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1. Introduction 

The description of the structure of relativistic stars and the research on gravitational 

collapse is one of the most fundamental important problems in astrophysics according to 

the formulation of general theory of relativity [1, 2]. One of the fundamental problems in 

theoretical physics is finding exact solutions of the Einstein field equations [3]. The exact 

solutions as physical model of compact stars was studied for Delgaty and Lake [4] who 

have constructed several analytical solutions that describe static spherically symmetric 

perfect fluid that satisfy all the necessary conditions to be physically interesting.  

In the development of models of compact stars that are important subjects to study in 

Astrophysics, we can refer to the pioneering works of Schwarzschild [5], Tolman [6], 

Oppenheimer and Volkoff [7]. Schwarzschild [5] found analytical solutions that have 

allowed us to describe a star with uniform density, Tolman [6] developed a method to find 

solutions of static spheres of fluid and Oppenheimer and Volkoff [7] used Tolman's 

solutions to study the gravitational balance of neutron stars. It is important to mention that 

Chandrasekhar's contributions [8] has been studied in the model production of white dwarfs 
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in the presence of relativistic effects and the researches of Baade and Zwicky [9] who 

propose the concept of neutron stars and identify an astronomic dense object known as 

supernovas.  

The description of the gravitational collapse and evolution of the compact objects has 

been an important topic in general relativity. Recent experimental results in binary pulsars 

suggest that some compact objects can be quark stars [10]. The existence of quark stars in 

hydrostatic equilibrium was first suggested by Itoh [11] in a seminal treatment. The study 

of strange stars with quark matter has been an interesting topic in the last decades so that 

this can represent the most energetically favorable state of baryon matter [12]. 

Stellar models consisting of spherically symmetric distribution of matter with presence of 

anisotropy in the pressure have been widely considered in the frame of general relativity 

[13-25]. The existence of anisotropy within a star can be explained by the presence of a 

solid core, phase transitions, a type III super fluid, a pion condensation [26] or another 

physical phenomenon by the presence of an electrical field [27]. Many researchers have 

used a vast variety of mathematical techniques to try in order to obtain solutions of the 

Einstein-Maxwell field equations for anisotropic relativistic stars since it has been 

demonstrated by many researchers as Komathiraj and Maharaj [28], Thirukkanesh and 

Maharaj [29], Maharaj et al. [30], Thirukkanesh and Ragel [31,32], Feroze and Siddiqui 

[33,34], Sunzu et al.[35], Pant et al. [36] and Malaver [37-40]. These analyses indicate that 

the system of Einstein-Maxwell equations are very important in the description of 

ultra-compacts objects.  

In order to integrate field equations analytically, the choice of the appropriate equation 

of state allows obtained models of compact stars physically acceptable [41]. Komathiraj 

and Maharaj [12], Malaver [42], Bombaci [43], Thirukkanesh and Maharaj [29], Dey et al 

[44] and Usov [27] assume linear equation of state for quark stars. Feroze and Siddiqui 

[33] consider a quadratic equation of state for the matter distribution and specify particular 

forms for the gravitational potential and electric field intensity. Mafa Takisa and Maharaj 

[45] obtained new exact solutions to the Einstein-Maxwell system of equations with a 

polytropic equation of state. Thirukkanesh and Ragel [10] have obtained particular models 

of anisotropic fluids with polytropic equation of state, which are consistent with the 

reported experimental observations. Malaver [46] generated new exact solutions to the 

Einstein-Maxwell system by considering Van der Waals modified equation of state with 

polytropic exponent. Rocha et al. [41] presented a new model with anisotropic pressure 

and an equation of state that describes the internal structure of a compact star made of 

strange matter in the color flavor locked (CFL) phase.  

In this research paper, we generate a new class of anisotropic matter with quadratic 

equation of state proposed for Feroze and Siddiqui [33] in a static spherically symmetric 

space-time using a gravitational potential ( )Z x  which depends on an adjustable 

parameter η. We obtain some new class of static spherically symmetrical models for a 

charged anisotropic matter distribution where the variation of the parameter modifies the 

radial pressure, energy density, stellar radius and the mass of the compact objects. This 

article is organized as follows: In Section 2, we present Einstein´s field equations. In 

Section 3, we make a particular choice of gravitational potential ( )Z x  that allows 

solving the field equations and we have obtained new models for charged anisotropic 

matter. In Section 4, physical acceptability conditions are discussed. In section 5, a 

physical analysis of the new solutions is performed. Finally, in Section 6, we make a 

conclusion about obtained and discussed results.  

2. Einstein-Maxwell field equations 

We consider a spherically symmetric, static and homogeneous space-time. In 

Schwarzschild coordinates, the metric is given by 
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2 ( ) 2 ( ) 2 2 2 2( sin )2 r 2 r 2ds = e dt + e dr + r dθ + θdφ −  (1) 

where ( )r  and ( )r  are two arbitrary functions.  

The Einstein field equations for the charged anisotropic matter are given by 

( )
'
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where  is the energy density, rp is the radial pressure, E is electric field intensity, tp is 

the tangential pressure  and primes denote differentiations with respect to r .Using the 

transformations,
2x = cr ,

2 ( )( ) rZ x e −=  and 
2 2 2 ( )( ) rA y x e =  with arbitrary constants A 

and 0,c   suggested by Durgapal and Bannerji [47], the Einstein field equations can be 

written as: 
21
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( )
2

2 4cZ
xE E

x
 = +  (11) 

  is the charge density, t rp p = − is the anisotropy factor and dots denote 

differentiation with respect to .x  With the transformations of [47], the mass within a 

radius r  of the sphere takes the form 

( )2

3/2

0

1
( )

4

x

M x x E dx
c

= +  (12) 

where 

1
2

Z
Z c

x
 − 

= − 
 

 

In this paper, we assume the following quadratic equation of state:  

2

rp   = + −  (13) 

proposed for Feroze and Siddiqui [33]. In eq. (13), α, β and γ are arbitrary constants, ρ is 

the energy density.  
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3. Solutions of the Einstein-Maxwell field equations 

In this research, we have chosen the gravitational potential as 
2( ) (1 )Z x ax= −  where is 

a real constant and η is an adjustable parameter. This potential is well behaved and regular 

at the origin in the interior of the sphere. Following Ngubelanga et al. [48] for the electric  

field intensity, we take the form:   

( )
2

2

E
x a bx

c
= +  (14) 

This electric field is finite at the center of the star and remains continuous in the interior. 

We have considered the cases for 1,2.  =  

For the case 1, =  using ( )Z x and Eq. (14) in Eq. (6), we obtain:  

( )2 26 5c a a a x bx  = − + −
 

 (15) 

Substituting eq. (15) in eq. (13), the radial pressure can be written in the form: 

( ) ( )
2

2 2 2 2 26 5 6 5rp c a a a x bx c a a a x bx     = − + − + − + − −
   

 (16) 

Using eq. (15) in eq. (12), the expression of the mass function is: 

( )2 2 3/270 35 7 5
( )

70

a a a x bx x
M x

c

 − + −
 

=  (17) 

With eq. (14) and substituting ( )Z x  in eq. (11), the charge density is: 

( ) ( )

( )

2 22

2
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a bx
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− +
=

+
 (18) 

Replacing (14), (16) and ( )Z x  in eq. (7), we have: 

( )
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Integrating eq. (19), we have:  

( )

4 3 2

512 ( 1)

1( ) 1

Bx Cx Dx Ex F

A a axy x c ax e

+ + + +

 −= −  (20) 

Where for convenience, we have let: 
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A
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4 2B a b c=  (22) 
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( )6 5 3 215 3 2C a b a b a b c= + +  (23) 
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The metric functions 
2e   and 

2e   can be written as:    
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and for the anisotropy factor Δ, we have  
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The metric for this model is 

( ) ( )

( )
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With η=2, the expression for the energy density is  

( )2 212 20c a a a x bx  = − + −
   (31) 

Replacing eq.(31) in eq. (13), we have the radial pressure as follows:                                                    
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2

2 2 2 2 212 20 12 20rp c a a a x bx c a a a x bx     = − + − + − + − −
   

 (32) 

and the mass function is:    
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Substituting eq. (14) and ( )Z x  in eq. (11), we obtain the charge density as follows:  

( ) ( )

( )

2 22

2
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− +
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+
 (34) 

With the eq. (14), eq. (32) and Z(x), the eq. (7) becomes: 
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Integrating eq. (35), we obtain:   
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(44) 

and for the anisotropy factor Δ, we have: 
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The metric for this model is:  

( ) ( )

( )

4 3 2

5
2

2 192 12 2 2 2 2

2 2
2

2 2 2 2

2 1
1 2

                                                                          ( sin )

Hx Ix Jx Kx L

G a ax dr
ds A c acr e dt
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r d d  
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−
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−
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 (46) 

4. Elementary criteria for physical acceptability 

A physically acceptable interior solution of the field equations must comply with the   

certain physical conditions [10,49,50]:  

(i) Regularity of the gravitational potentials is in the stellar interior and at the origin. 

(ii) The radial pressure should be positive and a decreasing function of radial coordinate. 

(iii) The energy density should be well defined, positive and a decreasing function of the 

radial parameter. 

(iv) 0rp  and 0   in the origin. 

(v) Any physically acceptable solution must satisfy the causality condition where the   

radial speed of sound should be less than speed of light throughout the model, i.e. 

0 1rdp d    

(vi) For the anisotropic case, the radial and the tangential pressure are equal to zero at the 

centre 0,r =  i.e. ( )0 0.r = =  

(vii) In the surface of the sphere, it should be matched with the Schwarzschild exterior 

solution, for which the metric is given by 

( )
1

2 2 2 2 2 2 22 2
1 1 sin

M M
ds dt dr r d d

r r
 

−

   
= − − + − + +   

   
 (47) 

through the boundary r=R where M is the total mass of the star. 

The conditions (ii), (iii) and (iv) mean that radial pressure and energy density should must 

reach a maximum at the centre and decreasing towards the surface of the sphere.    

5. Physical features of the models 

For the case 1, =  we have
2 (0) 1e  = , 

( ) ( )
522 0 2 2 6

1 1
A F ae A c e

  −= −  in the origin  

0r =  and ( ) ( )2 ( ) 2 ( )

0 0
0.r r

r r
e e 

= =

 
= =  This shows that the potential gravitational 
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factor is regular in the origin. In the centre 0,r = (0) 6ac =  and  

( ) 2 20 36 6 ,rp a c a c  = + − both are positive if , , 0.a     In the surface of the star 

,r R=  we have ( ) 0rp r R= =  and  

2 4 2 2 3 2 2 2 2 2 2 2 22 5 25 10 24 2 2 4

2

b a c a c a c a c a c a bc b c bc

R
bc

           



 
− − + + + + + + + 
 

=  

For the pressure and density gradients for all 0 < r < R, we can obtain respectively 

 
( )2 2 3 32 5 4 0

d
c a a r bc r

dr
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= − + −   (48) 
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2 2 5 4 6 5

            2 5 4 0
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 − + + 
 

 (49) 

and according to the equations eq. (48) and eq. (49), the energy density and radial pressure 

decrease from the centre to the surface of the star.  

From eq. (17), we have:   

( )2 2 2 4 370 35 7 5
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70
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 

=  (50) 

and the total mass of the star is: 
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− − + + + + + + +  
 − +  

 
 
 

  
− − + + + + + + +  
 −



 

3
2

2 4 2 2 3 2 2 2 2 2 2 2 2

3 3 3
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8

c

b a c a c a c a c a c a bc bc b c

c
b c

           



 
 
 
 
 
 
 

 
 
 
 

 

    − − + + + + + + +  
   

 
 
  

 

(51) 

Matching conditions for r=R can be written as 

( )2 2 22
1

M
A y cr

R

 
− = 

 
 (52) 

( )

1

2
2

2 1
1

1

M

R acR

−

 
− = 

  −
 (53) 

In order to maintain of causality, the radial sound speed defined as 
2

sr rv dp d =  should 

be within the limit 
20 1srv   in the interior of the star [4]. In this model, we have: 

( )2 2 22 6 5r
sr

dp
v c a a a x bx

d
 


 = = − + − +
 

 (54) 
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and for the eq. (34), we can impose the condition: 

( ) 2 2 3 40 12 2 1 5 2 1a c a a c r b c r    + − + −   (55) 

With 2, =  we have 2 (0) 1,e  =  ( )
522 (0) 2 2 192

2 1
G L ae A c e −= −  in the origin and

( ) ( )2 ( ) 2 ( )

0 0
0.r r

r r
e e 

= =

 
= =  Again, the gravitational potential factor is regular in 0.r =

In the centre (0) 12ac =  and 
2 2(0) 144 12 ,rp a c a c  = + −  both are positive if 

, ,   0.a     In the boundary of the star ,r R=  we have ( ) 0rp r R= =  and 

2 4 2 2 3 2 2 2 2 2 2 2 22 20 400 40 48 2 2 4

2

b a c a c a c a c a c a bc b c bc

R
bc

           



 
− − + + + + + + + 
 

=  

If α=1/10, β=1/5 and γ=0, then we obtain for the stellar radius  

( )2 4 3 22 20 400 40 481
.

2

bc a a a a a ab
R

bc

− − + + + +
=  

This is a new value found for the radius of the star. As the radial pressure and the energy 

density decrease from the centre to the surface of the star, we have that for all 0 < r < R. 

 
( )2 2 3 32 20 4 0

d
c a a r bc r

dr


= − + −   (56) 

 
( ) ( )

( )

2 2 2 3 2 2 4

2 2 3

2 2 20 4 12 20

           2 20 4 0

rdp
c c a a r bc r a a a cr bc r

dr

c c a a r bc r





   = − + + − + −  

 − + + 
 

 (57) 

From (33), we get  

( )2 2 2 4 3140 140 7 5
( )

70

a a a cr bc r cr
M r

c

 − + −
 

=  (58) 

For α=1/10, β=1/5 and γ=0, the total mass of the star is 

( )
( )

( )

2 4 3 2

2

2 2 2

2
2 4 3 2

2

4 4

2

2 20 400 40 48
140 140 7

4

2 20 400 40 48
5

16

( )
70

2 20

                                                   

bc a a a a a ab
a a a c

b c

bc a a a a a ab
bc

b c

M r R
c

bc a



  − − + + + +
  

− +  
   

 
  

− − + + + +  
−   

  
  

= =

−( )( )
3

2
42 3 2

3 3 3

400 40 48

8

a a a a ab

c
b c

 
− + + + + 

 
 
  

 

(59) 



120                      M. Malaver & H. Daei Kasmaei /𝐼𝐽𝑀2𝐶, 10 -02 (2020) 111-124. 

 

 

Matching conditions for r R=  can be written as:   

( )2 2 22
1

M
A y cr

R

 
− = 

 
   and   

( )

1

2
2

2 1
1

1 2

M

R acR

−

 
− = 

  −
. 

For this case, the condition 20 1,srv   also implies that:  

( ) 2 2 3 40 24 2 1 20 2 1a c a a c r b c r    + − + − 

 

(60) 

The figures 1,2,3,4,5 and 6 represent the graphs of pr, ρ, M(x), σ2, Δ and  v2
sr, respectively 

with η=2, α=1/10, β=1/5, γ=0 , a=0.2, b=0.005, c=1 and a stellar radius of r=1.5 km.  

 

 

Figure 1. Radial pressure vs radial coordinate for η=2, α=1/10, β=1/5, γ=0 where a=0.2, 

b=0.005 and c=1.

  

 

Figure 2. Energy density vs radial coordinate for η=2, α=1/10, β=1/5, γ=0 where a=0.2, 
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b=0.005 and c=1.

 
 

 

Figure 3. Mass function vs radial coordinate for η=2, α=1/10, β=1/5, γ=0 where a=0.2, 

b=0.005 and c=1.

 

 

Figure 4. Charge density vs radial coordinate for η=2, α=1/10, β=1/5, γ=0 where a=0.2, 

b=0.005 and c=1. 

In figure 1, it is observed that the radial pressure is finite and decreasing from the center 

to the surface of the star. In figure 2, the energy density is continuous, also is finite and 

monotonically decreasing function. In figure 3, the mass function is strictly increasing, 

continuous and finite. In figure 4, the charge density is non-singular at the origin, 

non-negative and decreases. In figure 5, the measure of anisotropy is continuous in the 

stellar interior and   vanishes at the center and this means that the radial and tangential 
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pressures should be equal in 0.r =  The figure 6 shows that the condition 
20 1srv  is 

maintained throughout the interior of the star and satisfy the causality, which is a physical 

requirement for the construction of a realistic star [4]. 

 

Figure 5. Anisotropy vs radial coordinate for η=2, α=1/10, β=1/5, γ=0 where a=0.2, 

b=0.005 and c=1.

 

 

Figure 6. Radial speed sound vs radial coordinate for η=2, α=1/10, β=1/5, γ=0 where 

a=0.2, b=0.005 and c=1.

 
In addition, it needs to be considered that Einstein Field Equations lie in the category of 

Systems of Differential equations and many new analytical and approximate methods can 

be suggested to solve these types of equations [51-55].   

6. Conclusion       

Considering a particular form of gravitational potential factor depending on an adjustable 

parameter and an electric field intensity, we have generated a physically valid category of 

exact solutions to the Einstein-Maxwell system of equations with a quadratic equation of 

state that correspond to anisotropic compact sphere. The radial pressure, energy density, 

anisotropy, mass function, charge density and all the metric coefficients behave well inside 
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the stellar interior and are free of singularities. All the obtained models are physically 

reasonable and satisfy the physical characteristics of a realistic star as are the regularity 

of the gravitational potentials at the origin, cancellation of anisotropy in 0,r =  radial 

pressure finite and decreasing of the energy density and the radial pressure from the 

center to the surface of the star. These solutions match with the Schwarzschild exterior 

metric at the boundary for each value of adjustable parameter.  

The values calculated for mass and stellar radius could correspond to compact objects 

with real existence. With 2, =  it may be possible to explain the stability of compact 

stars with masses ~ 0.6Msol, as some kinds of white dwarfs with 1.5 km.r =   

The constants α, β and γ have been chosen in order to maintain the causality condition 

and the regularity of metric potentials inside the radius of the star. The MIT bag model 

can be recovered as a particular case of this work by taking 0,  0 =   in eq. (13) and 

generates families of exact solutions for the Einstein-Maxwell field equations for 

modeling relativistic compact objects, strange stars and configurations with anisotropic 

matter distribution. 
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