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Abstract. An analysis of heat transfer in the flow of a viscous, incompressible fluid along an 
infinite porous plate is presented when the plate is subjected to a transverse sinusoidal suction. The 
flow field becomes three-dimensional due to this type of suction velocity. Expressions for the flow 
and temperature fields are obtained by series expansion method. It is found during the course of 
discussion that due to more addition of viscous dissipative heat the temperature in the boundary 
layer increases or decreases accordingly as  0E 0  or 0E 0 . 
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Nomenclature 

pc   specific heat at constant pressure 

E   Ecker number 
K   thermal conductivity 
p   pressure  
p   dimensionless pressure 

rP   Prandtl number 
q   rate of heat transfer 
q   dimensionless rate of heat transfer 
T   temperature of fluid 
, ,u v w  Velocity components along ,  , x y z respectively 
, ,u v w  dimensionless velocity components along ,  , x y z  respectively  

0U   uniform free stream velocity 

0 0V   constant mean suction velocity 
,  , x y z  co-ordinate system 

,y z   dimensionless co-ordinate normal to the main flow direction 
  dimensionless shear stress in the main flow direction 
  dimensionless temperature 
  amplitude of the fluid 
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  kinematic viscosity 
  density of fluid 

  Suction parameter 
  viscosity 
  dissipation function 

 

1. Introduction 

The problem of laminar flow control has become very important in recent years 
particularly in the field of aeronautical engineering owing to its application to reduce drag 
and hence to enhance the vehicle power by a substantial amount. Several methods have 
been developed for the purpose of artificially controlling the boundary layer and detailed 
account of such methods has been given by Schlichting [5]. The boundary layer suction 
is one of the effective methods of reducing the drag coefficient which entails large energy 
losses. By this method the decelerated fluid particles in the boundary layer are removed 
through the holes or slits in the wall into the interior of the body and thus transition from 
laminar to turbulent flow may be delayed or prevented which causes increase of drag 
coefficient. The effects of different arrangements and configurations of the suction holes 
and slits have been studied extensively by various scholars and development on the 
subject has been compiled by Lachmann [4] and Dube [2]. Most of the investigators have, 
however, confirmed themselves to the two-dimensional flow only. 

Dube [1] and Gersten et.al [3] studied the flow and heat transfer along a plane porous 
wall with transverse sinusoidal suction. By assuming such a suction velocity distribution 
transverse to the potential flow, the flow in the boundary layer becomes three-dimensional. 
In their study the heat due to viscous dissipation has been neglected. However, there are a 
number of physical situations where the heat due to viscous dissipation is present in the 
subsonic flow of an incompressible viscous fluid. Also, in the case of fluid with high 
Prandtl number the viscous dissipative heat is always present even in slow motion. 

Hence, in this paper we propose to investigate the transfer of heat in the flow of a 
viscous incompressible fluid along an infinite porous plate with transverse sinusoidal 
suction by which the flow becomes three-dimensional over the surface of the plate in the 
presence of viscous dissipative heat. 

2. Mathematical analysis  

We consider the flow of a viscous incompressible fluid along an infinite porous plate with 
transverse sinusoidal suction. A co-ordinate system is assumed with plate lying 
horizontally on x z  plane. The x -axis is taken along the plate, being the direction of 
the flow, and the y -axis is taken normal to the plate and is directed into the fluid flowing 
laminarly. Since the plate is considered infinite in x -direction, so all physical quantities 
will be independent of x , however, the flow remains three-dimensional because of the 
variation of suction velocity. Thus, the flow is governed by the following equations: 

Continuity equation 

0.v w
y z

 (1) 

Momentum equations 
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2 2

2 2 ,v w u uv w
y z y z

 
(2) 

2 2

2 2
1 ,v w p v vw

y z y y z
 

(3) 

2 2

2 2
1 .v w p w wv w

y z z y z
 

(4) 

Energy equation 
2 2

2 2 ,p
T T T Tc v w K w
y z y z

 (5) 

where 
2 2 22 2

2 .v w u w v u
y z y y z z

 

All the physical variables are defined in nomenclature.  
The boundary conditions are 

0
0

0 0

0 : 0,  1 cos ,  0,  ,
.

:          ,  ,  0,  ,  

w
v z

y u v v w T T

y u U v v w p p T T
 (6) 

The negative sign in the boundary conditions for v indicates that the suction is 
towards the plate. The subscripts w  and denote physical variables at the plate and 
in the free stream respectively. 

On introducing the following non-dimensional quantities: 

0 0

0 0

0

0 0

2
0

2
0

,  ,  ,  ,

,  ,  ,

,  ,  .

w

p
r

p w

U y U z u vy z u v
U U

T TVww
U U T T

c Upp P E
K c T TU

 (7) 

Equations (1) to (5) reduce to the following non-dimensional form 

0,v w
y z

 (8) 

2 2

2 2 ,u u u uv w
y z y z

 (9) 

2 2

2 2 ,v v p v vv w
y z y y z

 (10) 

2 2

2 2 ,w w p w wv w z
y z z y z

 (11) 

2 2

2 2
1 ,
r

v w E
y z P y z

 (12) 
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where 
2 2 22 2

2 .v w u w v u
y z y y z z

 

The corresponding boundary conditions become 
0 : 0,  1 cos ,  0,  1,

.
:          1,  ,  0,  ,  0

y u v z w
y u v w p p

 (13) 

Assuming the amplitude of the suction velocity to be small ( 1 ). We now 
represent the velocity components, pressure and temperature in the neighbourhood of the 
plate as follows: 

2
0 1 2

2
0 1 2

2
0 1 2

2
0 1 2

2
0 1 2

...

...
....

...

...

u u u u

v v v v

w w w w

p p p p

 (14) 

Substituting (14) in equations (8) and (12) and comparing the coefficients of like 
powers , and neglecting those of 2 , we get the following equations as the terms free 
from : 

0 0,v  (15) 

0 0 0 0,u v u  (16) 

0 0 0 0 ,v v v p  (17) 

0 0 0 0,w v w  (18) 
2

0 0 0 0 ,r rv P EP u  (19) 
where the primes denote differentiation with respect to y . The corresponding boundary 
conditions are: 

0 0 0 0

0 0 0 0 0

0 : 0,  ,  0,  1,
.

: 1,  ,  0,  ,  0
y u v w

y u v w p p
 (20) 

The solutions of equations (15) to (19) under the boundary conditions (20) are 
0 1 exp( ),u y  (21) 

0 1 1(1 )exp( ) exp( 2 ),rE P y E y  (22) 

0 0 0,  0,  ,v w p p  (23) 

where 1 .
2(2 )

r

r

EPE
P

 This is the solution of a two-dimensional problem in the presence 

of heat due to viscous dissipation. 
The terms as the coefficient of , with the help of (23) give following equations: 

1 1 0,v w
y z

 (24) 

2 2
0 1 1 1

1 2 2 ,
u u u uv
y z y z

 (25) 

2 2
1 1 1 1

2 2 ,v p v v
y y y z

 (26) 
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2 2
1 1 1 1

2 2 ,w p w w
y y y z

 (27) 

2 2
0 01 1 1 1

1 2 2
1 2 .
r

u uv E
y y P y yy z

 (28) 

The corresponding boundary conditions are: 
1 1 1 1

1 1 1 1 1

0 : 0,  cos ,  0,  0,
.

: 0,  ,  0,  0,  0
y u v z w

y u v w p
 (29) 

These are the linear partial differential equations which describe the three-dimensional 
flow. To solve the equations (25) to (28), we assume 1u , 1v , 1w , 1p and 1  of the 
following form 

  
1 11( , ) ( )cos ,u y z u y z  (30) 

1 11( , ) ( )cos ,v y z v y z  (31) 

1 11
1( , ) ( )sin ,w y z v y z  

(32) 

1 11( , ) ( )cos ,p y z p y z  (33) 

1 11( , ) ( )cos ,y z y z  (34) 
where the expressions for 1( , )v y z  and 1( , )w y z  have been chosen so that the equation of 
continuity (24) is satisfied. Substituting (30) to (34) in equations (25) to (28), we obtain the 
following set of equations: 

2
11 11 11 11 0 ,u u u v u  (35) 

2
11 11 11 11,v v v p  (36) 

2
11 11 11 11,v v v p  (37) 

2
11 11 11 11 0 0 02 ,r r rP P v P Eu v  (38) 

where the primes denote differentiation with respect to y . The corresponding boundary 
conditions are: 

11 11 11 11

11 11 11 11

0 : 0,  ,  0,  0,
.

: 0,  0,  0,  0
y u v v
y u v p

 (39) 

Solving the equations (35) to (38) under the boundary conditions (39) and using 
equations (30) to (34), we get 

1( , ) exp( ) exp( ) exp( ) cos( ),
2 2

n nu y z n y y ny z
n n n

 
(40) 

1( , ) exp( ) exp( ) cos( ),v y z ny n y z
n

 (41) 

1( , ) exp( ) exp( ) sin( ),w y z ny y z
n

 (42) 

2

1( , ) exp( )cos( ),np y z y z
n

 (43) 
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( 2 ) ( 2 )1 2

( ) ( )3
1 4

( )
5

2 2

( , ) cos .
1

r r

my y my y

n P y P ymy myrr

r

my n y

nN nNe e e e
A B
P NPy z e e N e e z

n P

N e e

 (44) 

where 
1 2 1 22 2 2 2 2

1 1
1 2 1 3

1
4 5

1 14 ,  4 ,
2 2
4( ) ( 2 ),  5 4 ( 2 ),

(1 ) (1 )( ),  ,  ,
2

(1 ) 2,  .
3 ( ) 2

r r r

r r

r

m P P n

A P B n P n
n E EE nN N E N

n n
n E nE nN N

n P n n

 

Since the expressions for 1( , )v y z  and 1( , )w y z  are of the same form as obtained in 
reference (5), so there will not be considered any more. Substituting equations (20), (21), 
(40) and (41) in equation (14), we can obtain the expressions for the main flow u and the 
temperature . 

3. Results and discussions 

For the purpose of discussing the effects of various parameters on the flow and temperature 
fields near the plate, numerical calculations are carried out for different values of , rP  
and E . In order to be realistic, the values of Prandtl number are chosen 0.71 and 7 
approximately, which correspond to air and water respectively at 20 CC . The other value 
of rP  is taken arbitrarily. The Eckert number would take positive or negative accordingly 
as the temperature difference or 0wT T  where wT  is the wall temperature and 
T  is the free stream temperature. Both these cases physically correspond to the addition 
of heat due to viscous dissipation. The value of Eckert number E are very small for an 
incompressible fluid. Thus, to be more appropriate from the practice point of view, the 
values of the Eckert number have been chosen 0.05  and 0.05  and that of the suction 
parameter between 0 and 1.  

 
Figure 1. Velocity profile for 0.2 , 0z . 

 
The main flow velocity profiles are shown in Figure 1 and it is observed that the velocity 

increases with the increase in the suction parameter . 
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The temperature profile for the cases 0wT T  and 0wT T , i.e., for Eckert 
number positive and negative are shown in Figures 2 and 3 respectively. From Figure 
2, we observe that the temperature in the boundary layer increases due to more addition 
of viscous dissipative heat but decreases with increasing in the case of air ( 0.71)rP  
and water ( 7)rP  both. Also, there is a drop in the temperature as Prandtl number 
increases from 5 to 7. Similarly Figure 3 shows that the boundary layer temperature falls 
owing to greater viscous dissipative heat or greater suction parameter for both air and 
water. In this case also the temperature decreases with increasing Prandtl number. 

 
 

 
     Figure 2. Temperature profile for 0.2  and 0z . 

 

 
   Figure 3. Temperature profile for 0.2  and 0z . 

 
rP   E  

I 0.5 0.71 0.01 
II 0.5 0.71 0.05 
III 1.0 0.71 0.01 
IV 0.5 7.0 0.01 
V 0.5 7.0 0.05 
VI 1.0 7.0 0.01 
VII 0.5 5.0 0.01 

  rP E  
I 0.5 0.71 -0.01 
II 0.5 0.71 -0.05 
III 1.0 0.71 -0.01 
IV 0.5 7.0 -0.01 
V 0.5 7.0 -0.05 
VI 1.0 7.0 -0.01 
VII 0.5 5.0 -0.01 
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The main flow velocity being known, the shear stress in the main flow direction is 
obtained as follows 

0 0

( ) ( ) cos .
2 2

y

u
U y

n n nn z
n n n

 (45) 

The values of the shear stress are given in Table 1 and it is clear from these values that the 
shear stress increases with the increasing suction of the boundary layer. 

Table 1. Shear stress for 0.2  and  0z . 

 0.2 0.5 1.0 
 1.6014 2.1363 6.5979 

 
From the temperature filed, we can now calculate the expression for the rate of heat 
transfer as 

00

1 1

31 2

4 5

 1 2

2 2
( 2 ) ( 2 )

1   cos
( )

yw

r

r
rr

r

r

q vq
yU K T T

P E E

P NnN nN
m m n m n PE P A B P z

n
N m P N m n

 (46) 

The numerical values of the rate of heat transfer q are given in Table 2. It is found that 
due to greater viscous dissipative heat the rate of heat transfer increases in air 
irrespective of the fact whether the Eckert number is positive or negative. 

Table 2. Rate of heat transfer q : 0.2  and 0z . 

 \E Pr  0.71 5 7 
0.5 0.01 0.35891 2.71028 3.87323 
0.5 0.05 0.37921 2.46804 3.79688 
1.0 0.01 0.72808 5.30583 8.04565 
0.5 -0.01 0.36252 2.69583 3.91140 
0.5 -0.05 0.36975 2.79087 3.98775 
1.0 -0.01 0.73542 5.70470 8.13078 

 
In the case of large Prandtl number, owing to more addition of viscous dissipative heat, the 
rate of heat transfer decreases or increases accordingly as 0 or 0E . It is also evident 
that an increase in the suction parameter give rise to an increase in the rate of transfer. 
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