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Abstract. Matrix functions are used in many areas of linear algebra and arise in numerical 
applications in science and engineering. In this paper, we introduce an effective approach for 
determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function 
from a degree of m and also function g can be a transcendental function. Computing a matrix 
function f(A) will be time-consuming and difficult if m is large. We propose a new technique 
which is based on the minimal polynomial and characteristic polynomial of the given matrix A, 
which causes, to reduce the degree of polynomial function significantly. The new approach has 
been tested on several problems to show the efficiency of the presented method. Finally, the 
application of this method in state space and matrix quantum mechanics is highlighted. 
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1. Introduction 

Matrix functions are used in many areas of linear algebra and arise in numerical 
applications in science and engineering such as quantum mechanics, numerical solution of 
partial differential equations and modern control theory [6,7,8]. Suppose that A is a n⨯n 
matrix and f is an analytical function on spectrum includes A. In numerical articles and 
books, different methods has been proposed to compute a matrix function [9,10,13,14]. As 
a result there have been proposed in the literature since 1880 distinct definitions of a matrix 
function, by Weyr, Sylvester and Buchheim, Giorgi, Cartan, Fantappie', Cipolla, 
Schwerdtfeger and Richter [5]. 

The following definitions are the most generally useful for computing a matrix 
function. 
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In Eigenvalue decomposition definition, for any diagonalizable matrix            
1A PDP [2,12], where the eigenvalues in  1 2 , , , nD diag I I I     are grouped by 

repetition. For a function f(z) that is defined at each  i A  , we define 
1 1

1 2( ) ( )  diag( ( ), ( ),..., ( ))nf A Pf D P P f f f P      

where  1 2, , , .A n      But n nA C  has the Jordan canonical form [1,11 ], if we 

have 
1

1 1 2 2 1 2diag ( ( ), ( ),..., ( )) diag ( , ,......, )A P p pZ AZ J J J J J J J     
 

where Z a is nonsingular matrix and, 
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Finally, let A be an (n+1)-by-(n+1) real matrix, where its eigenvalues are not 

necessarily distinct,  0 1, , ,A n     , where 0 1 n    , and  :f C C  be 

defined on A  and f(z) be analytic at iz   for i=0,1,…,n. Now we define f(A) using 

Newton divided difference and the interpolation technique of Hermite [3] as follows: 
 

     
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, , ,
in

i j
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 
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2. Preliminary 

Suppose that  q x  is a polynomial scalar function from degree of m  

  1
1 1 0

m m
m mq x b x b x b x b

     

and also, the characteristic polynomial of n nA   is 

  1
1 1 0

n n
n np x a x a x a x a

     

Let q  be an arbitrary polynomial, in which      deg deg    q x p x m n  . One can 

compute  q A  by the following method: 

By dividing polynomial  q x  in to characteristic polynomial of the matrix A , we 
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have: 

       q x p x t x r x   

so that  t x  and  r x  are quotient polynomial and remainder polynomial, respectively. 

Since   0p A   then    q A r A . So computing of polynomial matrix of degree m  

lead to computing polynomial matrix of lower degree. 
Now we recall the following fundamental theorem and definitions. 

Theorem 2.1. Let A  be an  matrix. If    detf x xI A   be characteristic polynomial 

of matrix A, then we have   0f A  . 

Definition 2.1. [4] Let A  be an n n  matrix. There are many non-zero polynomial for 

which we have   0f A  . Among these polynomials, there is the polynomial with the 

lowest degree in which the leading coefficient is one, in other words it is singularity. Such 

polynomial  m t  exists and is unique. This polynomial is called minimal polynomial and 

  0m A  . 

Theorem 2.2. Matrix A is diagonalizable, if and only if, minimal polynomial m(x) will 
decompose is absolutely without repetition, thus 

      1 2 km x x c x c x c      

where 1 2, , , kc c c  be distinct eigenvalues of matrix A. 

Theorem 2.3. The operator :T V V  is a diagonalizable operator, when V  be a basic 

such as  1 2, , , nB      in which 1, , n   are special vectors and also 

   1 1 1, , n n nT c T c      . So it can be said T  is diagonalizable when special 

vectors T  created the space V .  

3. Computation of a lower degree polynomial  

Now, in this section, we consider the computing of matrix function in the form of 

    f x g q x  where  q x  is a polynomial of degree m  and  g x  is a 

transcendental function such as exponential and trigonometric function. So in this 
functions, polynomial functions is used as argument of exponential or trigonometric 

function, not as the main function. We define a matrix function     f A g q A  by 

using characteristic polynomial, minimal polynomial, eigenvalue decomposition and 
Jordan canonical form. According to Definition 2.1 we concluded that if matrix ܣ is 
diagonalizable, minimal polynomial can be used instead of characteristic polynomial. 
Therefore : 

       * *q x m x t x r x   (1) 

Since   0m A   then we have                                                       

   *q A r A  (2) 

This has two advantages: 

First, it may be    deg degq x p x  (then polynomial  q x  not divisible by 

characteristic polynomial), but    deg degq x m x . Second, the degree of remainder 

while  q x  divided by  m x  is lower than while  q x  divided by  p x , thus: 

   *deg degr x r x  (3) 



128                              E. Nikbakht et al. /ܯܬܫଶ132-125 (2018) 02 - 08 ,ܥ. 
 

 

Finally, we concluded that employing  m x  instead of  p x  is efficient if matrix 

A  be diagonalizable and eigenvalues is not distinct. But how to distinguish that matrix A  
is diagonalizable? 

We know if the eigenvalues of matrix A  are distinct then matrix A  is diagonalizable. 
Now, let think that the eigenvalues of matrix A  are not distinct. Suppose that eigenvalue 

 i  has an algebraic multiplicity ik   1, ,i n   and matrix A is diagonalizable. Then  

       1

1
i nk kk

i np x x x x         

Because matrix ܣ is diagonalizable, then: 

       1 i nm x x x x         

We know from Theorem 2.1 and Definition 2.1 that   0p A   and   0m A  . Thus 

       1 0i nm A A I A I A I          

Moreover 

   ik
i iA I c A I     

where c  is an integer and 1, ,i n  . 
Eventually if the eigenvalues are not distinct, but  

     1 0i nA I A I A I         (4) 

Matrix A  is diagonalizable. Now, suppose that the matrix A  is diagonalizable, then we 

compute matrix function  f A  as follows: 

           * * *q x m x t x r x q A r A     

Therefore: 

         *f A g q A g r A k A    (5) 

On the other hand, according to the Eigenvalue decomposition definition, matrix D  
can be used instead of matrix ܣ. Thus  

      1f A k A Pk D P   (6) 

where matrix D  is diagonal and matrix P  is nonsingular. 
But if matrix A  nondiagonalizable, we use characteristic polynomial. On the other 

hand, according to the Jordan canonical form definition, AJ  can be used instead of A . 

So we have: 

       q x p x t x r x   (7) 

   q A r A  (8) 

         f A g q A g r A h A    (9) 

      1
Af A h A Xh J X    (10) 

4. Numerical examples  

In this section we present several test problem to support the theoretical results. 

Example 4.1. Let 
7 12 10

0 1 0

3 6 4

A

  
   
   
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and    4sin 2f x x x  . We have    1,1,2A  . By Newton divided difference and 

the interpolation technique of Hermite definition, we have: 

            

       
    

4
0 0 1 0 0 1 2 0 1

2

sin 2 , , ,

        1 1 1,1,2

        (sin 3) (6cos3) sin 20 sin 3 6cos3

5sin 3 6sin 20 12sin 3 12sin 20 10sin 3 10sin 20

        0 sin 3 0

3sin 3 3sin 20 6sin 3

f A A A f I f A I f A I A I

f I f A I f A I

I A I A I

               

    

      

   

 




 6sin 20 6sin 3 5sin 20

 
 
 
  

 But, we know that A  is diagonalizable matrix, thus we have 1P AP D   where  

 1

3 2 2 1 2 2 1 0 0

 1 1 0 ,            1 3 2 ,                  0 1 0

3 0 1 3 6 5 0 0 2

P P D

     
              
           

 

Furthermore,      2
1 2p x x x    and     1 2m x x x   . By applying relation 

(2), we have  * 17 14r x x  . Thus       * sin 17 14k x g r x x   . Therefore 

      1

1

sin 17 14

         diag (sin 3,sin 3,sin 20)

3 2 2 sin 3 0 0 1 2 2

         1 1 0 0 sin 3 0 1 3 2

3 0 1 0 0 sin 20 3 6 5

5sin 3 6sin 20 12sin 3 12sin 20 10sin 3 10sin 20

        0 sin 3 0

3sin 3

k A A I Pk D P

P P





  



     
            
           
   


 3sin 20 6sin 3 6sin 20 6sin 3 5sin 20

 
 
 
    

 

As it seems that the results obtained using both methods are the same and    f A k A . 

Example 4.2. Let  
5 6 6

1 4 2

3 6 4

A

  
   
   

 

and   6 42x xf x e  . We have    1,2,2A  . A  is a diagonalizable matrix. Thus by 

defining  

1

3 2 2 1 2 2 1 0 0

1 1 0 ,                 1 3 2 ,                     0 2 0   

3 0 1 3 6 5 0 0 2

P P D

     
              
           

 

we have 1 .P AP D   

On the other hand,     2
1 2p x x x     and     1 2m x x x    . By applying 

relation (2), we have   * 93 90r x x  . Thus  
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     93 90 1 3 96 96 1

42

 , ,

1.9694 2.9541 2.9541

                        10 0.4923 1.4770 0.9847 .

1.4770 2.9541 2.4617

A Ik A e Pk D P P diag e e e P    

  
   
   

 

If we compute 
6 42A Ae   using the interpolation technique of Hermite definition, then 

  6 42 42

1.9694 2.9541 2.9541

10 0.4923 1.4770 0.9847

1.4770 2.9541 2.4617

A Af A e 

  
    
   

. 

We can see that the values computed using both methods are the same and    f A k A . 

Example 4.3. Let 
2.2829 1.1085 0.5233 0.9496 0.3566

1.7810 1.9845 1.8895 2.6143 2.3062

2.5 4 3.5 3.5 3

0.5310 9.9845 0.6395 1.8643 0.8062

0.5640 0.0930 0.0872 0.0640 1.3372

A

  
   
   
 

  
   

 

and    8 4sin 2 6f x x x   . We have    1,1,1,2,2A  . By Newton divided 

difference and interpolation technique of Hermite definition, we have 

   
        

    
     

   

8 4

0 0 1 0 0 1 2 0 1

0 1 2 3 0 1 2

0 1 2 3 4 0 1 2 3

sin 2 6

        , , ,

                        , , ,

                        , , , ,

        (sin 9) (16cos9)

f A A A I

f I f A I f A I A I

f A I A I A I

f A I A I A I A I

I A I

        

      

        

  

     

   

    

    
 

   

(40cos9 128sin 9)

                                                         (sin 294 127sin 9 56cos9)

       (sin 9) (sin 294 sin 9)

1.2161 1.1859 0.5598 1.0159 0.3815

1.9053 3.3492 2.0214 2.

        =

A I

A I

I A I

  

   

  

  
   7968 2.4672

2.6742 4.2792 2.5181 3.7443 3.2094

0.5681 1.0532 0.6842 0.7683 0.8625

0.6033 0.0995 0.0933 0.0684 0.2043

 
 
 
   
 
   
    

 

But we know that A  is a diagonalizable matrix. Because   2 0A I A I   . Thus 

we have 1P AP D   and 
1 2 2 1 4 1 0 0 0 0

0 6 1 3 1 0 1 0 0 0

 ,                   .2 1 5 4 2 0 0 1 0 0

1 3 7 1 0 0 0 0 2 0

2 2 1 0 3 0 0 0 0 2

P D

   
      
    
   

   
       
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Furthermore,      3 2
1 2p x x x    and     1 2m x x x   . By applying 

relation (2), we have  * 285 276r x x  . Thus       * sin 285 276k x g r x x   . 

Therefore  
 

       1 1

                                        

sin 285 276   sin 9,sin 9,sin 9,sin 294,sin 294

1.2161 1.1859 0.5598 1.0159 0.3815

1.9053 3.3492 2.0214 2.7968 2.4672

2.6742 4.2792 2.5181 3.7443 3.209

k A A I Pk D P P diag P    

  
  
   .4

0.5681 1.0532 0.6842 0.7683 0.8625

0.6033 0.0995 0.0933 0.0684 0.2043

 
 
 
 
 
   
    

 

It can be seen that the results obtained using both methods are the same and 

   f A k A . 

Example 4.4. Let 
7 4 3

10 6 4

6 3 3

A

   
   
  

 

and   5x xf x e  . We have    0,1,1A  . A  is not diagonalizable. But there are 

nonsingular matrix X  and Jordan matrix AJ , so that  1 AX J X A   where 

1 1 1 0 0 0

1 2 0 ,               0 1 1

1 0 3 0 0 1
AX J

    
        
      

. 

Furthermore    21p x x x  . By applying relation (7), we have    24 2r x x x   

and      24 2x xh x g r x e   . Thus  

       24 2 1 1

2 2

2

2 2 2

2 2 2

2 2

  

1 0 01 1 1 6 3 2

                       1 2 0  0 6  3 2 1

1 0 3 2 1 10 0

6 17 3 9 2 8

                       6 30 3 16 2 14

6 6 3 3 2

A A
A k kh A e X h J X X diag h J X

e e

e

e e e

e e e

e e

    

     
          
        

  

      

     23e

 
 
 
 

  

 

If we compute 
5A Ae   using other methods, then we observe that the results are the 

same and    f A h A .  

 

5. Application in state space and space of matrix quantum mechanics 

One of the most important applications of matrixes is in state space. Operators in space of 
matrix quantum mechanics is in the form of a matrix where impress on states of space and 
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change them. These operators express sometimes in to a field of matrix and sometimes in 
to combination of matrixes with different powers. For instance, for transferred a system of 

quantum mechanics in location space. Operator expresses in to exp xiP a

h

 
 
 

 where is 

expansionable in to sum of power matrixes. One of most important translation operators is 

in limited location space in to   exp
PI

I
h

   
 

F  where this relation leading to 

polynomial matrix function from degree of m  where m  can be large. So, using the new 
technique presented in this paper, we can easily solve these problems. 

6. Conclusions 

In this paper, we employed minimal polynomial and characteristic polynomial for 

computing matrix function     f A g q A  when g  is a transcendental function and 

q  is a polynomial function. The new method was tasted on several problems. The 

obtained results show that the new approach is efficient. These methods can be used for 
solving some important problems in state spaces and matrix quantum mechanics, which 
causes, to reduce the degree of polynomial function significantly. We used the well-known 
software MATLAB to do the computation.  
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