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1. Introduction

This paper deals with the convergence of the HAM for the following nonlinear
age-structured population models [10]

∂p(x, t)

∂t
+
∂p(x, t)

∂x
= −(d1(x) + d2(x)P (t))p(x, t), t > 0, 0 6 x < A,

p(x, 0) = p0(x), 0 6 x < A, (1)
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p(0, t) =

∫ A

a
(b1(ξ)− b2(ξ)P (t))p(ξ, t)dξ, t > 0,

P (t) =

∫ A

0
p(x, t)dx, t > 0

where A → +∞ and x, t, respectively, denote age and time, P (t) denotes the
total population number at time t, p(x, t) is the age-specific density of individuals

of age x at time t, i.e.
∫ a+∆a
a p(x, t)dx is the number of individuals that are aged

between a and a+∆a at time t, d1(x) is the natural death rate (without considering
competition), d2(x) is the increase of death rate considering competition, b1(x) is
the natural fertility rate (without considering competition), b2(x) is the decrease
of fertility rate considering competition, a denotes the lowest age when an indi-
vidual can bear, and A is the maximum age that an individual of the population
may reach[10]. In [10], Goreishi et al solve the nonlinear age-structured popula-
tion models numerically by applying the HAM and finally they concluded that
the HAM is a valid scheme to solve Eq.(1) as well. This paper tries to prove the
convergency of the HAM for nonlinear age-structured population model, during a
theorem. Recently, the HAM has been well applied to solve many problems in sci-
ence and engineering [1–16]. Total discription of this paper is as follows: In section
2, some preliminaries of the HAM and some obtained necessary relations via the
HAM of Eq.(1) are given, in section 3 convergence theorem of the HAM is proved
and in section 4 a numerical example is considered to certify the convergency of
the HAM numerically, as well.

2. Preliminaries

Let the following differential equation:

N [w(x, t)] = 0,

where N is a nonlinear operator, x and t denote the independent variables and w
is an unknown function. Via the HAM, the zeroth-order deformation equations:

(1− q)L[Φ(x, t; q)− w0(x, t)] = qhH(x, t)N [Φ(x, t; q)], (2)

where q ∈ [0, 1] is the embeding parameter, h 6= 0 is an auxiliary parameter, L
is an auxiliary linear operator and H(x, t) is an auxiliary function. Φ(x, t; q) is an
unknown function and w0(x, t) is an initial guess of w(x, t). It is clear, if q = 0 and
q = 1 then:

Φ(x, t; 0) = w0(x, t), Φ(x, t; 1) = w(x, t),

respectively. Therefore, when q increases from 0 to 1, the solution Φ(x, t; q) varies
fromw0(x, t) to the exact solution w(x, t). By Taylor’s theorem, it can be expanded
Φ(x, t; q) in a power series of the embeding parameter q as comes:

Φ(x, t; q) = w0(x, t) +
∞∑

m=1

wm(x, t)qm, (3)
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where

wm(x, t) =
1

m!

∂mΦ(x, t; q)

∂qm
|q=0. (4)

Let the initial guess w0(x, t), the auxiliary linear operator L, the nonzero auxiliary
parameter h and the auxiliary function H(x, t) be properly chosen so that the
power series Eq.(3) converges at q = 1, then, it can be seen:

w(x, t) = w0(x, t) +
∞∑

m=1

wm(x, t), (5)

which must be the solution of the original nonlinear equation. Now, we define the
following set of vectors:

~wn = {w0(x, t), w1(x, t), . . . , wn(x, t)}. (6)

By differentiating the zeroth order deformation Eq.(2) m times with respect to the
embeding parameter q and then setting q = 0 and finally dividing by m!, we will
have the following mth order deformation equation:

L[wm(x, t)− χmwm−1(x, t)] = hH(x, t)Rm(~wm−1), (7)

where

Rm(~wm−1) =
1

(m− 1)!

∂m−1N [Φ(x, t; q)]

∂qm−1
|q=0, (8)

and

χm =

{
0 m 6 1,
1 m > 1.

(9)

It should be mentioned that wm(x, t) for m > 1 is goverend by the linear Eq.(7)
with linear boundary conditions that come from the original problem. For more
details about the HAM, we refer the reader to [13]. Now, the HAM is applied to
solve Eq.(1) .

We consider Eq.(1) as follows:

∂p(x, t)

∂t
+
∂p(x, t)

∂x
+ (d1(x) + d2(x)P (t))p(x, t) = 0 (10)

and

L[Φ(x, t; q)] =
∂Φ(x, t; q)

∂t
, L(c) = 0, (11)

where c is a real constant,

N [Φ(x, t; q)] =
∂Φ(x, t; q)

∂t
+
∂Φ(x, t; q)

∂x
+ d1(x)Φ(x, t; q)

+ d2(x)Φ(x, t; q)

∫ A

0
Φ(x, t; q)dx,

(12)
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and H(x, t) = 1. The zeroth-order deformation equation is:

(1− q)L[Φ(x, t; q)− p0] = qhN [Φ(x, t; q)]. (13)

Also, the mth-order deformation equation:

L[pm − χmpm−1] = hRm(~pm−1), (14)

where

Rm(~pm−1) =
∂pm−1(x, t)

∂t
+
∂pm−1(x, t)

∂x
+ d1(x)pm−1(x, t)

+ d2(x)
m−1∑
i=0

pi(t)

∫ A

0
pm−1−i(x, t)dx.

(15)
So,

pm = χmpm−1 + h

∫ t

0
Rm(~pm−1)dt+ c, m > 1. (16)

3. Convergence theorem of the HAM

In this section , we prove the convergence of the series solution obtained from the
HAM to the exact solution of the Eq.(1) or Eq.(10).

Theorem 3.1 If the series solution

p(x, t) = p0(x, t) + p1(x, t) + . . . ,

obtained from the HAM and the series
∑∞

m=0
∂pm(x,t)

∂t ,
∑∞

m=0
∂pm(x,t)

∂x ,∑∞
m=0

∫ A
0 pm(x, t)dx are convergent, then

∑∞
m=0 pm(x, t) converges to the

exact solution of the Eq.(1).

Proof .We consider

p(x, t) =
∞∑

m=0

pm(x, t)

then, in this case, we will have,

lim
m→∞

pm(x, t) = 0 (17)

so

n∑
m=1

[pm(x, t)− χmpm−1(x, t)] = pn(x, t) (18)
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then we can write :

∞∑
m=1

L[pm(x, t)− χmpm−1(x, t)] = L(

∞∑
m=1

(pm(x, t)− χmpm−1(x, t)) = 0. (19)

It can be written

∞∑
m=1

L[pm(x, t)− χmpm−1] = hH(x, t)
∞∑

m=1

Rm(pm−1). (20)

Moreover, we know h,H(x, t) 6= 0 then

∞∑
m=1

[Rm(pm−1)] = 0 (21)

According to the Eq.(15), it can be seen:

∑∞
m=1[Rm(pm−1)]

=
∞∑

m=1

∂pm−1(x, t)

∂t
+

∞∑
m=1

∂pm−1(x, t)

∂x
+ d1(x)

∞∑
m=1

pm−1(x, t)

+ d2(x)
∞∑

m=1

m−1∑
i=0

pi(t)

∫ A

0
pm−1−i(x, t)dx

=
∞∑

m=0

∂pm(x, t)

∂t
+
∞∑

m=0

∂pm(x, t)

∂x
+ d1(x)

∞∑
m=0

pm(x, t)

+ d2(x)
∞∑
i=0

∞∑
m=i+1

pi(t)

∫ A

0
pm−1−i(x, t)dx

=
∞∑

m=0

∂pm(x, t)

∂t
+
∞∑

m=0

∂pm(x, t)

∂x
+ d1(x)

∞∑
m=0

pm(x, t)

+ d2(x)
∞∑
i=0

pi(t)
∞∑

m=i+1

∫ A

0
pm−1−i(x, t)dx

=
∞∑

m=0

∂pm(x, t)

∂t
+
∞∑

m=0

∂pm(x, t)

∂x
+ d1(x)

∞∑
m=0

pm(x, t)

+ d2(x)
∞∑
i=0

pi(t)
∞∑

m=0

∫ A

0
pm(x, t)dx

=
∂
∑∞

m=0 pm(x, t)

∂t
+
∂
∑∞

m=0 pm(x, t)

∂x
+ d1(x)

∞∑
m=0

pm(x, t)

+ d2(x)
∞∑
i=0

pi(t)

∫ A

0

∞∑
m=0

pm(x, t)dx.

(22)
So, by considering Eqs.(15) and (22), it can be seen easily that

∑∞
m=0 pm(x, t) is

the exact solution of Eq.(1) or Eq.(10).
�
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4. Numerical example

With regard to the main aim of this paper which is to prove the convergence
theorem, this example is given, only to confirm the convergency of the proposed
method numerically.

Example 4.1

Consider the following nonlinear age structured equation[10]:

∂p(x, t)

∂t
+
∂p(x, t)

∂x
= −(1 + P (t))p(x, t), t > 0, 0 6 x < A,

p(x, 0) =
e−x

2
, 0 6 x < A, (23)

p(0, t) = p(t), t > 0,

P (t) =

∫ A

0
p(x, t)dx, t > 0

where A→ +∞. Also the exact solution of this equation is e−x

2+t .

The HAM is applied, by using Eq.(16) then we get:

p0(x, t) =
e−x

2
,

p1(x, t) =
hte−x

4
,

p2(x, t) = (t(t+ 2)h2)e−x/8 + hte−x/4], . . .

Table 1 shows the errors of the HAM, when h=-1, x=15 and t=0.1. Also error
is calculated by |

∑m
i=0 pi − p| . Figure. 1 shows the approximate and the exact

solution of example 4.1 when m =4 ,h =-1, x ∈[0,20] and t ∈ [0,1].

Table 1. The errors of the HAM at x=15 and t=0.1.

n Error

2 1.8208e-011
4 4.5521e-014
6 1.1380e-016
8 2.8442e-019
12 3.9705e-023
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Figure 1. The approximate solution (m=4) and the exact solution of example 4.1 when x ∈ [0 20] and
t ∈ [0,1].

5. Conclusion

This paper, regarding [10] has attempted to prove the convergency of the homotopy
analysis method during a theorem for the mentioned equation. An example is given
to verify the convergency of the HAM numerically. Consequently, the HAM can
be applied to solve the nonlinear age-structured population models as an effective
and valid scheme.
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