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Abstract. In this paper, an SIR epidemic model with an infectious period and a non-linear
Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model
depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymp-
totic stability of the disease-free equilibrium by analyzing the corresponding characteristic
equation and using comparison arguments. In contrast, if R0 > 1, we see that the disease-free
equilibrium is unstable and the endemic equilibrium is permanent and locally asymptotically
stable and we give sufficient conditions for the global asymptotic stability of the endemic
equilibrium.
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1. Introduction

Dynamical behaviors of SIR epidemic model describing the spread of infectious
diseases in a population where the population is subdivided into three classes of
individuals: susceptible, infective and recovered, are studied by many authors (see,
for example, [1, 12, 13, 17] and the references therein).
In the natural world, there are many diseases which the infected population recover
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and become susceptible or removed population by itself after they are infected by
some certain time such as tuberculoses, influenza, etc. (see, [4, 9]). In [8, 16, 17],
the authors assume that, when a susceptible individual is infected, there is a time
τ > 0, during which the infectious individual develop, and only after that time the
infected individual becomes the removed individual. The time τ is called infectious
period.
Usually the rate of infection in most epidemic models is assumed to be bilinear in
the susceptible S and the infective I. However, the actual incidence rate is probably
not linear over the entire range of S and I. Thus, it is reasonable to assume that
the infection rate of epidemic model is given by the Beddington-DeAnglis function,

βSI
1+α1I+α2S

, where α1, α2 ⩾ 0 are constants. The incidence function βSI
1+α1I+α2S

was
introduced by Beddington (see, [1]) and DeAngelis et al. (see, [6]). When α1 > 0,
α2 = 0, the Beddington-DeAngelis incidence function is simplified to saturated
incidence function introduced by Capasso and Serio (see, [3]).
In [15] R. Xu and Y. Du considered the following delayed SIR epidemic model with
saturation incidence and a constant infectious period

Ṡ(t) = Λ− µ1S(t)−
βS(t)I(t)

1 + α1I(t)
,

İ(t) =
βS(t)I(t)

1 + α1I(t)
− βe−µ2τS(t− τ)I(t− τ)

1 + α1I(t− τ)
− µ2I(t), (1)

Ṙ(t) =
βe−µ2τS(t− τ)I(t− τ)

1 + α1I(t− τ)
− µ3R(t),

where S(t) is the number of susceptible individuals, I(t) is the number of infec-
tious individuals, R(t) is the number of recovered individuals, at time t. In (1) the
parameters Λ, α1, β, τ , µ1, µ2 and µ3 are non-negative constants in which Λ is the
constant recruitment rate into the population, β is the average number of adequate
contacts of an infectious individuals per unit time, τ is a time delay representing
the infection period of the disease; µ1, µ3 > 0 are the natural death rates of the
susceptible and the removed populations, respectively; µ2 > 0 represents the rate
of natural death and the disease-induced death of the infectious.
In the current paper, motivated by the works of R. Xu, Y. Du [15] and B.
Dubey et al. [7], we study the dynamics of the following SIR epidemic model with
Beddington-DeAngelis incidence rate and a constant infectious period:

Ṡ(t) = Λ− µ1S(t)−
βS(t)I(t)

1 + α1I(t) + α2S(t)
,

İ(t) =
βS(t)I(t)

1 + α1I(t) + α2S(t)
− βe−µ2τS(t− τ)I(t− τ)

1 + α1I(t− τ) + α2S(t− τ)
− µ2I(t), (2)

Ṙ(t) =
βe−µ2τS(t− τ)I(t− τ)

1 + α1I(t− τ) + α2S(t− τ)
− µ3R(t),

here the variables S(t), I(t), R(t) and the parameters Λ, α1, β, τ , µ1, µ2 and µ3
have the same meanings as in system (1); α2 is a nonnegative constant.



A. Raji-allah & H. Talibi Alaoui/ IJM2C, 09 - 02 (2019) 83-100. 85

2. Preliminary results

The initial conditions of delay differential equations (2) are given as

S(θ) = ϕ1(θ), I(θ) = ϕ3(θ), R(θ) = ϕ4(θ),

ϕi(θ) ⩾ 0, θ ∈ [−τ, 0] , i = 1, 2, 3, (3)

where ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+
(
[−τ, 0] ,ℜ3

+

)
, C+

(
[−τ, 0] ,ℜ3

+

)
denotes the nonnega-

tive cone of the Banach space C
(
[−τ, 0] ,ℜ3

)
of continuous functions mapping the

interval [−τ, 0] into ℜ3.
The existence and the uniqueness of the solution (S(t), I(t), R(t)) of the system
(2) with initial conditions (3) follows from the well known theorem in [12].
It is easy to show that all solutions of system (2) with initial conditions (3)
are non-negative on [0,+∞). Furthermore, if ϕ1(0), ϕ2(0), ϕ3(0) > 0, then the
solutions are positive on [0,+∞).

We define the basic reproduction number R0 of the model (2) by

R0 =
βΛ

µ2µ1 + µ2Λα2
(1− e−µ2τ ).

It is the number of newly infectives infected by an infective individual during the
whole infection period when all of the individuals in the population are initially
susceptible. This quantity determines the thresholds for disease transmissions.
The system (2) always has a disease-free equilibrium E1(

Λ
µ1
, 0, 0). Moreover, if

R0 > 1, then system (2) has further the endemic equilibrium E2(S2, I2, R2), where

S2 =
µ2 + Λα1(1− e−µ2τ )

(β + µ1α1)(1− e−µ2τ )− µ2α2
,

I2 =
1

µ2
[
βΛ(1− e−µ2τ )− Λµ2α2 − µ1µ2
(β + µ1α1)(1− e−µ2τ )− µ2α2

](1− e−µ2τ ),

R2 =
1

µ3
(
βΛ(1− e−µ2τ )− Λµ2α2 − µ1µ2
(β + µ1α1)(1− e−µ2τ )− µ2α2

)e−µ2τ .

3. Permanence of disease

In the epidemic models, permanence is an important property because it implies
that the disease continues to exist for any initial conditions. In the following we
show that R0 > 1 is a necessary and sufficient condition for system (2) to be
permanent.

Definition 3.1 [12]System (2) is said to be permanent if there exists positive
constants yi and ki, i = 1, 2, 3, such that

y1 ⩽ lim inf
t→+∞

S(t) ⩽ lim sup
t→+∞

S(t) ⩽ k1, ,

y2 ⩽ lim inf
t→+∞

I(t) ⩽ lim sup
t→+∞

I(t) ⩽ k2,
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y3 ⩽ lim inf
t→+∞

R(t) ⩽ lim sup
t→+∞

R(t) ⩽ k3,

for any positive solution (S(t), I(t), R(t)) of system (2) with initial conditions (3).
Here yi and ki, i = 1, 2, 3, are independent of initial conditions (3).

Theorem 3.1 If R0 > 1, then system (2) is permanent.

Proof Let (S(t), I(t), R(t)) be any positive solution of system (2) with initial con-
ditions (3).
Noting N(t) = S(t) + I(t) +R(t). Since

Ṅ(t) = Λ− µ1S(t)− µ2I(t)− µ3R(t) ⩽ Λ− µ1N(t),

then

lim sup
t→+∞

N(t) ⩽ Λ

µ1
:= k1 := k2 := k3, (4)

accordingly

lim sup
t→+∞

I(t) ⩽ Λ

µ1
.

Therefor, for ϵ > 0 sufficiently small, there is a M1 > 0 such that if t > M1, then
I(t) ⩽ Λ

µ1
+ ϵ.

We derive from the first equation of system (2) that, for t > M1,

Ṡ(t) > Λ− (µ1 +
β( Λ

µ1
+ ϵ)

1 + α1(
Λ
µ1

+ ϵ)
)S(t).

By comparison, we have

lim inf
t→+∞

S(t) ⩾
Λ[1 + α1(

Λ
µ1

+ ϵ)]

µ1 + (µ1α1 + β)( Λ
µ1

+ ϵ)
.

Since this inequality hold true for arbitrary ϵ > 0 sufficiently small, we deduce that

lim inf
t→+∞

S(t) ⩾
Λ(1 + α1

Λ
µ1
)

µ1 + (µ1α1 + β) Λ
µ1

:= y1. (5)

Therefor, for ϵ > 0 sufficiently small, there is a M2 > M1 such that if t > M2, then
S(t) ⩾ y1 − ϵ.

Denote I∗ = µ1α1[βΛ(1−e−µ2τ )−µ1µ2−µ2α2Λ]
µ2(β+µ1α1)2

. Clearly, if R0 > 1, then I∗ > 0 and

βΛ(1− e−µ2τ )

µ2[µ1 + α2Λ + I∗(β + µ1α1)]
=

(β+µ1α1)2

µ1α1
I∗ + µ1 + α2Λ

µ1 + α2Λ + I∗(β + µ1α1)
> 1.

Thus, we can choose a positive constant λ > τ such that

p :=
βΛ(1− e−µ2τ )

µ2[µ1 + α2Λ + I∗(β + µ1α1)]
[1− e

−(µ1+
βI∗

1+α1I∗ )λ] > 1. (6)
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We claim that for any t0 > 0, there exists a time t1 ⩾ t0 such that I(t1) > I∗.
Suppose that the claim is not valid. Then there is a t0 > 0 such that

I(t) ⩽ I∗, t ⩾ t0. (7)

It follows from the first equation of system (2) and (7)that for t ⩾ t0,

Ṡ(t) ⩾ Λ− (µ1 +
βI∗

1 + α1I∗
)S(t).

Therefor, for t ⩾ t0 + λ, we obtain

S(t) ⩾ S(t0)e
−(µ1+

βI∗

1+α1I∗ )(t−t0) + Λ

∫ t

t0

e
−(µ1+

βI∗

1+α1I∗ )(t−θ)
dθ

>
Λ(1 + α1I

∗)

βI∗ + µ1(1 + α1I∗)
[1− e

−(µ1+
βI∗

1+α1I∗ )(t−t0)]

⩾ Λ(1 + α1I
∗)

βI∗ + µ1(1 + α1I∗)
[1− e

−(µ1+
βI∗

1+α1I∗ )λ]

:= S∗. (8)

Clearly,

S∗ ⩽ Λ(1 + α1I
∗)

βI∗ + µ1(1 + α1I∗)
:= m. (9)

We define

V (t) := I(t)− βe−µ2τ

∫ t

t−τ

S(θ)I(θ)

1 + α1I(θ) + α2S(θ)
dθ. (10)

The derivative of V along the solutions of (2) is given by

dV (t)

dt
= µ2[

β(1− e−µ2τ )S(t)

µ2(1 + α1I(t) + α2S(t))
− 1]I(t).

By (7), (8) and (9), we have

dV (t)

dt
> µ2[

β(1− e−µ2τ )S∗

µ2(1 + α1I(t) + α2S∗)
− 1]I(t)

⩾ µ2[
β(1− e−µ2τ )S∗

µ2(1 + α1I(t) + α2m)
− 1]I(t)

= µ2(p− 1)I(t), t ⩾ t0 + λ. (11)

We set

Il = min
u∈[−τ,0]

I(t0 + λ+ τ + u) > 0.

We will show that I(t) ⩾ Il for all t ⩾ t0 + λ. Suppose the contrary. Then there is
a t1 > t0 + λ+ τ such that I(t1) < Il. Denote tl = inf{t|I(t) < Il, t > t0 + λ+ τ}.
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Then we have I(tl) = Il and I(t) ⩾ Il for t0+λ ⩽ t ⩽ tl. It follows from the second
equation of (2) that

I(t) = β

∫ t

t−τ

S(θ)I(θ)

1 + α1I(θ) + α2S(θ)
e−µ2(t−θ)dθ, t ⩾ τ.

accordingly

I(tl) >
βS∗Il

1 + α1Il + α2S∗

∫ tl

tl−τ
e−µ2(tl−θ)dθ

⩾ βS∗Il
1 + α1Il + α2m

∫ tl

tl−τ
e−µ2(tl−θ)dθ

=
βS∗Il(1− e−µ2τ )

µ2(1 + α1Il + α2m)
. (12)

Since Il ⩽ I∗, then

βS∗(1− e−µ2τ )

µ2(1 + α1Il + α2m)
⩾ βS∗(1− e−µ2τ )

µ2(1 + α1I∗ + α2m)
= p > 1.

As a consequence, (12) leads to I(tl) > Il. This is a contradiction. Thus, I(t) ⩾ Il
for all t ⩾ t0 + λ.
We deduce from (11) and (6) that

dV (t)

dt
> µ2(p− 1)Il > 0,

which implies that as t→ +∞, V (t) → +∞. By using (4) and (10), we obtain

lim sup
t→+∞

V (t) ⩽ Λ

µ1
+

Λ2βe−µ2ττ

µ22 + α1Λµ1 + α2Λµ1
,

this contradicts limt→+∞ V (t) = +∞. Hence, the claim is proved.
By the claim, we are left to consider two cases. First, I(t) ⩾ I∗ for all t large
enough. Second, I(t) oscillates about I∗ for t large enough. For the second case, let
t∗ > 0 sufficiently large such that S(t) ⩾ y1 − ϵ for ϵ > 0 being sufficiently small
and σ > 0 satisfy

I∗ = I(t∗) = I(t∗ + σ) and I(t) < I∗ for t∗ < t < t∗ + σ.

We will restrict study on the interval [t∗, t∗+σ]. Since I(t) is uniformly continuous,
then there is a η (0 < η < τ , and η is independent of the choice of t∗) such that
I(t) > I∗

2 for t∗ < t < t∗ + η.

If σ ⩽ η, then I(t) > I∗

2 for all t ∈ [t∗, t∗ + σ].
Let us consider the case where η < σ ⩽ τ . For t∗ + η < t ⩽ t∗ + σ, we obtain

I(t) > β(y1 − ϵ)

∫ t

t−τ

I(θ)

1 + α1I(θ) + α2(y1 − ϵ)
e−µ2(t−θ)dθ

⩾ β(y1 − ϵ)

∫ t∗+η

t∗

I(θ)

1 + α1I(θ) + α2(y1 − ϵ)
e−µ2τdθ
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>
β(y1 − ϵ)I∗e−µ2τη

2(1 + α1
I∗

2 + α2(y1 − ϵ))
:= I0. (13)

We set

I1 = min{I
∗

2
, I0}. (14)

Clearly, I(t) ⩾ I1 for t ∈ [t∗, t∗ + σ].
If σ > τ , with same reason, I(t) ⩾ I1 for t ∈ [t∗, t∗ + τ ]. For t ∈ [t∗ + τ, t∗ + 3τ

2 ], we
obtain

I(t) ⩾ β(y1 − ϵ)

∫ t∗+τ

t∗+ τ

2

I1
1 + α1I1 + α2(y1 − ϵ)

e−µ2(t−θ)dθ

⩾ β(y1 − ϵ)I1e
−µ2ττ

2(1 + α1I1 + α2(y1 − ϵ))
:= I2.

For t ∈ (t∗ + 3τ
2 , t

∗ + 2τ ], we obtain

I(t) ⩾ β(y1 − ϵ)

∫ t∗+ 3τ

2

t∗+τ

I2
1 + α1I2 + α2(y1 − ϵ)

e−µ2(t−θ)dθ

⩾ β(y1 − ϵ)I2e
−µ2ττ

2(1 + α1I2 + α2(y1 − ϵ))
:= I3.

We set N = ⌈λτ ⌉ + 1 (⌈λτ ⌉ is the minimum integer being greater than or equal to
λ
τ ).
Define

Ik =
β(y1 − ϵ)Ik−1e

−µ2ττ

2(1 + α1Ik−1 + α2(y1 − ϵ))
, k = 2, 3, ..., 2N − 1. (15)

Continuing the process above, we conclude that

I(t) ⩾ I2n−2, t ∈ (t∗ + (n− 1)τ, t∗ + (n− 1

2
)τ ],

I(t) ⩾ I2n−1, t ∈ (t∗ + (n− 1

2
)τ, t∗ + nτ ], n = 2, 3, .., N.

Denote

y2 = min
1⩽k⩽2N−1

Ik,

with Ik (1 ⩽ k ⩽ 2N − 1) are defined in (13), (14) and (15).
Clearly, I(t) ⩾ y2 for all t ∈ [t∗, t∗ + Nτ ]. Since λ

τ ⩽ N , then I(t) ⩾ y2 for all
t ∈ [t∗, t∗ + λ].
If σ ⩽ λ, then I(t) ⩾ y2 for t ∈ (t∗, t∗ + σ].
We will show that if σ > λ, then I(t) ⩾ y2 for t ∈ (t∗ + λ, t∗ + σ]. Suppose the
contrary, then there is a δ > 0 such that I(t) ⩾ y2 for t∗ ⩽ t ⩽ t∗ + δ + λ ⩽ t∗ + σ
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and I(t∗ + δ + λ) = y2. Noting that I(t) ⩽ I∗ for t ∈ [t∗, t∗ + σ], then S(t) > S∗

for t ⩾ t∗ + λ. Hence, for t = t∗ + δ + λ,

I(t) >
βS∗y2

1 + α1y2 + α2S∗

∫ t

t−τ
e−µ2(t−θ)dθ

⩾ βS∗y2(1− e−µ2τ )

µ2(1 + α1y2 + α2m)
. (16)

By using I∗ ⩾ y2 and (6), we conclude that

1 < p =
βS∗(1− e−µ2τ )

µ2(1 + α1I∗ + α2m)
⩽ βS∗(1− e−µ2τ )

µ2(1 + α1y2 + α2m)
. (17)

It follows from (16) and (17) that I(t = t∗ + δ + λ) > y2, which contradicts
I(t = t∗ + δ + λ) = y2. Consequently, I(t) ⩾ y2 for t ∈ (t∗ + λ, t∗ + σ]. Since
this kind of interval [t∗, t∗ + σ] is chosen in an arbitrary way (we only need t∗ to
be large), we conclude that I(t) ⩾ y2 for all large t in the second case. therefor,
lim inft→+∞ I(t) ⩾ y2.
Thus, for ϵ > 0 sufficiently small, there is a M3 > M2 such that if t > M3, then
I(t) ⩾ y2 − ϵ. We derive from the third equation of (2) that, for t > M3,

Ṙ(t) ⩾ βe−µ2τ (y1 − ϵ)(y2 − ϵ)

1 + α1(y2 − ϵ) + α2(y1 − ϵ)
− µ3R(t),

by comparison it follows that

lim inf
t→+∞

R(t) ⩾ βe−µ2τ (y1 − ϵ)(y2 − ϵ)

µ3(1 + α1(y2 − ϵ) + α2(y1 − ϵ))
.

Since this inequality hold true for arbitrary ϵ > 0 sufficiently small, we deduce that

lim inf
t→+∞

R(t) ⩾ βe−µ2τy1y2
µ3(1 + α1y2 + α2y1)

:= y3.

This completes the proof. ■

4. Global asymptotic stability of the disease-free equilibrium state

In this section, we establish the global asymptotic stability of the disease-free equi-
librium E1 of system (2).

Lemma 4.1 Let µ, τ ∈ R. If µ, τ > 0, then

(1 +
γ

µ
)2 +

w2

µ2
⩾ 1− 2 cos (wτ)e−(γ+µ)τ + e−2(γ+µ)τ

(1− e−µτ )2
,

for all γ,w ⩾ 0.

Proof Define the function

H(w) := (1 +
γ

µ
)2 +

w2

µ2
− 1− 2 cos (wτ)e−(γ+µ)τ + e−2(γ+µ)τ

(1− e−µτ )2
.
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The derivative of H is given by

Ḣ(w) =
2w

µ22
− 2τ sin (wτ)e−(γ+µ2)τ

(1− e−µ2τ )2
.

The derivative of Ḣ is given by

Ḧ(w) =
2

µ22
− 2τ2 cos (wτ)e−(γ+µ2)τ

(1− e−µ2τ )2
⩾ 2

µ22
− 2τ2e−µ2τ

(1− e−µ2τ )2
.

Since Ḣ(0) = 0 and Ḧ(w) ⩾ 2
µ2

2
− 2τ2e−µ2τ

(1−e−µ2τ )2 , then
2
µ2

2
− 2τ2e−µ2τ

(1−e−µ2τ )2 ⩾ 0 and H(0) =

(1 + γ
µ2
)2 − (1−e−(γ+µ2)τ )2

(1−e−µ2τ )2 ⩾ 0 are sufficient conditions to ensure that H(w) ⩾ 0.

Define de function

R(γ) := 1 +
γ

µ2
− 1− e−(γ+µ2)τ

1− e−µ2τ
.

It is clear that R(0) = 0 and the derivative of R is given by

Ṙ(γ) =
1

µ2
− τe−(γ+µ2)τ

1− e−µ2τ
⩾ 1

µ2
− τe−µ2τ

1− e−µ2τ
.

It is not difficult to show that ψ1(u) = 1 − u2e−u

(1−e−u)2 > 0 , ψ2(u) = 1 − ue−u

1−e−u > 0

for all u > 0. ■

Theorem 4.1 If R0 < 1, then the disease-free equilibrium E1 of system (2) is
locally asymptotically stable; if R0 > 1, then E1 is unstable.

Proof The characteristic equation of the linearized system of system (2) near the
disease-free equilibrium E1 takes the form

(λ+ µ1)(λ+ µ3)(λ+ µ2 −
βΛ

µ1 + Λα2
+

βΛ

µ1 + Λα2
e−(µ2+λ)τ ) = 0. (18)

Clearly, (18) always has two negative roots λ1 = −µ1, λ2 = −µ3. The other roots
of (18) are determined by the following equation

λ+ µ2 −
βΛ

µ1 + Λα2
+

βΛ

µ1 + Λα2
e−(µ2+λ)τ = 0. (19)

Let λ = γ + iw. Thanks to the property of symmetry we can assume that w ⩾ 0.
Separating real and imaginary parts of (19), it follows that

µ2 + γ =
βΛ

µ1 + Λα2
[1− e−(µ2+γ)τ cos (wτ)],

w =
βΛ

µ1 + Λα2
e−(µ2+γ)τ sin (wτ). (20)

Squaring and adding the two equations of (20) and using βΛ
µ1+Λα2

= µ2R0

1−e−µ2τ , we



92 A. Raji-allah & H. Talibi Alaoui/ IJM2C, 09 - 02 (2019) 83-100.

obtain that

1

R2
0

[(1 +
γ

µ2
)2 +

w2

µ22
] =

1− 2 cos (wτ)e−(γ+µ)τ + e−2(γ+µ)τ

(1− e−µτ )2
.

We assume for contradiction that there exists γ ⩾ 0 satisfy the two equations of
(20). It follows from Lemma 4.1. that if R0 < 1, then

1

R2
0

[(1 +
γ

µ2
)2 +

w2

µ22
] > (1 +

γ

µ2
)2 +

w2

µ2
⩾ 1− 2 cos (wτ)e−(γ+µ)τ + e−2(γ+µ)τ

(1− e−µτ )2
,

which is a contradiction. Consequently, the disease-free equilibrium E1 is locally
asymptotically stable when R0 < 1.
For λ real, denote

g(λ) = λ+ µ2 −
βΛ

µ1 + Λα2
+

βΛ

µ1 + Λα2
e−(µ2+λ)τ .

If R0 > 1, clearly,

g(0) = µ2(1−R0) < 0, lim
λ→+∞

g(λ) = +∞.

Consequently, (19) admits at least one positive root. Hence, if R0 > 1, E1 is
unstable. ■

Lemma 4.2 [10] Let (fn)n∈N be a measurable sequence of non-negative uniformly
bounded functions. Then∫

lim inf fn ⩽ lim inf

∫
fn ⩽ lim sup

∫
fn ⩽

∫
lim sup fn.

Theorem 4.2 If R0 < 1, then the disease-free equilibrium E1 of system (2) is
globally asymptotically stable; if R0 > 1, then E1 is unstable.

Proof In Theorem 4.1, we have given the local asymptotic stability of E1. We now
prove that E1 is globally attractive.
Let (S(t), I(t), R(t)) be any non-negative solution of (2) with initial conditions (3).
Clearly,

lim sup
t→+∞

S(t) ⩽ Λ

µ1
. (21)

Therefore, for ϵ > 0 sufficiently small, there is a M1 > 0 such that if t > M1,
S(t) ⩽ Λ

µ1
+ ϵ.

It follows from the second equation of system (2) that

lim sup
t→+∞

I(t) = lim sup
t→+∞

∫ τ

0

βI(t− θ)S(t− θ)

1 + α1I(t− θ) + α2S(t− θ)
e−µ2θdθ

⩽
∫ τ

0

lim supt→+∞ βI(t− θ) lim supt→+∞ S(t− θ)

1 + lim supt→+∞ α1I(t− θ) + lim supt→+∞ α2S(t− θ)
e−µ2θdθ

⩽ Λ

µ1µ2
(1− e−µ2τ )

lim supt→+∞ βI(t)

1 + lim supt→+∞ α1I(t) + α2
Λ
µ1

,
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⩽ Λ

µ1µ2
(1− e−µ2τ )

lim supt→+∞ βI(t)

1 + α2
Λ
µ1

,

= lim sup
t→+∞

I(t)R0,

hence,

lim sup
t→+∞

I(t)(R0 − 1) ⩾ 0. (22)

Since R0 < 1, then (22) ensures that

lim sup
t→+∞

I(t) = 0.

Thus, for ϵ > 0 sufficiently small, there is aM2 > M1 such that if t > M2, I(t) ⩽ ϵ.
We derive from the third equation of system (2) that, for t > M2 + τ ,

Ṙ(t) ⩽
βe−µ2τ ( Λ

µ1
+ ϵ)ϵ

1 + α1ϵ+ α2(
Λ
µ1

+ ϵ)
− µ3R(t).

By using a comparison argument, we obtain

lim sup
t→+∞

R(t) ⩽
βe−µ2τ ( Λ

µ1
+ ϵ)ϵ

µ3(1 + α1ϵ+ α2(
Λ
µ1

+ ϵ))
.

Since this inequality holds true for arbitrary ϵ > 0 sufficiently small, we conclude
that

lim
t→+∞

R(t) = 0.

It follows from the first equation of system (2) that, for t > M2,

Ṡ(t) ⩾ Λ− µ1S(t)−
βϵ

1 + α1ϵ
S(t).

By using a comparison argument, we obtain

lim inf
t→+∞

S(t) ⩾ Λ(1 + α1ϵ)

βϵ+ µ1(1 + α1ϵ)
.

Since this inequality holds true for arbitrary ϵ > 0 sufficiently small, we conclude
that

lim inf
t→+∞

S(t) ⩾ Λ

µ1
.

We deduce from this inequality and (21) that

lim
t→+∞

S(t) =
Λ

µ1
.

This completes the proof. ■
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5. Global asymptotic stability of the endemic equilibrium state

In this section, we establish the local asymptotic stability of the endemic equi-
librium E2 of system (2) and we give the sufficient conditions for the global
asymptotic stability of the endemic equilibrium E2.

Theorem 5.1 If R0 > 1, then the endemic equilibrium E2 of system (2) is locally
asymptotically stable.

Proof The characteristic equation of the linearized system of system (2) near the
endemic equilibrium E2 takes the form

(λ+ µ3)[λ
2 + p1(τ)λ+ p0(τ) + (q1(τ)λ+ q0(τ))e

−λτ ] = 0, (23)

where

p1(τ) = µ1 + µ2 + l1 − l2, p0(τ) = µ2(µ1 + l1)− µ1l2,

q1(τ) = l2e
−µ2τ , q0(τ) = µ1l2e

−µ2τ ,

l1 =
βI2(1 + α1I2)

(1 + α1I2 + α2S2)2
, l2 =

βS2(1 + α2S2)

(1 + α1I2 + α2S2)2
.

Clearly, (23) always has a negative root λ = −µ3. Other roots of (23) are deter-
mined by the following equation

λ2 + p1(τ)λ+ p0(τ) + (q1(τ)λ+ q0(τ))e
−λτ = 0. (24)

Let λ = γ + iw. Thanks to the property of symmetry we can assume that w ⩾ 0.
Separating real and imaginary parts of (24), it follows that

(γ + µ1)(γ + µ2 − l2)− w2 + (γ + µ2)l1 = −l2[(γ + µ1) cos (wτ) + w

× sin (wτ)]e−(γ+µ2)τ , (25)

w[γ + µ2 − l2 + γ + µ1 + l1] = −l2[w cos (wτ)− (γ + µ1) sin (wτ)]e
−(γ+µ2)τ .(26)

Multiplying (25) by w and (26) by γ+µ1 and subtracting the products, we obtain
that

w

(γ + µ1)2 + w2
(µ2 − µ1)l1 − w = −l2 sin (wτ)e−(γ+µ2)τ . (27)

Multiplying (25) by γ+µ1 and (26) by w and adding the products, we obtain that

γ + µ2 +
(γ + µ1)(γ + µ2) + w2

(γ + µ1)2 + w2
l1 = l2[1− cos (wτ)e−(γ+µ2)τ ]. (28)

We set

T1 =
[γ + µ1)(γ + µ2) + w2]2

[(γ + µ1)2 + w2]2
l21 +

w2

[(γ + µ1)2 + w2]2
(µ2 − µ1)

2l21,
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T2 =
2µ2(γ + µ1)(γ + µ2)

(γ + µ1)2 + w2
l1 +

2w2µ1
(γ + µ1)2 + w2

l1 +
2γ[(γ + µ1)(γ + µ2) + w2]

(γ + µ1)2 + w2
l1.

Squaring and adding the two equations (27) and (28), we get that

(γ + µ2)
2 + w2 + T1 + T2 = l22[1− 2 cos (wτ)e−(γ+µ2)τ + e−2(γ+µ2)τ ]. (29)

We assume for contradiction that there exists γ ⩾ 0 satisfy equations (25) and
(26). Since T1 + T2 > 0, then it suffices to prove that (γ + µ2)

2 + w2 ⩾ l22[1 −
2 cos (wτ)e−(γ+µ2)τ + e−2(γ+µ2)τ ].
Define the functions

G(w) := (1 +
γ

µ2
)2 + (

w

µ2
)2,

Z(w) :=
1− 2 cos (wτ)e−(γ+µ2)τ + e−2(γ+µ2)τ

(1− e−µ2τ )2
.

It is clear that if R0 > 1, then µ2

l2
= (1 − e−µ2τ )β+α1(µ1+Λα2)R0

β+α1(µ1+Λα2)
⩾ 1 − e−µ2τ . It

follows from Lemma 4.1. that G(w) ⩾ Z(w) for all w ⩾ 0, which is a contradiction.
■

Theorem 5.2 Suppose that α1µ1 ⩾ β. If R0 > 1, then the endemic equilibrium
E2 of system (2) is globally asymptotically stable.

Proof In Theorem 5.1, we have given the local asymptotic stability of E2. We now
prove that E2 is globally attractive.
Let (S(t), I(t), R(t)) be any positive solution of (2) with initial conditions (3).
Denote

Ss = lim sup
t→+∞

S(t), Is = lim sup
t→+∞

I(t), Rs = lim sup
t→+∞

R(t),

Si = lim inf
t→+∞

S(t), Ii = lim inf
t→+∞

I(t), Ri = lim inf
t→+∞

R(t).

In the following we prove that Ss = Si = S2, Is = Ii = I2, Rs = Ri = R2.
Clearly,

lim sup
t→+∞

S(t) ⩽ Λ

µ1
:= XS

1 .

Consequently, for ϵ > 0 sufficiently small there is a M1 > 0 such that if t ⩾ M1,,
S(t) ⩽ XS

1 + ϵ.
We derive from the second equation of system (2) that

I(t) =

∫ τ

0

βI(t− θ)S(t− θ)

1 + α1I(t− θ) + α2S(t− θ)
e−µ2θdθ. (30)

It follows from (31) and Lemma (4.2) that

lim sup
t→+∞

I(t) = lim sup
t→+∞

∫ τ

0

βI(t− θ)S(t− θ)

1 + α1I(t− θ) + α2S(t− θ)
e−µ2θdθ
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⩽
∫ τ

0

lim supt→+∞ βI(t− θ) lim supt→+∞ S(t− θ)

1 + lim supt→+∞ α1I(t− θ) + lim supt→+∞ α2S(t− θ)
e−µ2θdθ

⩽ βXS
1

µ2
(1− e−µ2τ )

lim supt→+∞ I(t)

1 + lim supt→+∞ α1I(t) + α2XS
1

− µ3R(t),

which leads to

lim sup
t→+∞

I(t) ⩽ (β(1− e−µ2τ )− µ2α2)X
S
1 − µ2

µ2α1
:= XI

1 .

Consequently, for ϵ > 0 sufficiently small there is M2 > M1 such that if t > M2,
I(t) ⩽ XI

1 + ϵ.
We derive from the third equation of system (2) that, for t > M2 + τ ,

Ṙ(t) ⩽ βe−µ2τ (XS
1 + ϵ)(XI

1 + ϵ)

1 + α1(XI
1 + ϵ) + α2(XS

1 + ϵ)
,

which leads to

lim sup
t→+∞

R(t) ⩽ βe−µ2τ (XS
1 + ϵ)(XI

1 + ϵ)

µ3(1 + α1(XI
1 + ϵ) + α2(XS

1 + ϵ))
.

Since this inequality holds true for arbitrary ϵ > 0 sufficiently small, we conclude
that

lim sup
t→+∞

R(t) ⩽ βe−µ2τXS
1 X

I
1

µ3(1 + α1XI
1 + α2XS

1 )
:= XR

1 .

Consequently, for ϵ > 0 sufficiently small there isM3 > M2+τ such that if t > M3,
R(t) ⩽ XR

1 + ϵ.
We derive from the first equation of system (2) that, for t > M3,

Ṡ(t) ⩾ Λ− µ1S(t)−
β(XS

1 + ϵ)(XI
1 + ϵ)

1 + α1(XI
1 + ϵ) + α2(XS

1 + ϵ)
,

which yields

lim inf
t→+∞

S(t) ⩾ 1

µ1
[Λ− β(XS

1 + ϵ)(XI
1 + ϵ)

1 + α1(XI
1 + ϵ) + α2(XS

1 + ϵ)
].

Since this inequality holds true for arbitrary ϵ > 0 sufficiently small, we conclude
that

lim inf
t→+∞

S(t) ⩾ 1

µ1
(Λ− βXS

1 X
I
1

1 + α1XI
1 + α2XS

1

) := Y S
1 .

Consequently, for ϵ > 0 sufficiently small there is M4 > M3 such that if t > M4,
S(t) ⩾ Y S

1 − ϵ.
We derive from the second equation of system (2) that

lim inf
t→+∞

I(t) = lim inf
t→+∞

∫ τ

0

βI(t− θ)S(t− θ)

1 + α1I(t− θ) + α2S(t− θ)
e−µ2θdθ
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⩾
∫ τ

0

lim inft→+∞ βI(t− θ) lim inft→+∞ S(t− θ)

1 + lim inft→+∞ α1I(t− θ) + lim inft→+∞ α2S(t− θ)
e−µ2θdθ

⩾ βY S
1

µ2
(1− e−µ2τ )

lim inft→+∞ βI(t)

1 + lim inft→+∞ α1I(t) + α2Y S
1

. (31)

It follows from section 3. that lim inft→+∞ I(t) > 0, we conclude from (31) that

lim inf
t→+∞

I(t) ⩾ (β(1− e−µ2τ )− µ2α2)Y
S
1 − µ2

µ2α1
:= Y I

1 .

Consequently, for ϵ > 0 sufficiently small there is M5 > M4 such that if t > M5,
I(t) ⩾ Y I

1 − ϵ.
We derive from the third equation of system (2) that, for t > M5 + τ ,

Ṙ(t) ⩾ βe−µ2τ (Y S
1 − ϵ)(Y I

1 − ϵ)

1 + α1(Y I
1 − ϵ) + α2(Y S

1 − ϵ)
− µ3R(t),

which leads to

lim inf
t→+∞

R(t) ⩾ βe−µ2τ (Y S
1 − ϵ)(Y I

1 − ϵ)

µ3(1 + α1(Y I
1 − ϵ) + α2(Y S

1 − ϵ))
.

Since this inequality holds true for arbitrary ϵ > 0 sufficiently small, we conclude
that

lim inf
t→+∞

R(t) ⩾ βe−µ2τY S
1 Y

I
1

µ3(1 + α1Y I
1 + α2Y S

1 )
:= Y R

1 .

Consequently, for ϵ > 0 sufficiently small there isM6 > M5+τ such that if t > M6,
R(t) ⩾ Y R

1 − ϵ.
Another time, we derive from the first equation of system (2) that, for t > M6,

Ṡ(t) ⩽ Λ− µ1 −
β(Y S

1 − ϵ)(Y I
1 − ϵ)

1 + α1(Y I
1 − ϵ) + α2(Y S

1 − ϵ)
,

which leads to

lim sup
t→+∞

S(t) ⩽ 1

µ1
[Λ− β(Y S

1 − ϵ)(Y I
1 − ϵ)

1 + α1(Y I
1 − ϵ) + α2(Y S

1 − ϵ)
].

Since this inequality holds true for arbitrary ϵ > 0 sufficiently small, we conclude
that

lim sup
t→+∞

S(t) ⩽ 1

µ1
(Λ− βY S

1 Y
I
1

1 + α1Y I
1 + α2Y S

1

) := XS
2 .

Consequently, for ϵ > 0 sufficiently small there is M7 > M6 such that if t > M7,
S(t) ⩽ XS

2 + ϵ.
Continuing the process above, we obtain six sequences (XS

n )n∈N, (XI
n)n∈N,
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(XR
n )n∈N, (Y

S
n )n∈N, (Y

I
n )n∈N, (Y

R
n )n∈N such that, for n ⩾ 2,

XS
n =

1

µ1
(Λ−

βY S
n−1Y

I
n−1

1 + α1Y I
n−1 + α2Y S

n−1

),

Y S
n =

1

µ1
(Λ− βXS

nX
I
n

1 + α1XI
n + α2XS

n

),

XI
n =

(β(1− e−µ2τ )− µ2α2)X
S
n − µ2

µ2α1

Y I
n =

(β(1− e−µ2τ )− µ2α2)Y
S
n − µ2

µ2α1
(32)

XR
n =

βe−µ2τXS
nX

I
n

µ3(1 + α1XI
n + α2XS

n )

Y R
n =

βe−µ2τY S
n Y

I
n

µ3(1 + α1Y I
n + α2Y S

n )
.

Clearly,

Y S
n ⩽ Si ⩽ Ss ⩽ XS

n , Y
I
n ⩽ Ii ⩽ Is ⩽ XI

n, Y
R
n ⩽ Ri ⩽ Rs ⩽ XR

n . (33)

It follows from (32) that

XS
n+1 =

1

µ1
{(1− 1

µ1

β(1− e−µ2τ )− µ2α2

α1(1− e−µ2τ )
)(Λ +

µ2
α1(1− e−µ2τ )

)

+
1

µ1
[
β(1− e−µ2τ )− µ2α2

α1(1− e−µ2τ )
]2XS

n }. (34)

We derive from (34) that

XS
n+1 −XS

n =
1

µ1
{1− 1

µ1

β(1− e−µ2τ )− µ2α2

α1(1− e−µ2τ )
}{Λ +

µ2
α1(1− e−µ2τ )

− µ1(1 +
1

µ1

×β(1− e−µ2τ )− µ2α2

α1(1− e−µ2τ )
)XS

n },

since XS
n ⩾ S2 and (1− e−µ2τ )(µ1α1 − β) ⩾ 0 ⩾ −µ2α2, then

XS
n+1 −XS

n ⩽ 1

µ1
{1− 1

µ1

β(1− e−µ2τ )− µ2α2

α1(1− e−µ2τ )
}{Λ +

µ2
α1(1− e−µ2τ )

− µ1(1 +
1

µ1

β(1− e−µ2τ )− µ2α2

α1(1− e−µ2τ )
)S2}

= 0.

Hence, the sequence (XS
n )n∈N is monotonically non-increasing. Thus, (XS

n )n∈N is
convergent. We derive from (34) that

lim
n→+∞

XS
n =

µ2 + Λα1(1− e−µ2τ )

(β + µ1α1)(1− e−µ2τ )− µ2α2
= S2. (35)
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It follows from (32) and (35) that

lim
n→+∞

XS
n = S2, lim

n→+∞
XI

n = S2, lim
n→+∞

XR
n = R2,

lim
n→+∞

Y S
n = S2, lim

n→+∞
Y I
n = I2, lim

n→+∞
Y R
n = R2. (36)

We deduce from (33) and (36) that

Ss = Si = S2, Is = Ii = I2, Rs = Ri = R2.

Consequently

lim
t→+∞

S(t) = S2, lim
t→+∞

I(t) = I2, lim
t→+∞

R(t) = R2.

This completes the proof.
■

6. Discussion

In this work, we have studied an SIR epidemic model with nonlinear incidence rate
which has a more general form, and with a constant infectious period. The dynam-
ical behaviors of the model are almost completely determined by the reproduction
number R0. When R0 < 1, the disease-free equilibrium E1 is globally asymptoti-
cally stable, and no other equilibria exist. When R0 > 1, the equilibrium E1 loses
its stability, and an unique endemic equilibrium E2 appears which is permanent,
locally asymptotically stable and if α1µ1 ⩾ β, the endemic equilibrium is globally
asymptotically stable. The global asymptotic stability of both the disease-free and
endemic equilibrium was established by analyzing the corresponding characteristic
equation and using comparison arguments. The Lemma 4.1. was necessary and
important to show the local asymptotic stability of the equilibria. The global at-
tractiveness of the endemic equilibrium E2 when α1µ1 ⩾ β was based on the result
lim inf I(t) > 0 obtained in the proof of the permanence of the endemic equilibrium
E2. In future work, we would like to study the global asymptotic stability of the
endemic equilibrium E2 without restrictions on the parameter values.
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