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Approximate Solution of System of Nonlinear Volterra
Integro-Differential Equations by Using Bernstein Collocation
Method
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Abstract. This paper presents a numerical matrix method based on Bernstein polynomials
(BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-
differential equations under initial conditions. The approach is based on operational matrices
of BPs. Using the collocation points, this approach reduces the systems of Volterra integro-
differential equations associated with the given conditions, to a system of nonlinear algebraic
equations. By solving such arising nonlinear system, the Bernstein coefficients can be de-
termined to obtain the finite Bernstein series approach. Numerical examples are tested and
the resultes are incorporated to demonstrate the validity and applicability of the approach.
Comparisons with a number of conventional methods are made in order to verify the nature
of accuracy and the applicability of the proposed approach.
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1. Introduction

Many problems in physics and engineering give rise to integral and integro-
differential equations, the solution of which is of crucial importance. When a phys-
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ical system is modeled under the differential sense; it prepares a differential equa-
tion, an integral equation or an integro-differential equation. Forthcoming of the
first two equations mostly appear in the last one.

Several numerical and analytical methods have recently been applied to obtain
the solution of systems of linear and nonlinear Volterra integro-differential equa-
tions. Babolian and Biazar [5, 8] used Adomian decomposition method (ADM) for
solving the systems of nonlinear Volterra integral equations of first and second kind.
Such method has been universally exerted for solving high order linear Volterra-
Fredholm integro-differential equations in [13] and restarted ADM for system of
Volterra integral equations [22]. ADM is an analytical technique that appraises the
solution in the form of Adomian polynomials. In this way there is no need to sim-
plify or discrete the main equation and can be applied to both linear and nonlinear
problems.

The variational iteration method (VIM) is an analytical approach in a manner
that a correction functional is constructed by a general Lagrange multiplier [21,
25, 26, 30]. The latter can optimally be identified through the variational theory.

Authors in [9, 30] have applied He’s homotopy perturbation method (HPM) for
systems of integro-differential equations. HPM depends on the classical perturba-
tion method and the homotopy method in topology, which is also an analytical
approach.

In [4] differential transform method (DTM) is applied to both systems of integro-
differential and integral equations. In [11], the system of linear and nonlinear
Volterra integral equations of the first and second kind has been solved by DTM.
The latter is a semi analytical-numerical technique that depends on Taylor series.

The system of linear Volterra and Fredholm integral equations is solved by a
practical direct method in [6]. This approach is based on vector forms of orthogonal
triangular functions and its operational matrices. In addition, the system of integral
equations reduces to a system of algebraic equations without any integration. The
set of triangular orthogonal functions are also utilized as a basis functions in a direct
method to approximate the solution of system of integro-differential equations [3].

The Taylor series expansion method for the solution of nonlinear Volterra integro-
differential equations and system of nonlinear Volterra equations have been given
in [19, 20].

The system of Volterra integro-differential equations of nonlinear type is solved in
[24] by using Legendre wavelets operational method. In [17], the system of nonlinear
Volterra integral equations is solved by using Simpsons 3/8 rule. The block by block
method is introduced for solving system of nonlinear Voltera integral equations of
the second kind in [2]. A system of Volterra-Fredholm integral equations has been
solved by using Chebyshev collocation method in [14]. Bernstein collocation method
have been used to solve system of linear and nonlinear Fredholm integral equations
in [16, 23].

In this work we consider the systems of the m-th order nonlinear Volterra integro-
differential equations with variable coefficients in the form

m k 0 (6) Vij z k

> 2 gh@)[ul @] = [ ki, ) Fiyls, UCs)) ds X
0=0 j=1 j=1 (1)
=filx); i=1,2,...,k 0<uz, s<1,

under initial conditions

W) =650 t=0,1,...,m~1, j=12 ...,k (2)
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where Fji(s, U(s)) = Fij(s, ui(s), ua(s), ..., ug(s)), 4,5 = 1,2,..., k, are
given continuous functions which are nonlinear with respect to w;(s),j =

0 k,m k 9 k
L2k @) T R@N € 20,1 and {mylr ) e

L? ([0, 1] x [0, 1]) are known functions and ug-e) (x) is the - th order derivative
of uj(z) for j =1, 2, ..., k and the real coefficients {%,t}?ﬁ?io are appropriate
constants. In this work we suppose Fj;(s, U(s)) = ui‘zf (s) ug‘g (s) ... uzz’g (s) where
N7, 4, 4, 1=1,2, ..., k are non-negative integers.

The aim is to use the BPs to solve systems of the m-th order nonlinear Volterra

integro-differential equations of the form Eq. (1). BPs has numerous properties
[12, 15].

2. BPs and their properties

For n > 1 the general form of the BPs of n-th degree over the interval [0, 1] as
defined in [7] is given by:

where

() == @

It is noteworthy that these polynomials have the following features:
(i) Byn(x) =0, if r<0orr>n,
(17) Byn(0) = B (1) =0 for1<r<n-—1, 5)
(i3i) > By n(x) =1.
r=0

{By n(x),r=0,1, ..., n} in Hilbert space L?[0, 1], is a complete nonorthogonal
set [18]. A recursive definition can also be used to generate the BPs over [0, 1] so
that the r-th, n-th degree BPs can be expressed:

By n(xz) = (1—2) By n_1(z) — 2 Br_1,n-1(x). (6)

Any arbitrary polynomial of degree n can be expanded in terms of a linear combi-
nation of these basis functions.

2.1  Function approximation

A function f(x) square integrable in (0, 1), can be approximated by the BPs basis
of degree n as:

n

F@) = fap1(@) =D ¢ Bron(@) = CT¢ (a), (7)

r=0
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where C' and ¢(z) are (n + 1) x 1 vectors given by:
C=lco, c1, ..., cn)", (8)

and

¢ (z) = [Bo,n(x), Bin(x), ..., By n(z)]. (9)

The function of two variables x(z, s) € L% ([0, 1] x [0, 1]) can be approximated as
follows:

K(@, 5) = 6" () K 6 (s), (10)
where K is a (n + 1) x (n+ 1) matrix with entries:

(Bir,n(2), (K(2, 8), By n(5))) ;o

B3 = 1By a@), Bun(@) Byon(s): Byoa(®))

so that (., .) shows the inner product.

2.2 Operational matrixz of integration

The integration of the vector ¢(x) can be approximated by

/%qs(a:’)d:c’2 P¢(x), 0<xz<1, (12)
0

where P is an (n+ 1) x (n+ 1) operational matrix for integration that is given by
[29]

P=AAME, (13)

in which A, A and FE are (n+1) x (n+1) matrices that have the following structures:

D) DG () GO - DM G
O I TG I G Vi O T
A=| 0 0 (-1)"(3) D" GG |
0 0 0 ') ] (14)
[10... 0 A2_1
02... 0 As
A=|. 7, ; E=1 1,
- . . -1
100... _ff:
that A%, is the k' + 1-th row of A™! for ¥’ =0, 1, ..., n and
_ n n n T
i1 = Ol B (15)

an+2 | C0) Cn) 0 G
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where @ is a (n+ 1) x (n + 1) matrix, each element of which is defined as follow:

(i) ()

Qir+1), (' +1) = —(2n 1) ( 5 )
Z'/+j/

i',i=0,1,...,n. (16)

2.3  Operational matrix of derivative

The differentiation of the vector ¢(x) can be approximated by
¢(z)=D¢(x), 0<z<l, (17)

where D is an (n + 1) x (n + 1) operational matrix for derivative that is given by
[29]

D=ANE, (18)

in which A’ and E’ are (n+1) x n and n X (n+ 1) matrices that have the following
structures:

[000--- 0] (AT ]
100---0 At

AM=1020---0 : B = A?:l (19)
_OOO"'TL_ _A;/l_

2.4 Operational matriz of product

Suppose that C' is an arbitrary (n + 1) x 1 vector, then C is an (n + 1) x (n + 1)
operational matrix of product whenever

T () ¢" (z) = 9" (x) C, (20)
in which
C=CAT, (21)

where

C = [C’h Co, ..., C‘n+1} ;

~ /
Cpa1 = [61«70 ex 1 --'ek”,n] C,K=01,...,n.

For further information see [29].

3. The method

Consider the system of m-th order nonlinear Volterra integro-differential equations
(1) with the initial conditions (2).
First, the unknown functions u;(z), j =1, 2, ..., k is approximated by BPs using
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Eq. (7) as:
U](I') = uj,n-i—l(x) - U]T(ﬁ(w)? J = 17 27 cee k: 0<z< 17 (23)

where Uj is the unknown (n + 1) x 1 vector similar to C' defined in Eq. (8) and

¢ (x) is defined in Eq. (9). Likewise, {r;(x, s)}¥ . is also approximated by BPs

7, =1
as:
Hij(:E? 3) = ng(l') sz¢ (5)7 (24)
where K;j, i,7=1,2, ..., kare (n+1) x (n+ 1) matrices similar to K defined in

Eq. (10). Now, a general formula is presented to approximate Ej(s,_U(s)), i, j =

1,2, ..., k by BPs. By using Egs. (23) and (20) for each element ul)‘;](s), i, 7, 1=
1,2 ,kof Fij(s,U(s)), i,j=1,2, ..., k, we have

uj(s) = UlTUzT¢( )¢T( ) =U/ (Ul ) o (s),
and so by use of induction u?;j(s), i, 7,1 = 1,2, ..., k can be approximated by

the following:

ij

u (s) 2 UL (OFN ¢ (s) = URud(s) i, 4, 1=1,2, ... k. (26)
So,

FZ](S U( )) )\J¢( )¢T( ) 2)\”¢ ( ) 3)\LJ... ¢T(S)Uk)\ij
_Uf’)\,,UQT/\”USTA”. : mjgz)() (27)
_ZT¢( ), i, 5=1,2,..., k.

Applying Egs. (24), (27), (20) and (12) in Volterra integral part of Eq. (1), we get

fox ’iij(l'a 5) ij (8 U ClS = fQT(bT l] ¢( ) ¢T(S) Zij ds
K elod Oz,
_ ¢T fO ( )

:¢T( )Kl]Z P¢’( )

Also to approximate the differential part of Eq. (1), making use of Eq. (17) we
have

D(2) 2 UT¢W (x) = UTD ¢ (z) = mwx
%m%ww<m—wb%U— ¢ (@),

o) = UTAO ) = U D6 0) = W 0,

using Eqs. (29) and (26) we obtain

@)™ = wh(WE) 6 ) (30)
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and thus:

Now by replacing Egs. (31) and (28) in Eq. (1), we have

Sy W e 3 Ky Z5P
> 2 d@Wh(Wh)" o) - R @ KeZEPo@) = L@ g

1=1,2, ...,k 0<zx<1.

Also, for the initial conditions, after substituting the approximate Eq. (29) into
Eq. (2), we have

u(0) 2 UTD'G (0) = WhEe(0) =0, t=0,1,...,m~1, j=1,2,... k.
(33)
Eq. (33) provides km linear equations. Since the number of unknowns for each
vector U; in Eq. (32) is (n+ 1) and the proposed system has k equations, the total
number of unknowns are k (n+ 1). Then by using each equation of the system (32)
by collocation points 7, = 2v — 1/2(m + 1), v =1, 2, ...,n—m+ 1, the following
can be derived:

m k N Yij— 1 k .
0 T T T _ oz

> b Wh(Wh) " otn) - ]; T KGZEP6 (1) = hm): (g

v=12 ..., n—m+1, 1=1, 2, , k,

and hence the Eqgs. (34) and (33) are arrived at:

-1 k
zzg”m) BVE)" o) = X 6T (m) Ky ZEP o (n) = fi(r),

J=1
'U—12 ,n—m-+1,i=1,2, ..., k, (35)

W]?;gb(o): i t=0,1,...,m 1,3_1,2,...,k,

which corresponds to a system of k(n + 1) nonlinear algebraic equations with
the k (n + 1) unknown Bernstein coefficients Uj, j = 1, 2, ..., k. By solving the
nonlinear system (35) using the Newton’s or fixed point iteration method, the
vectors Uj, j = 1, 2, ..., k are uniquely specified. Thus, the systems of the m-th
order nonlinear Volterra integro-differential equation with variable coefficients (1)
under the initial conditions (2) can be solved uniquely by Eq. (23).

4. Accuracy of solution

The accuracy of the method can easily be checked. Since the truncated Bern-
stein series (23) is the approximate solution of Eq. (1), when the functions
wjnt1(z), 7 =1,2,..., k and its derivatives, are substituted in Eq. (1), the re-
sulting equation should therefore be approximately satisfied; that is, for z = zy €
0,1; ¥=0,1,2, ..,
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Table 1.

uy ().

The comparison between absolute errors of Example 1 for

x B-spline wavelet  Legendre wavelet  Present method
method [24] method [24] (n=14)
(m =4) (M =8,k=2)

0.0 1.2218E — 04 4.6916E — 11 0

0.1 3.9268F — 05 3.6593F — 13 0

0.2 1.4908E — 05 2.4092F — 13 2.2204F — 16
0.3 4.0601F — 05 2.3670F — 13 3.1086FE — 15
0.4 3.6491F — 05 3.8591F — 13 1.1546E — 14
0.5 3.4295F — 07 5.8278F — 11 4.0856E — 14
0.6 4.0454F — 05 5.1581F — 13 1.8607E — 13
0.7 4.8619E — 05 2.0517FE — 13 9.2881F — 13
0.8 1.8376E — 05 1.4788E — 13 4.1858E — 12
0.9 5.8046F — 05 7.1054F — 13 1.5646E — 11
1.0 — — 4.6677TE — 11

Table 2. The comparison between absolute errors of Example 1 for

us ().
T B-spline wavelet  Legendre wavelet = Present method
method [24] method [24] (n=14)
(m =4) (M =8,k=2)

0.0 1.2218E — 04 4.6916E — 11 0

0.1 3.9267FE — 05 3.6515F — 13 2.2204F — 16

0.2 1.4920E — 05 2.4336F — 13 2.2204F — 16

0.3 4.0655F — 05 2.4403F — 13 2.6645E — 15

0.4 3.6655E — 05 3.6804F — 13 8.4377E — 15

0.5 2.4367FE — 08 5.8232F — 11 2.4203F — 14

0.6 4.1125E — 05 4.5519F — 13 9.1704F — 14

0.7 4.9651EF — 05 3.0687F — 13 4.2388E — 13

0.8 1.9757E — 05 3.1641F — 13 1.8863F — 12

0.9 5.6400F — 05 4.4642F — 13 7.0188F — 12

1.0 — - 2.0020F — 11

m k 9 (9) Yij Zo k -~
Eilwg) = |32 3 g% (wo) [l @a)] " = J5 32 iy, ) Figls, U(s)) ds — filwa)| 2 0;
0=0j=1 7j=1

1=1,2, ..., k,

Ei(x9) <107% (8y isany positive integer).

(36)

(37)

If max 107% = 1079 (6 is any positive integer), is prescribed, then the trunca-
tion limit is increased until the difference F;(xy) at each points xy becomes smaller
than the prescribed 107, The error function can thus, be estimated by the follow-
ing relation:

m F Yij v F
Binn(z)=> > gl [ug.‘)) (x)} —/ > kij(x, 8) Fijls, Us))ds—fi(z) i=1,2,... k.
0=0 j=1 0 =1
(38)
Under the circumstances where E; ,11(x) — 0; ¢ =1, 2, ..., k, and when n is

sufficiently large enough, the resulting error decreases.



S. Davaeifar & J. Rashidinia/ IJM?C, 07 - 01 (2017) 79-91. 87

Table 3. The comparison between absolute errors of Example 2 for ui(z).

T HPM DTM B-spline wavelet  Legendre wavelet  Present method
9] [4] method [24] method [24] (n=14)
(n=25) (N =10) (m =4) (M =8,k=2)

0.0 0 0 1.2218E — 04 5.6987F — 11 0

0.1 0.00E—-09 2.00E—10 4.3169E — 05 5.0759F — 13 0

0.2 0.00E—-09 1.00E —09 1.6592F — 05 1.7697E — 13 8.8818F — 16
0.3 0.00E—-09 0.00E —09 4.8574FE — 05 1.0747E — 13 3.9968F — 15
0.4 0.00E—09 0.00E —09 4.1975E — 05 7.3830F — 13 1.5099F — 14
0.5 1.00E—-09 0.00E —09 1.6843FE — 05 9.2065F — 11 5.3291F — 14
0.6 5.00E—09 0.00E —09 3.6679F — 05 2.8115FE — 12 2.4070F — 13
0.7 4.30E—-08 0.00E — 09 4.6916E — 05 4.1602E — 12 1.2030F — 12
0.8 235E—-07 2.00E—09 1.5826F — 06 6.7928F — 12 5.4068F — 12
0.9 590FE—-08 9.92E —07 1.2841F — 04 1.0750F — 11 2.0197F — 11
1.0 4.09E—-06 2.70FE —08 — - 6.0509F — 11

Table 4. The comparison between absolute errors of Example 2 for ug ().

x HPM DTM B-spline wavelet  Legendre wavelet  Present method
9] [4] method [24] method [24] (n = 14)
(n=5) (N =10) (m =4) (M =8,k=2)

0.0 0 0 1.2218F — 04 5.7167TE — 11 0

0.1 0.00E—-09 0.00E —09 4.2952E — 05 4.4920F — 13 4.4409E — 16
0.2 0.00E—-09 1.00E—09 1.7640E — 05 3.0198E — 13 0

0.3 0.00E—-09 0.00E—09 5.1682F — 05 3.0509E — 13 3.7748E — 15
0.4 0.00E—-09 0.00E—09 4.9608E — 05 4.6518E — 13 1.0658E — 14
0.5 1.00E—-09 0.00E—09 4.0220E — 08 9.4255E — 11 3.4417FE — 14
0.6 1.00£—-09 0.00E—09 6.4396 F — 05 8.0980F — 13 1.4366E — 13
0.7 1.00E—-09 0.00E —09 8.1488E — 05 3.5816E — 13 6.9633E — 13
0.8 2.00E—-09 2.00E—09 3.4912E — 05 2.7312E — 13 3.1188F — 12
0.9 1.30E—-08 8.00E—09 9.4895EF — 05 1.1238F — 12 1.1656F — 11
1.0 6.00E —08 2.70E —08 - - 3.4503E — 11

5. Illustrative examples

The method is applied to solve four different examples, for all the computations
of which were carried out by the Matlab 7.6 on a PC computer. Tables show the
values of the absolute error |u;(x) —u; nt1(x)|, ¢ = 1,2, ..., k at the selected
points of the interval.

Example 1. Consider first system of the second order nonlinear Volterra
integro-differential equations [24, 27]:

(i)~ (o= = s ) )
uy () = Jy ((z = s)ui(s) — (z — s) ui(s)) ds = fa(w),
where fi(z) = coshz — isinh’z — 22 — 122 and fo(z) = — (1 +4z)coshz +

8 sinh x — 42 with the initial conditions u;(0) = 1, u}(0) = 1, u2(0) = —1, u5(0) =
1. The exact solutions are uj(z) = z+coshz and uz(x) = = — cosh . This is solved
for n = 14 by the presented method. The values of absolute error are tabulated
in Tables 1 and 2. These results are compared with the B-spline wavelet method
and the Legendre wavelet method [24] for m = 4 and M = 8, k = 2, respectively.
As can be observed, BPs is more accurate than the B-spline wavelet method and
the Legendre wavelet for the less basis functions. Moreover, for this example, we
calculate the values of error function E; ,,11(x), i = 1, 2 for n = 14. The relevant
results are tabulated in Table 5. From this Table it follows that max 10~% for
example 1 is 1072,

Example 2. Consider the system of the second order nonlinear Volterra
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Table 5. The error functions E; n41(z), ¢ = 1, 2 of examples 1 and 2.
Example 1 Example 2
(n=14) (n=14)
By, pny1(x) E3 nt1(x) By, ny1(x) E> ni1(x)

0.0 0 0 0 0

0.1 4.6934F —14 3.9295F — 14 2.5091F — 14 5.8731F — 14

0.2 1.6601F —13 1.6728E —13 2.8341FEF —13 1.7279FE — 13

0.3 5.2997TF — 13 3.4694FE — 13 7.2051FE — 13 4.5282F — 13

0.4 1.6431F—12 8.0869F — 13 2.1608FE — 12 1.2640FE — 12

0.5 9.0894FE — 12 4.0445FE —12 1.2036E —11 6.7370FE — 12

0.6 4.9549F — 11 2.1879E — 11 6.5964F — 11 3.6528F — 11

0.7 22078E —10 9.9024F —11 29572E —10 1.6331FE —10

0.8 7.6455E —10 3.4528E — 10 1.0383E —09 5.6675E — 10

0.9 1.9428FE —09 8.2146E — 10 2.7245FE —09 1.4184F — 09

1.0 3.1337E—09 7.2811E—10 4.7448E—09 2.0490FE — 09
Table 6. The comparison between absolute errors of Example 3 for uq(x).
T B-spline wavelet — Legendre wavelet HPM operational Tau  Present method  Present method

method [24] method [24] 9] method [1] (n="7) (n=14)
(m=2) (M =4,k=2) (n =6) (n = 10)
0.0 2.0842F — 09 1.6979E — 05 0 0 4.2861F — 21 4.8602F — 23
0.1 2.6564F — 04 9.2899F — 07 1.0000E — 09 1.39FE — 17 2.3282F — 09 2.9116FE — 14
0.2 2.8430F — 04 1.5711E — 06 1.3300E — 07 5.27TE — 16 1.5954FE — 09 3.0476FE — 14
0.3 2.1122F — 04 2.1762F — 06 2.1750F — 06 4.45F — 14 1.6960F — 09 2.9643F — 14
0.4 1.9604FE — 04 1.2493F — 06 1.5309E — 05 1.06E — 12 2.1325FE — 09 27756 FE — 14
0.5 3.9319FE — 04 6.6341E — 05 6.6846 F — 05 1.23F — 11 2.2922F — 09 2.2871F — 14
0.6 2.3937F — 05 5.1247F — 06 2.1219FE — 04 9.11F — 11 2.1033FE — 09 1.3434F — 14
0.7 1.8552E — 04 1.4895E — 05 5.2779FE — 04 4.97E — 10 2.3260F — 09 2.0117FE — 13
0.8 1.2301E — 04 1.6418E — 05 1.0569E — 03 2.16E — 09 3.6133E — 09 1.0212E — 12
0.9 1.1484F — 03 6.4467E — 06 1.6609E — 03 7.90E — 09 1.7525E — 09 3.8809F — 12
1.0 — — 1.7136E — 03 2.52F — 08 5.7928 F — 08 1.0573E — 11
integro-differential equations as following [4, 9, 24]:
" 1 2 1 x
150+ L)~ L (00 + s = (o) w0
uy(2) +zui(@) — 3 fy (ui(s) — ui(s)) ds = fa(),

where fi(z) = 1 — 12® and fo(z) = —1 + 2 with the initial conditions
u1(0) 1, uf(0) = 2,u2(0) = —1,u5(0) = 0. The exact solutions are
ui(z) = z + €* and ug(x) = x — e®. This example is solved by using the method
described in Section 3 with n = 14. The comparison among absolute error
functions obtained by present method, HPM [9] for n = 5, DTM [4] for N = 10,
B-spline wavelet method [24] for m = 4 and Legendre wavelet method [24] for
M =8, k = 2 are shown in Tables 3 and 4. As can be seen form Tables 3 and 4,
the absolute error functions of HPM [9] are lower than B-spline wavelet method
[24], the absolute error functions of DTM [4] are lower than HPM [9], the absolute
error functions of Legendre wavelet method [24] are lower than DTM [4] and
those obtained by the present method are superior to that by [4, 9, 24]. Moreover,
for this example, we calculate the values of error function Ej ,4+1(z), ¢ = 1, 2 for
n = 14. The relevant results are tabulated in Table 5. From this Table it follows
that max 10~% for example 2 is 1079,

Example 3. Consider system of the nonlinear Volterra integro-differential
equations as following [1, 9, 24]:

{ull(x) + %u’22(3¢) — fom ((x — s) ua(s) + ua(s)ui(s)) ds = fi(z), (41)

wa(x) = Jy ((z = s)ua(s) — u3(s) + ui(s)) ds = fa(2),

where fi(x) = 1 and fo(x) = 22 with the initial conditions u1(0) = 0, uz(0) = 1.
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Table 7. The comparison between absolute errors of Example 3 for ua(x).
T B-spline wavelet  Legendre wavelet HPM operational Tau  Present method  Present method
method [24] method [24] 9] method [1] (n=17) (n=14)
(m=2) (M=4,k=2) (n=6) (n =10)
0.0 1.9812E — 03 6.8259F — 05 0 0 0 0
0.1 6.3480F — 04 1.0303E — 05 1.3000E — 08 0 1.2185E — 09 1.0436E — 14
0.2 2.57T90F — 04 1.4987E — 06 7.9800F — 07 0 1.0529E — 09 9.9920F — 15
0.3 7.0502F — 04 1.3195E — 06 9.0680F — 06 1.11E - 15 1.1130E — 09 1.2212E — 14
0.4 6.6797E — 04 1.1008E — 05 5.0626E — 05 3.51E — 14 8.4556F — 10 1.7986E — 14
0.5 5.8899F — 05 8.3081E — 05 1.9090F — 04 5.10E — 13 9.1503F — 10 3.T748F — 14
0.6 6.7631F — 04 1.3848E — 05 5.5873F — 04 4.55F — 12 9.9562F — 10 1.3878E — 13
0.7 7.8339F — 04 8.5961E — 07 1.3630E — 03 2.90FE — 11 6.5407FE — 10 6.5814F — 13
0.8 2.8238F — 04 9.6797TE — 07 2.8783F — 03 1.44F — 10 1.1548E — 09 2.9399F — 12
0.9 9.8303F — 04 1.4032EF — 05 5.3496 FE — 03 5.92F — 10 5.2941F — 09 1.0934F — 11
1.0 - — 8.7171F — 03 2.10E — 09 8.4230F — 08 3.1936F — 11

Table 8. The comparison between absolute errors of Example 4 for uq(z).

T HPM Method based upon  Simpson’s 3/8  Present method
[10] discretisation [28] rule [17] (n = 10)
(n=15) (n = 200) (h = 0.025)
0.0 0 3.1874F — 22 — 3.3420F — 09
0.1 14FE—-07 2.3788E — 05 3.0E —10 5.5234F — 10
0.2 3.5E—06 9.8303E — 05 1.1E - 09 2.7470FE — 10
0.3 b5.5E—-05 2.2569F — 04 3.6E — 09 2.5776E — 10
04 38E-—-04 4.0980F — 04 6.0E — 09 1.0119E — 10
0.5 1.6E—03 6.5639F — 04 8.7E — 09 1.1451E — 10
0.6 — 9.7347FE — 04 1.4E — 08 2.4562F — 10
0.7 - 1.3717E — 03 1.9FE — 08 5.7598E — 10
0.8 — 1.8647E — 03 2.4F — 08 1.0330E — 08
0.9 - 2.4695E — 03 3.3E — 08 1.0439E — 07
1.0 - 3.2073E — 03 4.0FE — 08 8.2416FE — 07

Table 9. The comparison between absolute errors of Example 4 for usg(x).

T HPM Method based upon  Simpson’s 3/8  Present method
[10] discretisation [28] rule [17] (n = 10)
(n=15) (n = 200) (h = 0.025)
0.0 5.0E—-08 0.0 — 2.7592F — 09
0.1 3.2E-07 2.4986 F — 04 5.3E — 10 6.4585F — 11
02 11E-05 4.9945F — 04 3.0E -10 1.2913E — 10
0.3 12E-04 7.4893F — 04 6.0E — 10 6.4527F — 12
04 63E—-04 9.9871F — 04 2.1E —09 6.5267F — 11
0.5 22E-03 1.2496 E — 03 3.1E - 09 9.0182F — 11
0.6 — 1.5027E — 03 5.3E — 09 4.2038F — 11
0.7 - 1.7597E — 03 9.4FE — 09 1.0103E — 10
0.8 — 2.0224F — 03 1.4E — 08 3.5706FE — 09
0.9 — 2.2928F — 03 2.0E — 08 3.5423F — 08
1.0 - 2.5721F — 03 2.9F — 08 2.8554F — 07

The exact solutions are uj(z) = sinh z and ug(x) = cosh z. This example is solved
by using the method described in Section 3 with n = 7, 14. The comparison
among absolute error functions obtained by present method, B-spline wavelet
method [24] for m = 2, Legendre wavelet method [24] for M = 4, k = 2, HPM [9]
for n = 6 and the operational Tau method [1] for n = 10 are exhibited in Tables 6
and 7. As can be seen form Tables 6 and 7, the absolute error functions of HPM
[9] are lower than B-spline wavelet method [24], the absolute error functions of
Legendre wavelet method [24] are lower than HPM [9], the absolute error functions
of operational Tau method [1] are lower than Legendre wavelet method [24] and
those obtained by the present method are more accurate than [1, 9, 24]. Moreover,
for this example, we calculate the values of error function Ej ,4+1(z), ¢ = 1, 2 for
n = 14. The relevant results are tabulated in Table 10. From this Table it follows
that max 10~% for example 3 is 10710,
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Table 10. The error functions E; n41(x), ¢ = 1, 2 of examples 3 and 4.

Example 3 Example 4
(n=14) (n =10)
E1, ny1(x) B2 ny1(x) B ny1(x) B2 ny1(x)
0.0 3.2205F —12 1.1751E — 12 3.3420E — 09 2.7592F — 09
0.1 4.2061E —15 3.0587TE —15 4.9968E — 10 1.3933FE — 11
0.2 1.8041E —14 4.8965FE —15 3.1380E —10 7.9255E — 11
0.3 2.5536F — 14 4.0839E — 14 2.3284F — 10 5.8282F — 11
04 7.1261E—14 1.1040E —13 1.3501E—10 2.6704F — 11
0.5 3.3753E —13 4.1760FE —13 1.1155E —10 2.9086E — 11
0.6 2.0861F —12 2.1274FE —12 2.3791F —10 9.4188F — 11
0.7 1.1475E —11 1.0378E —11 5.3061E —10 1.2986F — 10
0.8 5.1585E —11 4.2076E —11 9.6116E — 09 3.2574FE — 09
0.9 18116E—10 1.3319E—10 9.5513FE —08 3.1349F — 08
1.0 4.0733E —10 3.0144F —10 7.4290F —07 2.5121FE —07

Example 4. Consider system of nonlinear Volterra integral equations [10, 17, 28]:

un(2) — [ (3 (s) + u(s)) ds = fu(w) @)
ug(x) — fox u1(s) ua(s) ds = fo(x),

where fi(z) = sinz — z and fa(z) = cos z — %sin%. The exact solutions are
ui(x) = sin x and wg(x) = cos x. This example is solved by using the method
described in Section 3 with n = 10. The comparison among absolute error functions
obtained by present method, HPM [10] for n = 5, method based upon discretization
[28] for n = 200 and the Simpsons 3/8 rule [17] for h = 0.025 are exhibited in
Tables 8 and 9. As can be seen form Tables 8 and 9, the absolute error functions of
HPM [10] are lower than the method based upon discretization [28], the absolute
error functions of Simpsons 3/8 rule [17] are lower than the method based upon
discretization [28] and those obtained by the present method are more accurate
than [10, 17, 28]. Moreover, for this example, we calculate the values of error
function Ej n4+1(z), ¢ = 1, 2 for n = 10. The relevant results are tabulated in Table
10. From this Table it follows that max 10~% for example 2 is 1077,

6. Conclusion

A numerical method for solving the system of m-th order nonlinear Volterra
integro-differential equations with variable coefficients is proposed which based on
the BPs basis. One of the most important features of this method is the application
of the computer program to find the BPs coefficients of the solution. The approach
can further be extended to systems of partial differential equations.
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