherein the life time of each item follows an exponential distribution. The operating
policy is (s, S) policy where the ordered items are received after a random time which follows
exponential distribution. Primary arrival follows Poisson distribution and they may turnout
to be positive or negative and then enter into the orbit. The orbiting demands compete their
service according to exponential distribution. The server takes multiple working vacations at
zero inventory. We assume that the vacation times, service times both during regular busy
period and vacation period are exponentially distributed. Matrix analytic method is used for
the steady state distribution of the model. Various performance measures and cost analysis
are shown with numerical results.
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1. Introduction

Many classic inventory models rely on the assumption that the lifetime of inventory
items is indefinitely long. However, real-life inventory systems can consist of perish-
able products, i.e., products with a finite lifetime like drugs and medical products,
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which become unusable after a given date. Some perishable products also deteri-
orate, i.e., their quality diminishes gradually over time. For example, vegetables,
food, meat and fish loose their luster as time elapses.

Clearly, an inventory management approach that ignores product perishability
and deterioration is likely to yield sub-optimal outcomes. A review of the liter-
ature on fixed time perishable and deteriorating inventory models was given by
Nahmias [7] and Raafat [12], respectively. Continuous and discrete perishable in-
ventory models have been studied recently by Baron et al. [1], Lawrence et al. [6]
and Nahmias [8].

Vacation queueing models have been investigated extensively in view of their
applications in computer systems, communication networks and production man-
aging. In a classical vacation queue, the server completely stops serving customers
and may do some additional work. Comprehensive surveys on inventory models
with server vacation can be found in Krishnamoorthy et al. [5], Narayanan et al.
[9], Sivakumar [16] and Jeganathan [2].

In working vacation (WV ) systems, instead of completely stopping the service,
the server is continuously serving the customers with lower service rate. The clas-
sical vacation model is a special case of the WV model with zero service rate
during vacation. Thus the WV model is a generalization of the classical vacation
model and it has more analytical complexity than the classical vacation model.
Kathiresan et al. [4] presented an inventory system with retrial demands and WV .
Jeganathan [3] extended the paper [4] with two types of customers, high priority
and low priority customers.

An important feature in inventory models is to specify what happens when the
arriving customer finds a system out of stock, i.e., the inventory on hand is zero.
Two classical situations are considered in the literature:

(1) Lost-sales case: The blocked customers who arrive during zero stock level
are lost.

(2) Backlog case: The customer arriving while the inventory system is out of
stock are backlogged and are satisfied as soon as an appropriate replenish-
ment occurs.

However, in some applications, the demands during the stock-out period go to
an orbit of unsatisfied customers and after a random amount of time, retry for
service. We can see such situations in various fields such as telecommunication and
computer networks. There are numerous studies on retrial inventory models by
several researches. Recently, Jeganathan [3] considered a retrial inventory system
with multiple working vacations and two types of customers. The retrial inventory
system with negative customers and service interruptions was studied by Vijaya
Laxmi and Soujanya [17]. They extended the paper [17] with perishable inventories
in Vijaya Laxmi and Soujanya [18].

In all the above models, the authors have considered that the arrival of cus-
tomers to the service station should join the system until it is full. However in
some applications the arriving customers, instead of joining the system, remove
some of the waiting customers from the system. This type of customer is called
negative customer. Research on inventory models with negative arrivals has been
greatly motivated by some practical applications in computers, neural networks
and communication networks, etc. Sivakumar and Arivarignan [14, 15] proposed
the concept of negative customers in an inventory model with finite and infinite
waiting line, respectively. Yadavalli et al. [19] considered a continuous perishable
inventory system with multi-server service facility and negative customers. A con-
tinuous review inventory system with an orbit of infinite size was proposed by
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Rajkumar [13]. He considered ordinary and negative customers and assumed that
the ordinary customer will renege from the orbit after a random time.

As a real life application, let us consider a mobile network. It is a known fact that
a subscriber who obtains a busy tone, repeats the call until the required connection
is established. This situation can be viewed as an example of retrial. And in many
situations the data will be transported in the form of packets through a shared
common channel. When the packet arrives for a sustained period at a given router
or network segment at a rate greater than it is possible to send through, then
there is no other option than to drop packets. This can be treated as an example
of perishability. In general every switching system of a mobile network will have
four important functions. They are event monitoring, call processing, charging,
operation & maintenance. If there is no traffic to handle a call, the switching system
will perform only the last function operation & maintenance and during this if any
call arrives, the switching system realizes the operation & maintenance function
at a lower rate and then it handles the traffic. This case can be considered as
an example of working vacation. Similarly, if a customer experiences a dropped or
discarded connection to the network very frequently, he may opt to go with another
network operator and he may also motivate another customer (for example, family
member in case of poor signals) to quit the existing network. This case can be
taken as an example of negative arrival.

Motivated by such situation, this paper focuses on perishable inventory model
with multiple working vacations (MWV ), negative customers and the backlogged
customers retry for service after a random amount of time. The operating policy is
(s, S) policy with exponential replenishment times for the ordered items. Customers
arrive according to Poisson process. Whenever the inventory level is zero, the server
goes for a WV . If the server is busy or at zero inventory, the primary arrival may
turnout to be positive or negative and enters into an orbit of infinite size. The
service times during busy period, service times during WV period, vacation times
and life times of inventory are exponentially distributed. Using matrix analytic
method, we obtain the steady state distribution of the model. Various performance
measures and cost analysis through direct search method are presented.

The rest of the paper is organized as follows. Section 2 and Section 3 present
the description and analysis of the model, respectively. Section 4 is devoted to
performance measures and cost analysis. Finally, the cost analysis is illustrated by
means of numerical examples in Section 5 followed by conclusion in Section 6.

2. Description of the model

Let us consider an (s, S) inventory system in which customers arrive according to
a Poisson process with rate λ. Life time of each item has exponential distribution
with rate γ. The system starts with S units of inventory on hand. Each arriving
customer is served a single unit of the item. When the inventory level reaches s,
an order is placed for Q (= S − s) units with an exponential replenishment rate η.
When the inventory level reaches to zero, the server leaves for a WV , the duration
of which is exponentially distributed with rate β. If the server finds an empty
stock at the end of a vacation, it takes another vacation immediately, otherwise;
it has to serve any arriving customers. The service times during regular period
and WV follow exponential distribution with parameters µb and µv, respectively.
If the server is busy or inventory level is zero, any arriving primary customer may
turns out to be positive with probability p or negative with probability q (= 1− p)
and enter into an orbit of infinite size. These orbiting customers compete for their
demands according to an exponential distribution with parameter iθ when the
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number of customers in the orbit is i. We also assume that the inter-dependent
times between the primary demands, the lead times, retrial demand times and
server vacation times are mutually independent random variables.

Notations:
e : A column vector of appropriate dimension containing all ones.
0 : A zero matrix of appropriate dimension.
[A]ij : The sub-matrix at (i, j)th position of A.

φ
(j)
N : The probability of N orbital demands at jth state of the server.

φ
(j)
N =

{
(Π

(j, 0)
N , . . . ,Π

(j, S)
N ), j = 0, 1;

(Π
(j, 1)
N , . . . ,Π

(j, S)
N ), j = 2, 3.

φ
(j,k)
N :

{
The probability of N demands in the orbit when the server is in
jth state and the inventory level is k.

ζ(t) =


0, The serve is idle in WV period at time t;
1, The serve is busy in WV period at time t;
2, The serve is idle in regular period at time t;
3, The serve is busy in regular period at time t.

Let N(t), ζ(t) and L(t) be the number of customers in the orbit, the status
of the server and the on-hand inventory level at time t, respectively. Then Ω =
{(N(t), ζ(t), L(t)), t > 0} is a level-dependent quasi-birth-death (LDQBD) process
on the state space E = {(i, j, k); i > 0, j = 0, 1, 0 6 k 6 S}

⋃
{(i, j, k); i > 1, j =

2, 3, 1 6 k 6 S}. Define the following ordered sets:

< i, j > =

{
((i, j, 0), (i, j, 1), . . . , (i, j, S)), j = 0, 1;
((i, j, 1), (i, j, 2), . . . , (i, j, S)), j = 2, 3.

< i > = ((< i, j >))j = 0, 1, 2, 3.

The state space can be ordered lexicographically (< 0 >, < 1 >, . . .). A typical
illustration of the transitions of the Markov chain E is given in Figure 1 and
its infinitesimal generator matrix T is a block tridiagonal matrix, which is of the
following form:

T =



<0> <1> <2> <3> ...

<0> A0 C 0 0 . . .
<1> B1 A1 C 0 . . .
<2> 0 B2 A2 C . . .
<3> 0 0 B3 A3 . . .

...
...

...
...

...
. . .

,

where the blocks C, Ai (i > 0) and Bi (i > 1) are square matrices, each of order
(4S + 2), they are give by

A0 =


<0, 0> <0, 1> <0, 2> <0, 3>

<0, 0> [A0]00 [A0]01 [A0]02 0
<0, 1> [A0]10 [A0]11 0 [A0]13

<0, 2> [A0]20 0 [A0]22 [A0]23

<0, 3> 0 [A0]31 0 [A0]33

,
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Figure 1. Transition diagram for the Markov chain E.

C =


<i, 0> <i, 1> <i, 2> <i, 3>

<i+1, 0> [C]00 0 0 0
<i+1, 1> 0 [C]11 0 0
<i+1, 2> 0 0 0 0
<i+1, 3> 0 0 0 [C]33

,

For i > 1,

Ai =


<i, 0> <i, 1> <i, 2> <i, 3>

<i, 0> [Ai]
00 [Ai]

01 [Ai]
02 0

<i, 1> [Ai]
10 [Ai]

11 0 [Ai]
13

<i, 2> 0 0 [Ai]
22 [Ai]

23

<i, 3> 0 [Ai]
31 0 [Ai]

33

,

Bi =


<i−1, 0> <i−1, 1> <i−1, 2> <i−1, 3>

<i, 0> [Bi]
00 0 0 0

<i, 1> 0 [Bi]
11 0 0

<i, 2> [Bi]
20 0 [Bi]

22 0
<i, 3> 0 0 0 [Bi]

33

,
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[[A0]00]kn =



−(pλ+ η), n = k, k = 0;
−(λ+ η + β + kγ), n = k, k = 1, 2, . . . , s;
−(λ+ β + kγ), n = k, k = s+ 1, . . . , S;

η, n = k +Q, k = 0, 1, . . . , s;
kγ, n = k − 1, k = 1, 2, . . . , S;
0, otherwise.

,

[[A0]11]kn =



−(pλ+ η), n = k, k = 0;
−(pλ+ η + β + µv + kγ), n = k, k = 1, 2, . . . , s;
−(pλ+ β + µv + kγ), n = k, k = s+ 1, . . . , S;

η, n = k +Q, k = 0, 1, . . . , s;
µv + kγ, n = k − 1, k = 2, 3, . . . , S;
0, otherwise.

,

[[A0]22]kn =


−(λ+ η + kγ), n = k, k = 1, 2, . . . , s;
−(λ+ kγ), n = k, k = s+ 1, . . . , S;

η, n = k +Q, k = 1, 2, . . . , s;
kγ, n = k − 1, k = 2, 3, . . . , S;
0, otherwise.

,

[[A0]33]kn =


−(pλ+ η + µb + kγ), n = k, k = 1, 2, . . . , s;
−(pλ+ µb + kγ), n = k, k = s+ 1, . . . , S;

η, n = k +Q, k = 1, 2, . . . , s;
µb + kγ, n = k − 1, k = 2, 3, . . . , S;
0, otherwise.

,

[[A0]01]kn = [[A0]23]kn =

{
λ, n = k, k = 1, 2, . . . , S;
0, otherwise.

,

[[A0]02]kn = [[A0]13]kn =

{
β, n = k, k = 1, 2, . . . , S;
0, otherwise.

,

[[A0]10]kn =

{
γ + µv, n = k − 1, k = 1;
0, otherwise.

,

[[A0]31]kn =

{
γ + µb, n = k − 1, k = 1;
0, otherwise.

,

[[A0]20]kn =

{
γ, n = k − 1, k = 1;
0, otherwise.

, [[C]00]kn =

{
pλ, n = k, k = 0;
0, otherwise.

,

[[C]11]kn =

{
pλ, n = k, k = 0, . . . , S;
0, otherwise.

,
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[[C]33]kn =

{
pλ, n = k, k = 1, . . . , S;
0, otherwise.

,

For i > 1,

[[Ai]
00]kn =



−(pλ+ qλ+ η), n = k, k = 0;
−(λ+ η + iθ + β + kγ), n = k, k = 1, 2, . . . , s;
−(λ+ iθ + β + kγ), n = k, k = s+ 1, . . . , S;

kγ, n = k − 1, k = 1, 2, . . . , S;
η, n = k +Q, k = 0, 1, . . . , s;
0, otherwise.

,

[[Ai]
11]kn =



−(pλ+ qλ+ η), n = k, k = 0;
−(pλ+ qλ+ η + β + µv + kγ), n = k, k = 1, 2, . . . , s;
−(pλ+ qλ+ β + µv + kγ), n = k, k = s+ 1, . . . , S;

η, n = k +Q, k = 0, 1, . . . , s;
µv + kγ, n = k − 1, k = 2, 3, . . . , S;
0, otherwise.

,

[[Ai]
22]kn =


−(λ+ η + iθ + kγ), n = k, k = 1, 2, . . . , s;
−(λ+ iθ + kγ), n = k, k = s+ 1, . . . , S;

kγ, n = k − 1, k = 2, 3, . . . , S;
η, n = k +Q, k = 1, 2, . . . , s;
0, otherwise.

,

[[Ai]
33]kn =


−(pλ+ qλ+ η + µb + kγ), n = k, k = 1, 2, . . . , s;
−(pλ+ qλ+ µb + kγ), n = k, k = s+ 1, . . . , S;

η, n = k +Q, k = 1, 2, . . . , s;
µb + kγ, n = k − 1, k = 2, 3, . . . , S;
0, otherwise.

,

[[Ai]
01] = [[A0]01], [[Ai]

02] = [[A0]02], [[Ai]
10] = [[A0]10], [[Ai]

13] = [[A0]13],

[[Ai]
20] = [[A0]20], [[Ai]

23] = [[A0]23], [[Ai]
31] = [[A0]31],

[[Bi]
00]kn =

 qλ, n = k, k = 0;
iθ, n = k − 1, k = 1, 2, . . . , S;
0, otherwise.

,

[[Bi]
11]kn =

{
qλ, n = k, k = 0, 1, . . . , S;
0, otherwise.

,

[[Bi]
20]kn =

{
iθ, n = k − 1, k = 1;
0, otherwise.

,
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[[Bi]
22]kn =

{
iθ, n = k − 1, k = 2, 3, . . . , S;
0, otherwise.

,

[[Bi]
33]kn =

{
qλ, n = k, k = 1, 2, . . . , S;
0, otherwise.

.

3. Steady state analysis

In this section, using matrix analytic method (for matrix analytic method, see
Neuts [10]), we perform the steady state analysis. First, we determine the stability
condition under which the irreducible Markov chain is positive recurrent which
guarantees the existence of steady state solution.

3.1 Stability condition

For investigating the stability condition of the system under study, first we apply
Neuts and Rao [11] truncation to the LIQBD. To this end suppose that Ai = AN
and Bi = BN , ∀ i > N. The generator matrix of the truncated system ΩN will
look as under:

TN =



<0> <1> <2> <3> ... <N−1> <N> <N+1> ...

<0> A0 C 0 0 . . . 0 0 0 . . .
<1> B1 A1 C 0 . . . 0 0 0 . . .
<2> 0 B2 A2 C . . . 0 0 0 . . .
<3> 0 0 B3 A3 . . . 0 0 0 . . .

...
...

...
...

...
...

...
...

...
...

<N−1> 0 0 0 0 . . . AN−1 C 0 . . .
<N> 0 0 0 0 . . . BN AN C . . .
<N+1> 0 0 0 0 . . . 0 BN AN . . .

...
...

...
...

...
...

...
...

...
. . .


.

Consider the generator matrix PN = BN +AN + C, which is given by

PN =


<i, 0> <i, 1> <i, 2> <i, 3>

<i, 0> [PN ]00 [PN ]01 [PN ]02 0
<i, 1> [PN ]10 [PN ]11 0 [PN ]13

<i, 2> [PN ]20 0 [PN ]22 [PN ]23

<i, 3> 0 [PN ]31 0 [PN ]33

,
where

[PN ]00 = [BN ]00 + [AN ]00 + [C]00, [PN ]01 = [AN ]01, [PN ]02 = [AN ]02,

[PN ]10 = [AN ]10, [PN ]11 = [BN ]11 + [AN ]11 + [C]11, [PN ]13 = [AN ]13,

[PN ]20 = [BN ]20, [PN ]22 = [BN ]22 + [AN ]22, [PN ]23 = [AN ]23,
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[PN ]31 = [AN ]31, [PN ]33 = [BN ]33 + [AN ]33 + [C]33.

Let φN = (φ
(0)
N , φ

(1)
N , φ

(2)
N , φ

(3)
N ) denote the steady state probability vector of PN ,

i.e., φNPN = 0 and φN e = 1. The elements of the vector φN can be given in the
following lemma.

Lemma 3.1 The vector φN corresponding to the generator PN is given by

φ
(j)
N = −φ(0)

N ϑ
(j)
N ; j = 1, 2, 3,

where,

ϑ
(1)
N = ([PN ]00 − [PN ]02([PN ]22)−1[PN ]20)([PN ]10)−1,

ϑ
(2)
N = [PN ]02([PN ]22)−1,

ϑ
(3)
N = ([PN ]01 − ([PN ]00 − [PN ]02([PN ]22)−1[PN ]20)([PN ]10)−1[PN ]11)([PN ]31)−1

and φ
(0)
N can be obtained by solving

φ
(0)
N

[
[PN ]00

(
([PN ]10)−1

(
[PN ]11([PN ]31)−1[PN ]33 − [PN ]13

))
− [PN ]01([PN ]31)−1[PN ]33 + [PN ]02([PN ]22)−1

(
[PN ]20

([PN ]10)−1

(
[PN ]13 − [PN ]11([PN ]31)−1[PN ]33

)
− [PN ]23

)]


= 0 (1)

and

φ
(0)
N

[
1− [PN ]00([PN ]10)−1

(
1− [PN ]11([PN ]31)−1

)
− [PN ]01

([PN ]31)−1− [PN ]02([PN ]22)−1

(
1 + [PN ]20(−1[PN ]10)(

1 + [PN ]11([PN ]31)−1

))]


= 1. (2)

Proof The equation φNPN = 0 yields the following set of equations.

φ
(0)
N [PN ]00 + φ

(1)
N [PN ]10 + φ

(2)
N [PN ]20 = 0, (3)

φ
(0)
N [PN ]01 + φ

(1)
N [PN ]11 + φ

(3)
N [PN ]31 = 0, (4)

φ
(0)
N [PN ]02 + φ

(2)
N [PN ]22 = 0, (5)

φ
(1)
N [PN ]13 + φ

(2)
N [PN ]23 + φ

(3)
N [PN ]33 = 0. (6)

The equations (3) to (5) can be recursively solved to get φ
(j)
N , j = 1, 2, 3, as stated

in Lemma 3.1. Now, substituting the values of ϑ
(j)
N in (6) and in the normalizing

condition φN e = 1 we get the constraints (1) and (2) to compute φ
(0)
N . �

The following result gives the stability condition.
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Lemma 3.2 The stability condition of the system under study is given by

(pλ− qλ) < (pλ− qλ+ θ) (φ
(0)
N − φ

(0,0)
N + φ

(2)
N ).

Proof From the well known result of Neuts [10] on the positive recurrence of PN ,
we have φNCe < φNBNe. Simplification of this yields the stated result. �

3.2 Computation of steady state vector

We find the steady state vector of Ω, by approximating it with the steady
state vector of the truncated system, ΩN with generator matrix PN . Let
Π(N) = (Π0,Π1,Π2, . . .), be the steady state vector of ΩN where each
Πi is a row vector consisting of 4S + 2 elements represented as Πi =
(Π(i, 0, 0), . . . ,Π(i, 0, S),Π(i, 1, 0), . . . ,Π(i, 1, S),Π(i, 2, 1), . . . ,Π(i, 2, S),Π(i, 3, 1),
. . . ,Π(i, 3, S)). From the known results of Matrix Analytic Methods (see Neuts
[10]), it follows that, ΠN+r = ΠN−1(RN )r+1, for r > 0, where RN is the minimal
non-negative solution of the matrix quadratic equation

(RN )2BN +RNAN + C = 0 and ΠN−i = ΠN−i−1RN−i, for 1 6 i 6 N − 1,

where RN−i = −C(AN−i + RN−i+1BN−i+1)−1. Now, for computing Π0, we have
the equation Π0(A0 + R1B1) = 0. First we take Π0 as the steady state vector
of the generator matrix A0 + R1B1. Then Πi, for 1 6 i 6 N − 1, can be found
using recursive formulae; Πi = Πi−1Ri. The steady state probability distribution
of the truncated system is then obtained by dividing each Πi, with the normalizing
constant

(Π0 + Π1 + Π2 + . . .)e = [Π0 + Π1 + . . .+ ΠN−2 + ΠN−1(I −Rn)−1]e.

4. System performance measures

In this section, we derive some performance measures of the system. Using these
measures we can construct the total expected cost per unit time.

(i) Expected inventory level : Since Π(i, j, k) is the steady state probability
vector for kth inventory level with each component specifying a particular
combination of number of customers in the orbit and the state of the server,
the expected inventory level (EIL) is given by

EIL =
∞∑
i=1

3∑
j=0

S∑
k=1

kΠ(i, j, k).

(ii) Expected reorder rate : Let EOR denote the expected reorder rate in
the steady state. A reorder is triggered when the inventory level drops to s
from the level s+ 1, due to any one of the following events:

• if the service of any one of the primary arrival is completed.
• if an inventory is perishable.
• if anyone of the customers in the orbit is selected.
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This leads to

EOR =


∑∞

i=0

[
µvπ(i, 1, s+ 1) + µbπ(i, 3, s+ 1)

]
+
∑∞

i=1 θ

[
π(i, 0, s+ 1)

+π(i, 2, s+ 1)

]
+
∑∞

i=1

∑3
j=0(s+ 1)γ Π(i, j, s+ 1).

(iii) Expected replenishment rate : The expected replenishment rate (ERR)
is given by

ERR =
∞∑
i=0

η

[ 1∑
j=0

s∑
k=0

Π(i, j, k) +
3∑
j=2

s∑
k=1

Π(i, j, k)

]
.

(iv) Expected failure rate : The expected failure rate (EFR) is given by

EFR =
∞∑
i=0

3∑
j=0

S∑
k=1

kγ Π(i, j, k).

(v) Mean rate of arrivals of negative customers : Let ENC denote the
mean arrival rate of negative customers. This is given by

ENC =
∞∑
i=1

qλΠ(i, 0, 0) +
∞∑
i=1

S∑
k=0

qλΠ(i, 1, k) +
∞∑
i=1

S∑
k=1

qλΠ(i, 3, k).

(vi) Expected number of customers in the orbit : Since Πi denote the
steady state probability when the number of customers in the orbit is i, the
expected number of customers in the orbit (ECO) is given by

ECO =
∞∑
i=1

[ 1∑
j=0

S∑
k=0

iΠ(i, j, k) +
3∑
j=2

S∑
k=1

iΠ(i, j, k)

]
.

(vii) Successful rate of retrials : Let SRR denote the successful rate of retrials
in the steady state. The orbiting customers receive their demands only when
the server is idle and there is an inventory. Hence SRR is given by

SRR =
∞∑
i=1

S∑
k=1

θ

[
Π(i, 0, k) + Π(i, 2, k)

]
.

(viii) Fraction of time the server is on vacation : The fraction of time the
server is on vacation (FSV ) is given by

FSV =

∞∑
i=0

1∑
j=0

S∑
k=0

Π(i, j, k).

4.1 Cost analysis

We develop a total expected cost function per unit time with an objective to
determine the optimum values of s and S so that the total cost is minimized. Let
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CS = Setup cost per order,

CH = Holding cost per unit item per unit time,

CN = Loss per unit time due to arrival of a negative customer,

CO = Waiting cost of a customer in the orbit per unit time,

CV = Fixed cost per unit time when the server is on vacation, and

CF = Failure cost per unit item unit time.
Based on the definitions of each cost element listed above and various perfor-

mance measures of the model, the total expected cost function per unit time is
defined as

TC(s, S) = CS EOR + CH EIL + CN ENC + COECO + CV FSV + CFEFR.

Substituting EOR, EIL, ENC , ECO, FSV and EFR in the above equation, we get

TC(s, S) =



CS

[∑∞
i=0[µvΠ(i, 1, s+ 1) + µbΠ(i, 3, s+ 1)] +

∑∞
i=1 θ[Π(i, 0, s+ 1)+

Π(i, 2, s+ 1)]

]
+ CH

∑∞
i=1

∑3
j=0

∑S
k=1 kΠ(i, j, k) + CN

[∑∞
i=1 qλ

Π(i, 0, 0) +
∑∞

i=1

∑S
k=0 qλΠ(i, 1, k) +

∑∞
i=1

∑S
k=1 qλΠ(i, 3, k)

]
+

CO
∑∞

i=1

[∑1
j=0

∑S
k=0 iΠ(i, j, k) +

∑3
j=2

∑S
k=1 iΠ(i, j, k)

]
+

CV
∑∞

i=0

∑1
j=0

∑S
k=0 Π(i, j, k) + CF

∑∞
i=0

∑3
j=0

∑S
k=1 kγΠ(i, j, k).

Due to the complex form of the limiting distribution, it is difficult to discuss the
properties of the cost function analytically. Here, we present the following numerical
examples to demonstrate the computability of the results derived in our work and
to illustrate the effect of the parameters on the main performance characteristics.

5. Numerical analysis

To demonstrate the applicability of the formulae obtained in the previous sections,
we present some numerical results in the form of tables and graphs. The various
parameters of the model are chosen as S = 10, s = 3, p = 0.7, q = 1 − p, λ =
5.0, µb = 15.0, µv = 10.0, θ = 6.0, η = 2.8, β = 1.3, γ = 3.4 and the cost values
are CS = 0.1, CH = 1.0, CN = 5.0, CO = 1.5, CV = 3.8 and CF = 1.8 unless
they are considered as variables in some graphs and tables.

Figure 2 shows the effect of perishable rate (γ) on the expected reorder rate
(EOR), expected failure rate (EFR) and the expected inventory level (EIL). As
depicted in the figure, it is evident that the expected inventory level decreases and
the expected failure rate increases as the perishable rate increases. It can also be
observed that expected reorder rate increases with the increase of perishable rate.
This is to say that, the inventory reaches the reordering point frequently due to
perishability.

The effect of arrival rate (λ) and vacation rate (β) on the expected number of
negative customers (ENC) is presented in Figure 3. We know that ENC increases
with λ and β. In case of vacation rate, if it increases, the server spends more time in
busy period and hence according to our assumptions in this model, some arriving
customer are turn out to be negative and enter into an orbit. This implies the rise
in ENC as shown in Figure 3. Figure 4 presents the effect of λ and θ on ECO. In
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Figure 2. Effect of γ on EOR, EFR and EIL.

Figure 3. Effect of λ and β on ENC .

Figure 4. Effect of λ and θ on ECO.

real life, we can expect an increase in the expected number of orbital customers
with the arrival rate and a decrease in it with the service rate. From Figure 4,
we can clearly observe the increase in ECO with λ and the decrease with θ. The
effect of θ and β on SRR is plotted in Figure 5. According to the assumptions we
consider in this paper, the successful retrial rate increases with the retrial rate and
decreases with the vacation rate as shown in Figure 5.

Figure 6 depicts the effect of service rates µb and µv on EIL, ENC , SRR and
ECO. From the figures it can be observed that as the service rates increases, the
expected inventory level, expected number of customers in the orbit and expected
number of negative customers decreases and successful retrial rate increases as it
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Figure 5. Effect of θ and β on SRR.

(a) (b)

(c) (d)

Figure 6. Effect of µb and µv on (a) EIL, (b) ENC , (c) SRR and (d) ECO.

should be. Moreover, in figures 6(b), 6(c) and 6(d), the effect of µv on ENC , SRR
and ECO is greater than the effect of µb. For the given parameters this highlights
that the working vacation policy can decrease the waiting time of a customer in
the queue and enhance the system efficiency. The optimal values of s and S that
minimize the total expected cost function TC(s, S) for different pairs of cost values
are shown in Table 1. One can see the following observations:

(1) The total expected cost increases with the increase of cost values according
to the definition of cost function. The optimal cost is more sensitive to CS
than to CH , CO, CN , CV and CF .

(2) As CH increases, the optimal values of s and S decrease monotonically.
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Table 1. The optimal values s∗, S∗ and TC(s∗, S∗) for different cost values

PPPPPPCH

CS 0.1 0.2 0.3 0.4

2.0 (2, 4) (2, 4) (2, 4) (2, 4)
6.31484 6.34397 6.37310 6.40223

3.0 (2, 4) (2, 4) (2, 4) (2, 4)
6.56011 6.58924 6.61837 6.64750

4.0 (1, 3) (1, 3) (1, 3) (1, 3)
6.85567 6.92608 6.99648 7.06689

5.0 (1, 3) (1, 3) (1, 3) (1, 3)
7.06305 7.13345 7.20386 7.27426

PPPPPPCN

CS 0.1 0.2 0.3 0.4

4.0 (2, 4) (2, 4) (2, 4) (2, 4)
5.95798 5.98711 6.06124 6.04537

5.0 (2, 4) (2, 4) (2, 4) (2, 4)
6.31484 6.34397 6.37310 6.40223

6.0 (1, 4) (2, 4) (2, 4) (2, 4)
6.66192 6.70084 6.72997 6.75910

7.0 (1, 4) (1, 4) (2, 4) (2, 4)
6.98525 7.04928 7.08683 7.11596

PPPPPPCO

CS 0.1 0.2 0.3 0.4

1.0 (2, 4) (2, 4) (2, 4) (2, 4)
6.00548 6.03461 6.06374 6.09287

1.5 (2, 4) (2, 4) (2, 4) (2, 4)
6.31484 6.34397 6.37310 6.40230

2.0 (1, 4) (2, 4) (2, 4) (2, 4)
6.59228 6.65334 6.68247 6.71159

2.5 (1, 4) (1, 4) (1, 4) (1, 4)
6.84595 6.90999 6.97403 7.03807

PPPPPPCV

CS 0.1 0.2 0.3 0.4

3.4 (2, 4) (2, 4) (2, 4) (2, 4)
6.14834 6.17747 6.20660 6.23573

3.6 (2, 4) (2, 4) (2, 4) (2, 4)
6.23159 6.26072 6.28985 6.31898

3.8 (2, 4) (2, 4) (2, 4) (2, 4)
6.31484 6.34397 6.37310 6.40223

4.0 (2, 4) (2, 4) (2, 4) (2, 4)
6.39809 6.42722 6.45635 6.48548

PPPPPPCF

CS 0.1 0.2 0.3 0.4

1.2 (3, 6) (3, 6) (3, 6) (3, 6)
5.63782 5.66988 5.70194 5.73399

1.4 (1, 4) (1, 4) (2, 4) (2, 4)
5.93725 6.00129 6.01256 6.06867

1.6 (1, 4) (1, 4) (2, 4) (2, 4)
6.13792 6.17719 6.20632 6.23545

1.8 (1, 3) (1, 4) (2, 4) (2, 4)
6.31484 6.34397 6.37310 6.40223

This is as expected since the holding cost increases, we resort to maintain
low stock in the inventory.

(3) The optimal values of S and s are decreasing monotonically with CF .
(4) Also, we notice that the optimal value of s decreases when the waiting cost,

CO increases as expected in practical case.
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6. Conclusions

This paper presents a perishable inventory model with negative customers, retrial
demands and multiple working vacations. The steady state distributions are ob-
tained using matrix analytic method. Various system performance measures are
derived and the total expected cost is calculated. By assuming a suitable cost
structure on the inventory system, we have presented numerical results to obtain
the optimum values of s and S that minimize the total expected cost function.
The method of analysis used in this paper can be applied to a perishable inventory
model with service interruptions. Further, the present paper can be extended by
considering the impatient customers. One can also implement these concepts with
MAP arrivals and MSP . These topics are left for future investigation.
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