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Compare Adomian Decomposition Method and Laplace
Decomposition Method for Burger’s-Huxley and Burger’s-Fisher
equations
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Abstract. In this paper, Adomian decomposition method (ADM) and Laplace decomposition
method (LDM) used to obtain series solutions of Burgers-Huxley and Burgers-Fisher Equa-
tions. In ADM the algorithm is illustrated by studying an initial value problem and LDM is
based on the application of Laplace transform to nonlinear partial differential equations. In
ADM only few terms of the expansion are required to obtain the approximate solution which
is found to be accurate and efficient and in LDM does not need linearization, weak nonlinear-
ity assumptions, or perturbation theory. These methods are used to solve the examples and
the results are presented in the tables.
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1. Introduction

It is shown that the decomposition method solve effectively, easily and accurately
a large linear and nonlinear class of ordinary or partial differential equations. The
approximation of nonlinear differential equations is important in solving physical
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problems [3, 11]. Adomian decomposition method has been used for a wide range
of stochastic and deterministic problems in physics, biology and chemical reactions
[9, 10, 14]. Adomian’s method has a lot of strength and accuracy and can be used
in applications of nonlinear evolution models. Adomian decomposition method is a
powerful method with simple algorithm and is very simple and efficient for solving
nonlinear differential equations that are created in physical applications[2, 7, 12].
The Laplace transform numerical scheme based on the decomposition method for
solving nonlinear differential equations. The analysis will be adapted to the approx-
imate solution of a class of nonlinear second-order initial-value problems, though
the algorithm is well suited for a wide range of nonlinear problems. The Laplace de-
composition method (LDM) was proved to be compatible with the versatile nature
of the physical problems and was applied to a wide class of functional equations
[4, 5, 8].

In Section 2, the governing equations are presented and in section 3 we will
explain the ADM and will be explained in Section 4 of LDM. Finally, in Section
5, we solve and compare the Burger’s-Huxley and Burger’s-Fisher equations with
these methods.

2. Burger’s-Huxley and Burger’s-Fisher equations

In this section, we introduce the governing equations in this paper [1]. Consider
the generalized Burger’s-Fisher equation

U 4 iy — gy = Pu(l —ul) Vo<ae<1,t>0, (1)
with the initial condition
u(z,0) = f(z), (2)

and exact solution is

u(z,t) = (;—F;Tanh [2(;‘151) (x— (511 +ﬂ(5;1)>t)D§. (3)

And consider the generalized Burger’s-Huxley equation

up + oy — Ugy = fu(l —u’) (W — ), Vo<z<1,t>0, (4)

with the initial condition

1

u(w,0) = (% + %Tanh[Alx]) v (5)
The exact solution of (4) is
u(a,t) = (% v gTanh[Al(:r - AQt)]) 5 (6)

where

—ad 4+ 0\/a? +4B(1+9)

A =
! 4(1+0)
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va  (1F5-7) (—a+ a2+4ﬂ(1+5))

A22(1+5)_ 2(1+6) ’

where «, 8 and ¢ are parameters, 5 > 0,0 > 0,7 € (0, 1).

3. Adomian decomposition method

We begin with the equation [6]
Lu+ R(u) + N(u) = g(t), (7)

where L is the operator of the highest-ordered derivatives and R is the remainder
of the linear operator. The nonlinear term is represented by N(u). Thus we get

Lu = g(t) — R(u) — N(u), (8)
The inverse
t
rt = [ (9)
0
operating with the operator L~! on both sides of (3) we have
w=fo+ L7 (g(t) ~ R(w) — N(w), (10)
where fy is the solution of homogeneous equation
Lu =0, (11)

involving the constants of integration. The integration constants involved in the
solution of homogeneous equation (11) involve the constants of integration. The
integration constants involved in the solution of homogeneous equation (11) are to
be determined by the initial or boundary condition accordingly as the problem is
initial-value problem or boundary-value problem.

The Adomian decomposition method assume that the unknown function wu(x,t)
can be expressed by an infinite series of the form

u(z,t) = Zun(x,t), (12)
n=0

and the nonlinear operator N (u) can be decomposed by an infinite series of poly-
nomials given by

N(u) =) Ap, (13)
n=0
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where u, (z,t) will be determined recurrently, and A,, are the so-called polynomials
of ug, u1, - ,u, defined by

_1a
" pld

F(Z)\u>] ,n=0,1,2,-- . (14)
1=0 A=0

It is now well known in the literature that these polynomials can be constructed
for all classes of non-linearity according to algorithms set by Adomian.

Theorem 3.1 The solution of the nonlinear PDEs in the form (7) with the initial
u(z,0) = f(z) can be determined by the series (12) with the iterative [6]

uo(z,t) = f(x),
Uny1(z,t) = f(z) + L1 (R(un) - An> ,n=0. (15)

4. Laplace decomposition method

The aim of this section is to discuss the use of Laplace decomposition method for
solving of partial differential equations written in an operator form [13]

Liu+ Ru+ Nu = g, (16)

with initial data

u(z,0) = f(z), (17)

where L; is considered a first-order partial differential operator, R and N are linear
and nonlinear operators, respectively and g is source term. The method consists
of first applying the Laplace transform to both sides of equation (16) and then by
using initial conditions (17), we have

L[Lu] + L[Ru] + L[Nu] = L[g], (18)
using the differentiation property of Laplace transform, we get

o) = 18 4 %E[g] Ry éE[Nu]. (19)

S S

The LDM defines the solutions u(z,t) by the infinite series

u(a,t) = un. (20)
n=0
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The nonlinear terms NN is usually represented by an infinite series of the so-called
Adomian polynomial, substituting (19) and (20) into (13) gives

iun] = M+ ~Llg] (Zun>] - éz lgun] . (21)

n=0
applying the linearity of the Laplace transform, we define the following recursively
formula

L

T 1
cluo) = 9 4 gy, (22)
in general, for k£ > 1, the recursive relations are given by
1 1
Llugy1] = —gE[R(Uk)] - gﬁ[AkL (23)

By applying the inverse Laplace transform, we can evaluate ug(k > 0).

5. Application of methods in solving equations

In this section we will apply ADM and LDM for the two problems. The first
is the generalized Burger’s-Fisher equation (1) and the second is the generalized
Burger’s-Huxley equation (4).

5.1 Adomian decomposition method for generalized Burger’s-Fisher equation

Applying the inverse operator L~! on both sides of (1) and using the initial con-
dition we find [6]

w(z,t) = flz) — L7* (au‘sum — Ugy — Pu(l — u5)>, (24)
by using (9) and (10) into the functional equation (12) gives
> un(z,t) = f(z) — L7 (Z ady~ (3 u)) . (25)
n=0 n=0

Identifying the zeros component ug(x,t) by f(x), the remaining components n > 1
can be determined by using the recurrence relation

UOCLt)::f($%

Upt1(z,t) = L1 (aAn — (un)m> , n=0, (26)

)

where A,, are Adomian polynomials that represent the nonlinear term (au’u,) and

given by

Ag = uduoe + Buo(l — ud),
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5-1 s 5 8
Ay = duy uruog + uguig + Blug(l —ug) +ui(l — uo)]

Other polynomials can be generated in a similar way. The first few components of
un(x,t) follows immediately upon setting

uo(w,t) = f(x),

uy(x,t) = —L71 (OéAo - (Uo)m> ;
ug(x,t) = —L (Oéz‘h - (Ul)m> ; (27)
uz(z,t) = —L71 (OéAQ — (UQ):c:c) ;

ug(x,t) = N (aAg — (u;;)mm) )

We have taken o = 0.001, 3 = 0.001 and 6 = 1. We now calculate Zn o0 Un(x,1)
and consider it as an approximation and we will present the comparison results in
Table 1.

5.2 Laplace decomposition method for generalized Burger’s-Fisher equation

Using the differentiation property of Laplace transform for (1) we get [13]

1

1/1 ad 5 1 1 1 1
Llu] = B (2 Tanh[m ]) —ozsﬁ[uum]+Sﬁ[um]—l—ﬁsﬁ[u]—Bsﬁ[u‘sz—l]),
28

The second step in LDM is that we represent solution as an infinite series given
(20), we will get

> 1/1 1 ab O I
1 [ oo 1 00 o
+L | Y (un)er | + 8L [Zu] —B=L | Bn|, (29)
Ln=0 n=0 n=0

where A,, and B,, are Adomian polynomials by (14) that represent the nonlinear
J 149 regpectively. We have the following relation:

terms u°uy, u
1/1 Cad )¢
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1 1 1 1
Llugi1] = —Oégﬁ[Ak] + gﬁ[(uk)mz] + ﬁ;ﬁ[uk] - 5g£[Bk] , k=0,

taking the inverse Laplace transform of both sides of the it, we have

1 1 ad g
uo(z,t) = (2 - 2Tanh[2(5+1)33]> ,

2(5+1)2

<(1éTanh[Q(gil)m])a252(1+5Tanh[2(§‘£1)z](5+1))>+.”
2

1 ad

+ ( - §Tanh[mx]> X 52 :|7

and so on for other components. Now consider © = wug + u1 as an approximate
solution, we have taken « = 8 = 0.001, = 1 and we present the results of
computation and comparison in Table 1.

Table 1. Absolute errors (o« = 8 = 0.001, § = 1) for Burger’s-Fisher equation

x t ADM (5 — terms) LDM (2 — terms)
0.005 9.68763 x 10~ 3.19327 x 1028
0.1 0.001 1.93753 x 1076 5.19268 x 10731
0.01 1.93752 x 107° 5.00494 x 1027
0.005 9.68691 x 10~° 1.62271 x 10727
0.5 0.001 1.93738 x 1076 2.60468 x 10730
0.01 1.93738 x 107° 2.58591 x 1027
0.005 9.68691 x 10~ 2.92609 x 1027
0.9 0.001 1.93724 x 1076 4.69010 x 10730
0.01 1.93724 x 107° 4.67132 x 10726

5.3 Adomian decomposition method for generalized Burger’s-Huxley
equation

Applying the inverse operator L~! on both sides of (4) and using the initial con-
dition we find [6]
u(e,t) = f(2) = L7 (g — gy — fu(l — ) = 7)), (30)

by using (9) and (10) into the functional equation (12) gives

3 gz, t) = f(z) ~ L7 <Z ad, — (Z “’”)m> . (31)
n=0 n=0



224 S. M. Mirzaei/ IJM?C, 08 - 04 (2018) 217-226.

Identifying the zeros component ug(z,t) by f(x), the remaining components n > 1
can be determined by using the recurrence relation

uo(z,t) = f(x),

Upir(z,t) = —L71 (aAn — (un)m> , n=0, (32)

where A,, are Adomian polynomials that represent the nonlinear term (cu®

given by

ug) and

Ay = bug turugstuguia B | uo(1—uf) (u) =) +uo(1—ul) () —y)+u (1—up) (ug—) |

Other polynomials can be generated in a similar way. The first few components of
un(x,t) follows immediately upon setting

UO(x7t) = f(x),

uy(z,t) = —L71 (OéAo - (Uo)x:c> )
ug(z,t) = —L71 (aA1 — (Ul)m> , (33)
uz(z,t) = —L71 (OéAz - (Uz)m> ;

ug(z,t) = —L71 (aAg - (u;),)zx) .

We have taken o = 1,5 = 1,v = 0.001 and § = 1. We now calculate Zi:o Un(x,t)
and consider it as an approximation, and we will present the comparison results in
Table 2.

5.4 Laplace decomposition method for generalized Burger’s-Huzxley equation

Using the differentiation property of Laplace transform for (4) we get [13]

_ Lo Y R
Lu] = <2 + 2Tcmh[A1x]) asﬁ[u Ug] + SL[UQ?I]

~L[u®]. (34)
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The second step in LDM is that we represent solution as an infinite series given
(20), we will get

L [Z un] = % (% + ;Tcmh[Alx]); - ozéﬁ

n=0

o0

>4,

n=0

1
+-L
S

n=0

ByiL T+ B0+ )L Ay )
S S S

o [e.9]
D un > Cn

where A,,, B, and C,, are Adomian polynomials by (14) that represent the nonlinear

terms uu,, w0 and u?® respectively. We have the following relation:

0o
> 5,
n=0

Ly oy 5
Llug] = 5 (5 + §Tanh[A1x]) ,

L] = £~ ado + (wo)aw — Byuo + B(1 +7)Bo — BCo),

in general the recursive relation is given by

1 1 1 1 1
using the recurrence relation above and by using the inverse Laplace transform of
both sides of the it, we have

1

ug(z,t) = (% + %Tcmh[Ap;]) : ,

) = %t[ —23 (2 0+ Tanh[Alx])%>25“

13041
2 (g (1+ Tanh[Alx])é) (Ala(Tanh[Alx] 1)+ 851+ 7))
5

+

1

7(1 + Tfmh[All‘]) ’ (A%(Tanh[/h:n] —1)(=14 0+ Tanh[A1z](0 + 1)) — 5752)

+ 5 J

and so on for other components. Now consider © = wug + u1 as an approximate
solution, we have taken « = 1,6 = 1, = 0.001 and § = 1 and we present the
results of computation and comparison in Table 2.

6. Conclusion

In this study, LDM and ADM are used to obtain an approximate solution of the
Burger’s-Huxley equation in general and the Burger’s-Fisher equation. The results
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Table 2.  Absolute errors (o = 8 =1, v = 0.001, 6 = 1) for Burger’s-Huxley equation

x t ADDM (5 — terms) LDM (2 — terms)
0.005 1.93715 x 10~ 1.87406 x 1078

0.1 0.001 3.87434 x 1077 3.74812 x 1078
0.01 3.87501 x 106 3.74812 x 10~ 7
0.005 1.93730 x 10~ 1.87406 x 10~8

0.5 0.001 3.87464 x 107 3.74812 x 1078
0.01 3.87531 x 106 3.74812 x 10~ 7
0.005 1.93745 x 10~ 1.87406 x 10~°

0.9 0.001 3.87494 x 1077 3.74812 x 1078
0.01 3.87561 x 1076 3.74812 x 107

show that LDM is more effective and more accurate than ADM. It also shows that

the

Lapl’s breakdown technique (LDM) is a powerful tool for searching various non-

linear solutions. The proposed scheme can be used for other nonlinear equations
of physics applications.
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