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Abstract. This paper present a computational technique that called Tau-collocation method
for the developed solution of nonlinear integro-differential equations which involves a pop-
ulation model. To do this, the nonlinear integro-differential equations are transformed into
a system of linear algebraic equations in matrix form without interpolation of non polyno-
mial terms of equations. Then, using collocation points, we solve this system and obtain the
unknown coefficients. To illustrate the ability and reliability of the method some nonlinear
integro-differential equations and population models are presented. The results reveal that
the method is very effective and simple.
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1. Introduction

Large varieties of physical, chemical and biological phenomena have been modeled
by nonlinear equations, like ordinary or partial differential equations, integral and
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integro- differential equations. Recently a lot of attention has been devoted by
researchers to formulate the physical phenomena contain integro-differential equa-
tions, these equations arises in many fields like fluid dynamics, biological models
and chemical kinetics.

Some papers have been devoted to find analytical and numerical solution by Ado-
mian decomposition method [30], Homotopy analysis method[1], Homotopy per-
turbation method [3], Haar wavelets [27], lagrange functions and Lagrange inter-
polation [25], [26], Taylor polynomials [19], Chebyshev polynomials [7], sine-cosine
wavelets [13], hybrid Legendre and Block Pulse functions [20] and so on.

The idea of the Tau-collocation method for ordinary differential equations with
some supplementary conditions is first given by Liu [15] in 1986. In [16] this method
is applied successfully to find the numerical solution of eigenvalue problems and in
[5] and [31] investigated the Tau-Collocation method in details. As same as idea
the Tau method, a perturbation term is added to right hand side of the integro-
differential equations to form Tau method. The formulation of the Tau-collocation
uses a set of collocation point, the zeros of Chebyshev or Legender polynomial, for
solving integro-differential equations. Recently, Allahviranloo et al. provided an
efficient numerical approach for multi-order fractional differential equations based
on the Tau-Collocation method [2]. Moreover the approximate solution for the
nonlinear Volterra-Fredholm-Hammerstein integral equations is obtained by using
the Tau-Collocation method in [9].

The structure of this paper is organized as follows: In Section 2, the detailed
theorem and formulation of the Tau-collocation method for linear Volterra integro-
differential equations is brought. In Section 3, the same is done for linear Fredholm
integro-differential equations. In Section 4, we present a method for converting
nonlinear equations to linear equations. In Section 5, the Tau-Collocation error
estimator function is obtained. Some numerical results are given to clarify the
method in Section 6. At the last section, we will have a conclusion of our study.

2. Population model

A mathematical formulation of populations only started in the eighteenth century.
In 1767, Leonhard Euler produced the first mathematical model of a human popu-
lation. This was closely followed, in 1772 by Johann-Heinrich Lambert, using data
on human mortality in London (1753-1758), who gave a mathematical formulation
of the law of mortality. England has a rich source of data on populations, derived
from a steady collection over centuries. In 1798, Thomas Malthus formulated the
rate of growth of population size using a first-order differential equation.

Historically, the modern theory of the population dynamic started with Alfred
James Lotka (1880-1949), an American Biophysicist. He worked in particular, on
the stability of the age composition of a population. In 1907, he published an article
[17] which contained two fundamental equations in the study of populations. The
most important paper [28], which shall be considered as a rigorous first formulation
on the subject of Population Mathematics was that published in 1911 by Lotka
and F.R. Sharpe [23]. This equation tracks the rate of female births in the case
of a stable population. The basic Lotka one-sex deterministic population model is
demonstrated by

u(z) = g(x) + /Of’f K(x — t)u(t)dt (1)

where K (t — z) is net maternity function of females class age = at time ¢, g(t) is
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contribution of birth due to female already present at time ¢ and u(t) is the number
of female births. In this paper, we consider a more general structure of the equation
(1). Let us consider the m-th order nonlinear integro-differential equation in form

Z;jnzo pk(x)%kk(u(x)) + A1 fol K, (2177 t)Gl(t? U(t))dt + A2 fom KQ(xv t)GQ(t> u(t))dt = g(x)
with the given supplementary conditions
(Bj’u):’}/]? ]:LQ”m_l (2)

where /; is a set of linear evaluation functional acting on u(z) and its derivatives
and ('yj)gn:_ll are constant. (¢;,u) = 7; stands for the initial, boundary or mixed

conditions of the nonlinear integro-differential equations under consideration. In
Eq.(2), A1 and Ay are suitable constant, pg(z), g(x), K1(x,t) and Ky(z,t) are the
given continuous functions on the interval 0 < z,¢ < 1 and u(z) is a unknown
function. Moreover G (¢, u(t)) and Ga(t,u(t)) are given continuous functions which
are nonlinear with respect to u(t) and t.

3. Tau-collocation method

In this section, first we recall the definitions of Tau-Collocation method. Our aim
is to approximate the solution u(¢) by the truncated series

u(z) = ZaiLi(a:) =aLX
=0

to be an series expansion of the exact solution of Eq.(2), where L;(x), i = 0,1, ...
are Legendre polynomial, L is a non-singular lower triangular matrix and

Iy 0 0 ---
5 3 t lo1l22 O ---
Xz(l,x,x,x,...) ) a:<a07a17a27"') ) L: l31l32l33...

We look for an approximate solution uy(x) of the problem (2) in the form

N

un(z) =) aiLi(x) = a, LX (3)
=0

where a,, = (ao,al, vy GN, 0, - ) is a vector of unknown coefficients and LX =

t
(Lo(®), L1 (1), La(t), ..) -
To find the approximate polynomial solution uy(x) for (2), as same as the idea of
the Tau Method [22], a perturbation term Hy(z) is added to the right hand side
of equation (2). Also by substituting uy(x) from (3) in (2) we have

{ ST Pk (@) e (u(@)) + M1 ) K1z, )Gt ult))dt + Ns [} Koz, t)Galt, u(t))dt = g(z) + Hy(z),

(4)
(EJ,U(JZ‘)) =7 ] = 11 '“779'7
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The perturbation term Hpy(z) usually chosen as

Hy(x) = g(x, 70, T1s ooy Tp—1) VN—941(2).

Where g(t,79,71,...,Tp—1) is a function of ¢ with some free parameters 7;, i =
1,2,...,0 — 1 and Vy_y41(x) is an orthogonal polynomial with degree N — ¢ + 1.
Usually, the orthogonal polynomial is chosen in the shifted Chebyshev or Legen-
dre polynomial [16]. Note that the free parameters 7;, i = 1,2,...,¢0 — 1, inside
function g¢(x, 1,71, ..., Tp—1) balance the over determined system of linear alge-
braic equations. The format of perturbation term Hy(x) is selected for producing
exactly N — ¢ + 1 zeros of the orthogonal polynomial Vi _yg.1(z). It is not neces-
sary to consider the detail of the function g(t, 79,71, ..., 7p—1), i.e. the number of
free parameter ¢ throughout the computation because the zeros of the orthogonal
polynomial Viy_y.1(z) are used for collocation during the formulation process of
the Tau-Collocation method for the nonlinear integro-differential equations [19].
The operational approach of Tau-Collocation method requires that the nonlinear
integro-differential Eq.(4) be expressed in the matrix representation of the problem.

3.1  Matrix representation of ordinary differential part

THEOREM 3.1 Let uny(x) = Zij\io a;Li(r) = a LX. The it" derivative of uy(x)
with respect to t can be written as

——un(z) = a L I(x) (5)

where I (x) is a column vector and

0 ) forr=1,..k;
the 1 —th element of II(x) =

(T(iIi)k!)!xr_l_k yforr=k+1,..,N+1.

Proof .1t is proved directly by induction. [ |

3.2  Matrix representation for the integration term

Let the nonlinear analytic function G(¢,u(t)) defined on [0, z] xR, be approximated
as:

Ga,un(2) = ) ym(@)uf(z) (6)

For use of the Tau-Collocation method, u}}(z) must be written as the product of a
matrix and a vector. The following result is concerned with approximation of the
nonlinear function.

LEMMA 3.2 (See [9]) Let un(z) = Zf;io a;Li(x) = a LX be the orthogonal series
t
expansion of un(x), where X = (1,x,x2,~-> ,a= <a0,a1,a2,-~ ,aN,O,O,...> be

infinite vectors and L is a non-singular lower triangular matriz. Then

aLX a LX = aB(z)LX (7)
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where B is an diametrical matriz as:

N e ..

~oa;Li(x),if i=j i, j=1, 2, ...;

B, _ Zl_o aiLi\T), , , ) &y ;
() {0, otherwise.

and for any positive integer m, the relation
uf(z) = a(B(z))" ' LX (8)

s valid.

Now, we present the matrix representation of the integration term for a class
of integro-differential equations. Also, we show that [ K (z,t)uy(t) can be repre-
sented as the product of a matrix and vector.

THEOREM 3.3 (See [9])Let (x4)}\_, be the set of the (N+1) Gauss or Gauss-Radau,
or Gauss-Lobatto points of the shifted Legendre polynomials in [0, 1] and (wx)N_,
be the corresponding quadrature weights. Assume that the approximated solution
un(x) is given by Eq.(3) and K is a bivariate given continuous function, then

/ K (zg, t)uly(t)dt = g@m_l(:zg) (9)
0

where

@Z?fl(wg) = xg(zgzo l?l(xg,snxg)(zilio aiLi(s,ﬁxg))mflw,ﬁ) ji=1,1=1,2,..., m=1,2,.. k.

Remark 1 Clearly, for fol K(z,t)uf(t), we don’t need to use the change of variable,
and by Gauss quadrature formulas, we obtain

1
/K(w,t)u%(t):a(aml(xg) , m=12,....k, £=0,1,...,N.
0

where
- N N
Oz =S (Kl(xg,sﬂ)(z aiLi(sH))mfle) =1, 1=1,2,..
k=0 =0

3.3 Matrix representation for supplementary conditions
We introduce the vectors £ = ({1, ...,£y,0,...) and v = (71, ..., Ym-1,0,...) and the

matrix B = [/b\,]] such that gij = 0j(Li(x))N, for j=1,...,9.
We have un(z) = Zﬁo a;Li(x), then the supplementary conditions take the form:

N N
Luy(z) = (Lrun (@), ..., bgun (2),0,..) = (0> aiLi(x), ... by Y a;iLi(x),0,...)
1=0 =0

= a(l(Li(2))Ng, oo 0 (Li(2))N0,0,...) = a(by, ..., by, 0, ...).

We conclude that
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3.4 Tau-Collocation approximation of the Population equation

Here we apply the previous results for constructing the Tau-Collocation approxi-
mate solution of the Population equation

{ Sro pr(m) dor (@) + A1 fy K1z, )G (tult))dt + A [y Koz, t)Ga(t, ult))dt = g(x) + HN(J?il
G u(x) =y J=1,..,9,

Without loss of generality, we can assume that in Eq.(11), the nonlinear analytic
function may be expanded as

k k
=D Ou (), Gatult) = Y (™ () k<mn

mi =0 mo =0

By considering I?ml(x’t) = Kl(t’x)’YTrn(t) and sz(x7t) = K2(ta$):um2(t)’
Eq.(11), is as follows:

Zk Opk(‘r)dzk(uN(x))+)\l M= Of() ma (2, 1) “N ( )dt+)\2 my— Ofo ma (2, 1) “N ( )dt = g(x)

Following Theorem 3.1, Theorem 3.3, Remark ! and Eq.(4) in collocation point
(z0)o, Eq.(12) is as follows

a( S o pe(@e) L Mg (ze) + A S8 0™ zp) + X 308, émz_l(@)) = g(x)(12)

We denote
m .. k k .
nle) =) pr(we) Llp(ze) + M0 D> 0™ Hag) + A2 Y 072 (xy)
kJZO m1=0 m2:0

Then the formula (12) can be written in compact form:

an(ze) = f(x0) (13)

Therefore, to find the coefficient a = (ag, ai, ..., an, 0, ...), by Combining the system
(10) and (13) we have the following nonlinear system of algebraic equations:

QGN ZRN (14)

GN = [B‘H] s R = (1, FN_§+1).
Solving this linear system of algebraic equations by any method provides textbfa =
(a()a ai,...,aN, 07 e )
4. Numerical examples
In this section, first we present an example to illustrate the procedure of the Tau-

Collocation method. Moreover, we evaluate the numerical solution of the problem
(2) to show the efficiency of the present method in comparison with other methods
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by solving other examples.The computations associated with the examples are
performed using Matlab.

Ezample 4.1 (see[32]) Consider following integro-differential equation

9 1
u”(z) + xu/ (x) — zu(z) = 822 — 5535* + 723 — 32t + 4+ / zu(t)dt (15)
-1

with conditions

By applying the technique described in preceding section with N = 3 and by
using Chebyshev zeros for collocation point (x; = —0.7071 , z2 = 0.7071), we
approximate solution as

T 2z —x —2x
—$2 +x .. —1'2 4+
E(QE) — —1'3 + 21.2 +2 5 H(-T) = 2% s 53(1)) = —1’3 n 21’2 Lo 2%
—a* 4+ 323 + 62 0 —a* 4+ 323 + 62
2.1213 —2.1213 1 0
~ —1.2071 0.2071 0 1
= [e(z0)lés(@1)] = | < rogg  paria | F2=(297185.4761) . B=| = ¢
—18.5919 19.5919 0 -3

Then we have

1 0 21213 -2.1213
0 1 -—-1.2071 0.2071

A= 10 5528 6.4714 , R= (7.0000 —4.0000 2.9718 5.4761)
0 —3 —18.5919 19.5919
By solving system (ag,a1,a2,a3)A = R, we get a9 = 7.0000 , a1 =

—4.0000 , az = 2.0000 , a3 = 3.0000 and the Tau-collocation approxima-
tion is uz(x) = 32> + 202 — 42 + 7, which is the exact solution.

Example 4.2 Let us consider the Fredholm integro-differential equation

1 .
22/ (x) + e®u(x) +/ Ty () dt = (2 4 €®)e” + 2sinh(z +2)

—1<z<1
-1 (x+2)

with u(—1) = 1.The exact solution of this problem is u(z) = e®.In Table 1, we
compare the absolute errors obtained by the present method and the Tau method

[11].

Ezxample 4.3 Let us consider the following nonlinear integro-differential equation

u(z) = 2% + 008(13)_1 + /01 t2sin(u(t))dt 0

N
8

N
—_
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Table 1. Numerical results for Example 4.2.

N=10 N=15
b Tau-collocation Tau Tau-collocation Tau

-1.00 3.13353 x 10~10 9.57838 x 10~4 5.55111 x 10~ 15 3.11849 x 10— 6
-0.75 1.33032 x 1010 8.90142 x 10~° 4.32986 x 1015 2.03418 x 10~7
-0.25 2.55736 x 10~ 11 1.18903 x 105 7.77156 x 10716 1.42467 x 10~7
0.25 1.84971 x 109 1.09536 x 10~ 6.66133 x 1016 1.42467 x 10~7
0.75 1.85911 x 1010 3.07668 x 10~* 4.44089 x 1016 6.42180 x 10~7
1.00 2.52126 x 1010 9.57838 x 10~* 1.77635 x 10~1° 3.11849 x 10—6

The exact solution of this problem is u(x) = x3. The absolute errors for mentioned
method is compared by the Tau method [24] in Table 2.

Table 2. Numerical results for Example 4.3.

N=10 N=15
X Tau-collocation Tau Tau-collocation Tau
0.00 3.40475 x 107 3.4 %1073 3.83574 x 10~8 1.3x 1074
0.20 3.40475 x 107 3.4 %1073 3.83574 x 10~8 1.3x 1074
0.40 3.40475 x 107 3.4 %1073 3.83574 x 10~8 1.3x 1074
0.80 3.40475 x 10~7 3.4x1073 3.83574 x 108 1.3x 1074
1.00 3.40475 x 10~7 34 %1073 3.83574 x 10~8 1.3x 1074

In rest of the examples, we are going to compare Tau-collocation method
with recently research such as Bernsteins approximation, meshless method and
sinc-collocation method. It is shown that the Tau-collocation method yields
comparable or better results.

Ezxample 4.4 (see[18]) Consider the linear Volterra integral equation
xr
u(x) = cos(x) — e*sin(x) —l—/ e“u(t)dt , 0<z<1 (16)
0

where the exact solution is u(z) = cos(z) . The computational results have been
reported in Table 3.

The maximum absolute error of Bernsteins approximation in [18] obtained || E1g|| =
maxo<z<1 |[Eio(z)| = 3.340973 x 10710,

Table 3. Numerical results for Example 4.4.

N=10 N=15

Tau-collocation

Tau-collocation

0.00 0 0

0.20 4.36839 x 1012 1.11022 x 1016
0.40  9.58733 x 1012 2.22044 x 10~16
0.60 1.04368 x 10— 11 4.44089 x 1016
0.80 5.15421 x 10~12 9.99200 x 10~16
1.00 1.06668 x 10—11 3.10862 x 10~15

5. Application of the population model

In this section, we will apply the Tau-Collocation method for the population model.
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N=10 N=15
T

Log,0(Error)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1. Graph of the Tau-Collocation approximation error of Example 5.1 in Legendre-Gauss point.

Ezample 5.1 Let us consider the number of female births for g(x) = e*, K(z,t) =
x —t and z € [0,1]. Then, Eq.(1) converts to the problem

u(z) =e* + /Ox(:c — t)u(t)dt. (17)

The exact solution of this problem is u(z) = 1 |e® + cos(z) + sin(m)}.

It is seen from Fig. 1 and Table 4 that the accuracy of the solutions increases as
N is increased.

Table 4. Numerical results for Example 5.1.

N=10 N=15
X Tau-collocation Tau-collocation
0.00 2.14435 x 10— 11 3.10862 x 1015
0.20 1.01314 x 10— 11 4.44089 x 10—16
0.40  2.09956 x 10— 6.66133 x 10~16
0.60  2.09248 x 10— 6.66133 x 10716
0.80  1.03508 x 10— 1.33226 x 10—1°
1.00 2.16515 x 10—11 8.88178 x 10~16

Example 5.2 (From [11],[12] )Consider the following population model
u'(z) + u(z) — / 2(1+ 22)e!@ Dy (t)dt =1+ 22 ) 0<z<1 (18)
0

with «(0) = 1, whose exact solution is given by u(z) = e*".
The computational results for various N, with Legendre bases and in Legen-
dre—Gauss point have been reported in Table 5.

Example 5.3 (see[8]) Consider the following nonlinear population model

xT
+/ tre~ Mgt 0<zr<1
0

with u(0) = 0. The exact solution of this problem is u(z) = x.
The maximum absolute error of meshless method in [8] obtained |[|Eia9| =
maxo<z<1 | E120()] = 1.26 x 1076,
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Table 5. Numerical results for Example 5.2.

N=10 N=15
b Tau-collocation Tau Tau-collocation Tau
0.00 0 0 0 0
0.20 1.38457 x 10~7 5.72156 E x 1012 7.32525 x 10713 1.63300F x 10~16
0.40 8.99195 x 108 2.38451F x 10~8 5.76205 x 10~13 1.08446E x 10— 11
0.60 4.20218 x 10~8 3.18608F x 106 1.40332 x 1012 7.28709E x 109
0.80 1.44747 x 107 1.04921F x 10—4 1.49502 x 10—12 7.51118E x 10~ 7
1.00 6.74720 x 10~6 1.61516F x 10—3 4.33431 x 1013 2.78602E x 102
N=10 N=15
107° . 107"

Log‘ 0(Error)
Log‘ 0(Error)

| 107"°F FU Ll ) ,—Jb ]
107k [lL ]
1046 L |
107° E

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 2. Graph of the Tau-Collocation approximation error of Example 5.3.

Numerical results in Table 6 and Figure 2 show the robustness of the method.
We observe that the extended Tau-Collocation approximation is an extremely good
approximation to solution of the population and is much better in fact than the
other existing methods.

Table 6. Numerical results for Example 5.3.

N=10 N=15

X Tau-collocation Tau-collocation
0.00 0 0

0.20 1.37070 x 10— 11 2.77555 x 10~17
0.40  6.58101 x 10~12 5.55111 x 10—17
0.60 1.54539 x 10—11 1.11022 x 10—16
0.80 4.95783 x 10— 11 2.22044 x 1016
1.00  4.94000 x 10~2° 1.00808 x 10~ 13

Ezample 5.4 (See [21]) Consider the following population model

5 26 7 T
u(x):x_g;2_"”+f”_‘”+/ wtu(t)d v €[0,1]
£ 5 6,

whose the exact solution is u(z) = x — z2.

The maximum absolute error of sinc-collocation method in [21] obtained || E1g|| =
maxo<z<1 | Eo(z)| = 2.56270 x 1076,
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Table 7. Numerical results for Example 5.4.

N=10 N=15
X Tau-collocation Tau-collocation
0.00 1.45831 x 1013 7.82477 x 10~ 14
0.20 4.00163 x 10—? 1.35558 x 1013
0.40  3.21796 x 108 2.08444 x 1010
0.60 1.10285 x 107 2.08143 x 10~8
0.80 2.67241 x 106 5.31782 x 107
1.00  5.24484 x 106 6.41715 x 107

Conclusion

In this paper, we have successfully applied the Tau-Collocation method to solve
the population model. Our result have shown a good agreement and high accuracy
for the solution of mentioned problems. Moreover any nonlinear integro-differential
equation can be solved by the present method. One of the main advantages of the
proposed approach is we don’t need interpolation polynomial for determining the
non-polynomial terms of equation.
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