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Abstract. This paper presents an alternative three-term conjugate gradient algorithm for
solving large-scale systems of nonlinear equations. The proposed method is the modification
of memoryless BFGS quasi-Newton update for which the direction is descent using projection
based technique together with Powel restarting criteria. Moreover, we proved the global con-
vergence of the proposed method with a derivative free line search under suitable assumptions.
The numerical results show that the proposed method is promising.
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1. Introduction

Consider the system of nonlinear equations

F (x) = 0, (1)

where F : Rn → Rn is a nonlinear mapping. Often, the mapping, F is assumed to
satisfying the following assumptions:
A1. There exists an x∗ ∈ Rn s.t F (x∗) = 0;
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A2. F is montone and continuously differentiable mapping.

The general conjugate gradient conjugate gradient method for solving (1)
generate iterative points {xk} from initial given point {x0} as follows:

xk+1 = xk + αkdk, (2)

where αk > 0 is attained using line search produre, and the direction dk is defined
by

dk+1 = −F (xk+1) + βkdk, k ⩾ 1 d0 = −F (x0), k = 0. (3)

The βk is a scalar termed as conjugate gradient parameter.

Several methods have been developed for solving (1), most of these methods fall
within the framework of Newton and quasi-Newton strategy [5, 13, 17], and are
particularly accepted because of their rapid convergence property from a sufficiently
good initial guess. Notwithstanding, they are usually not powerful for large-scale
nonlinear systems of equations because it requires compution and storage of the
Jacobian matrix and its inverse as well as solving n linear system of equations in
each iteration and the convergence may even be lost when the Jacobian is singular.
The conjugate gradient methods are also developed in order to eliminate some of

the shortcomings of Newton’s and Quasi-Newton methods for unconstrained opti-
mization. An extention of its application to handle nonlinear system of equations
was considered possible by some reserchers see [6, 13, 14, 18, 21].
In this paper we are particularly interested in three term conjugate gradient

algorithm for solving large scale systems of nonlinear equations which is obtained
by modifying the update of the memoryless BFGS inverse approximation of the
inverse Jacobian restarted as a θ multiple of an identity matrix at every iteration.
The method posseed low memory requirement and, global convergence properties
and simple implementation procedure.

The main contribution of this paper is to construct a fast and efficient
three-term conjugate gradient method for solving (1), the proposed method is
based on the recent three-term conjugate gradient method [2] for unconstrained
optimization. In other words our algorithm can be thought as an application to
three-term conjugate gradient method to a general systems of nonlinear equations.
We present extensive numerical results and performance comparism with a
DF-SDCG algorithm for large-scale nonlinear equations [9] which illustrated that
the proposed algorithm is efficient and promising.
The rest of the paper is organized as follows: In section 2, we present the details of
the proposed method. Subsequently Convergence results are presented in section
3. Some numerical results are reported in section 4. Finally, conclusions are made
in section 5.
Throughout this paper, ∥.|| denote the euclidean norm of a vector. For simplicity,
we abbreviate F (xk) as Fk in the context.

2. Algorithm

This section, presents a three term conjugate gradient algorithm for solving large-
scale systems of nonlinear equations.
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It is well known that if the Jacobian matrix Jk of F is positive definite, then the
most efficient search direction at xk is the Newton direction

dk+1 = −(Jk+1)
−1Fk+1, (4)

Thus, for the Newton direction dk+1 holds true that

sTk Jk+1dk+1 = −sTk Fk+1, (5)

where sk = xk+1 − xk, and from secant condition that,

Jk+1sk = yk (6)

and yk = Fk+1 − Fk.
(5) can be approximated by

yTk dk+1 = −sTk Fk+1. (7)

Therefore any a search direction dk+1 that is required to satisfy (7), then it can be
regarded as an approximate Newton direction.
Recall that, the BFGS update of the Jacobian inverse approximation is represented
as

Bk+1 = Bk −
sky

T
k Bk +Bkyks

T
k

yTk sk
+

(
1 +

yTk Bkyk

yTk sk

)
sks

T
k

yTk sk
(8)

By setting Bk = θkI (8) can be transformed into

Qk+1 = θkI −
sky

T
k θk − θkyks

T
k

yTk sk
+

(
1 +

yTk θkyk

yTk sk

)
sks

T
k

yTk sk
(9)

Where,

θk =
sTk sk

sTk yk
(10)

For the θk see Raydan [16] for details. It can be noted that, the matrix Qk in (9)
is a modification of (8) in the sense that it is restarted with the multiple of an
identity matrix at every step (Bk = θkI) and modifying the sign infront of yks

T
k

in the second term of (9) to get the decsent property.
Multiplying both sides of (9) by F (xk+1) we obtained

Qk+1Fk+1 = θkFk+1−
(
sky

T
k θk − θkyks

T
k

yTk sk

)
Fk+1+

(
1 +

yTk θkyk

yTk sk

)
sks

T
k

yTk sk
Fk+1 (11)

Observe that the direction dk+1 from (11) can be written as

dk+1 = −QkFk+1 (12)
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hence our new direction is;

dk+1 = −θkFk+1 − δksk − ηkyk (13)

where

δk =

(
1 +

yTk θkyk

yTk sk

)
sTk Fk+1

yTk sk
−

yTk θkFk+1

yTk sk
, (14)

ηk =
θks

T
k Fk+1

yTk sk
, (15)

Solodov and Svaiter [17] introduced projection based algorithm for optimization
problems which requires a hyperplane that separate the current iterate xk from
zero of the system of the equation, and this can easely be done by setting

xk+1 = xk −
F (zk)

T (xk − zk)

||F (zk)||2
F (zk). (16)

Therefore incoporating this projection based algorithm together with the
proposed search direction and the derivative freee line search of Li and Li [14] we
find αk = max{s, ρs, ρ2s, ...} such that

−F (xk + αkdk)
Tdk ⩾ σαk||F (xk + αkdk)||||dk||2. (17)

Where σ, s > 0 and ρ ∈ (0, 1). we describe our proposed algorithm as follows;
Algorithm 2.1 (ATTCG)

Step 1 : Given x0 σ ∈ (0, 1), and compute d0 = −F0, set k = 0 .
Step 2 : If ||Fk|| < ϵ . then stop; otherwise continue with Step 3.
Step 3 : Determine the stepsize αk by using conditions in (17),
Step 4 : Let the next iterate be z = xk + αkdk.
Step 5 : If ||F (zk)|| < ϵ then stop; otherwise compute xk+1 by (16)
Step 6 : Find the search direction by (13).
Step 7 : Restart criterion. If |F T

k+1Fk|2 > 0.2||Fk+1||2, then set dk+1 = −Fk+1.
Step 8 : Consider k = k + 1 and go to step 2.

3. Convergence Result

In this Section, we will establish the global convergence for the ATTCG algorithm
.
Assumption A
(i) The level set S = {x ∈ Rn : ||F (x)|| ⩽ ||F (x0)||} is bounded, i.e there exists
positive constant B > 0 such that, for all x ∈ S, ||x|| ⩽ B.
(ii) The function F is lipschitz continuous on Rn i.e there exist a positive constant
L > 0 s.t ∀ x, y ∈ Rn
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∥F (x)− F (y)∥ ⩽ L∥x− y∥ (18)

Assumption A(ii) implies that there exists a constant λ > 0 such that

||Fk|| ⩽ λ. (19)

The following lemma is in Solodov and Svaiter [17], from Theorem 2.1 which only
state the proof can be in similar way as in [17].
Lemma 1
Suppose that Assumption A holds and {xk} is generated by TTCG Algorithm let
x∗ be a solution of problem (1) with F (x∗) = 0 Then

||xk+1 − x∗||2 ⩽ ||xk − x∗||2 − ||xk+1 − xk||2 (20)

holds and the sequence {xk} is bounded. Furthermore, either the sequence {xk} is
finite and the last iteration is a solution or the sequence is infinite and

∑
K⩾0

||xk+1 − xk||2 < ∞ (21)

Lemma 2 Suppose that the line search satifies the condition (17) and F is uni-
formly convex then dk+1 given by (13) and (14)-(15) is a descent direction, and

||Fk+1|| ⩽ ||dk+1||

Proof. Since F is uniformly convex it follows that yTk sk > 0. Now, by direct
computation, we have

F T
k+1dk+1 = −||Fk+1||2 −

(
1 +

||yk||2|θk|
yTk sk

)
(sTk Fk+1)

2

yTk sk
⩽ 0. (22)

||Fk+1|| ⩽ −F T
k+1dk+1

⩽ ||Fk+1||T ||dk+1||

||Fk+1|| ⩽ ||dk+1|| (23)

Lemma 3 Suppose that assumptions A hold, and consider the ATTCG algorithm
and (13) where dk is a descent direction and αk is computed by the condition (17)
. Suppose that F is uniformly convex function on S, i.e there exists a constant
µ > 0 such that

(F (x)− F (y))T (x− y) ⩾ µ||x− y||2
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for all x, y ∈ S; then

||dk+1|| ⩽ κ+
κ

µ
(2 + L+

L2

µ
). (24)

Proof.

From Lipchitz continuity, we know that ||yk|| ⩽ L||sk||. On the other hand by
uniform convexity, it yields

yTk sk ⩾ µ||sk||2. (25)

Thus, using the Cauchy Shwartz inequality, assumptions A and the above inequal-
ities, we have

|δk| ⩽
|sTk Fk+1|
|yTk sk|

+
||yk||2|θksTk Fk+1|

|yTk sk|2
+

|yTk θkFk+1|
|yTk sk|

(26)

⩽ κ

µ||sk||
+

L2κ

µ2||sk||
+

Lκ

µ||sk||
(27)

=
κ

µ
(1 + L+

L2

µ
)

1

||sk||
. (28)

Since

|ηk| =
|θksTk Fk+1|

|yTk sk|
⩽ ||sk||||Fk+1||

µ||sk||2
⩽ κ

µ||sk||
, (29)

Finally

||dk+1|| ⩽ |θk|||Fk+1||+ |δk|||sk||+ |ηk|||yk|| ⩽ κ+
κ

µ
(2 + L+

L2

µ
). (30)

Hence, dk+1 is bounded.

The next lemma shows that the line search in step 3 of ATTCG algorithm is
reasonable, then the presented algorithm is well defined.
Lemma 4
Let the Assumption A hold. Then ATTCG algorithm produces an iterate of
xk+1 = xk + αkdk, in a finite number of backtraking steps.
Proof :
We suppose that ||Fk|| → 0 does not hold, or the algorithm is stoped. Then there
exists a constant ϵ0 > 0 such that

||Fk|| ⩾ ϵ0, ∀ k ⩾ 0 (31)
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up to subsequnce
The aim is to guarantee that the linesearch strategy (17) is always terminated
in a finite number of steps with a positive steplength αk. we will get this by
contradiction. Suppose that for some iterate indexes such as k∗ the condition (17)
is not true.
Then by letting αm

k∗
= ρms, it can be concluded that

−F (xk∗ + αm
k∗
dk∗)

Tdk∗ < σαm
k∗
||F (xk∗ + αm

k∗
dk∗)||||dk∗ ||2, ∀ m ⩾ 0.

combining the above inequality with (22), we have

||F (xk∗)||2 = −dTk∗
Fk∗ −

(
1 +

||yk∗ ||2|θk∗ |
yTk∗

sk∗

)
(sTk∗

Fk∗)
2

yTk∗
sk∗

= [F (xk∗ + αm
k∗
dk∗)− F (xK∗)]

Tdk − F (xk∗ + αm
k∗
dk∗)

Tdk∗

< [L+ σ||F (xk∗ + αm
k∗
dk∗)]α

m
k∗
||dk∗ ||2, ∀ m ⩾ 0.

By (23) and (31)

||F (xk∗ + αm
k∗
dk∗)|| ⩽ ||F (xk∗ + αm

k∗
dk∗)− Fk||+ ||Fk||

⩽ Lαm
k∗
||dk∗ ||

⩽ Ls(κ+
κ

ν
(2 + L+

L2

µ
)).

Thus, we obtain

αm
k∗

>
||Fk||2

[L+ σ||F (xk∗ + αk∗dk∗)||]|dk∗ ||2

>
ϵ20

L+ Ls(κ+ κ
µ(2 + L+ L2

µ )) > 0∀m ⩾ 0.

Thus, it contradicts with the defination of αm
k∗
. consequently, the line search pro-

cedure (17) can attain a positive steplength αk in a finite number of backtracking
steps. Hence the proof is complete.

Theorem 3.1 Let assumption A hold and {αk, dk, xk+1, Fk+1} be generated by
ATTCG algorithm. Then
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lim inf
k→∞

||Fk|| = 0 (32)

Proof: We prove this theorem by contradiction, namely the relation (31) holds. By
(23) we have

||dk|| ⩾ ||Fk|| ⩾ ϵ0∀k ⩾ 0 (33)

By lemma 2

αk||dk|| → 0, k → ∞

It follows that from (33)

lim
k→∞

αk = 0 (34)

By linesearch technique (17) we have

−F (xk + αk
′
dk)

Tdk < σαk
′ ||F (xk + αk

′
dk)||||dk||2(35)

where αk
′
= αk

ρ. . By the boundedness of {xk} in lemma 3 we can deduce that there

exist an accumution point x̄ and a subsequence {xkj
} of {xk} such that

lim
j→∞

xkj
= x̄.

The sequence {dk} is bounded. So d̄ ∈ Rn and a subsequence {dkj
} (we assume

that without loss of generality the subsequences {xkj
}and {dkj

} have the same
indices) such that

lim
k→∞

dkj
= d̄,

thus, taking the limit as k → ∞ up to subsequence in both sides of (35) generates

F (x̄)T d̄ > 0.

According to the other hand, by taking the limit as k → ∞ up to subsequence in
both sides of (17) we get

F (x̄)T d̄ ⩽ 0.

Then a contradiction is generated. So the proof is complete.
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4. Numerical Results

In this section, we tested ATTCG algorithm and compare it’s performance with a
DF-SDCG Algorithm [9] :
The test functions are listed as follows. Examples 1 and 5 are from [19], problem
6 and 8 are from [22] and problem 9 and 10 are from [21] where as the rest are
arbitrarily constructed by us.

Example 1: The strictly convex function:
Fi(x) = exi − 1
i = 1, 2, ..., n.
x0 = (0.5, 0.5, 0.5, ..., 0.5)T

Example 2: System of n nonlinear equations
Fi(x) = xi − 3xi(

sinxi

3 − 0.66) + 2
i = 2, 3, ..., n.
x0 = (0.5, 0.5, 0.5, ..., 0.5)T

Example 3:System of n nonlinear equations
Fi(x) = cosx1 − 9 + 3x1 + 8ex2 ,
Fi(x) = cosxi − 9 + 3xi + 8exi−1 ,
i = 1, 2, ..., n
x0 = (0.5, 0.5, 0.5, ..., 0.5)T

Example 4:System of n nonlinear equations
Fi(x) = (0.5− xi)

2 + (n+ 1− i)2 − 0.25xi − 1,
Fn(x) =

n
101− e−x2

n ,
i = 1, 2, ..., n− 1.
x0 = (0.5, 0.5, 0.5, ..., 0.5)T

Example 5: System of n nonlinear equations
Fi(x) = 4xi + xi+1 − 2xi − x i+1

3
,

Fn(x) = 4xn + xn−1 − 2xn − xn+1

3
,

i = 1, 2, ..., n− 1.
x0 = (0.5, 0.5, 0.5, ..., 0.5)T

Example 6: System of n nonlinear equations
Fi(x) = x2i − 4,
x0 = (0.5, 0.5, 0.5, ..., 0.5)T

Example 7:System of n nonlinear equations
F1(x) = sin(x1 − x2)− 4e2−x2 + 2x1,
Fi(x) = sin(2− xi)− 4exi−2 + 2xi + cos(2− xi)− e2−xi ,
i = 2, 3, ..., n.
x0 = (0.5, 0.5, 0.5, ..., 0.5)T

Example 8:System of n nonlinear equations
Fi(x) =

∑n
i=1 xixi−1 + exi−1 − 1,

i = 2, 3, ..., n
x0 = (0.5, 0.5, 0.5, ..., 0.5)T

Example 9:System of n nonlinear equations

Fi(x) = xi −
∑n

i=1
x2
i

n2 +
∑n

i=1 xi − n,

x0 = (0.5, 0.5, 0.5, ..., 0.5)T

i = 1, 2, ..., n
Example 10:System of n nonlinear equations
Fi(x) = 5x2i − 2xi − 3,
i = 1, 2, ..., n
x0 = (0.5, 0.5, 0.5, ..., 0.5)T
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Table 1. Numerical results based on dimension of problem (n), Number of iterations and CPU Time

(in seconds) of problems 1-6

ATTCG Algorithm DF-SDCG Algorithm
P Dim Iter ||Fk|| CPU time Iter ||Fk|| CPU time

100 8 9.4560e-06 0.028474 25 6.1207e-05 0.597602
1 1000 9 2.1144e-06 0.147652 26 8.2241e-05 2.233604

5000 9 2.9903e-06 0.251236 27 6.9111e-05 4.507234
10000 9 9.4560e-06 2.792765 29 7.4551e-05 39.114200
100 86 8.9037e-06 0.106252 22 3.9120e-05 0.412667

2 1000 90 9.9122e-06 0.434176 22 8.7476e-05 1.935173
5000 92 9.8911e-06 0.783972 23 5.5264e-05 3.744463
10000 126 8.4830e-06 12.153144 37 4.5238e-05 46.917528
100 - - - - - -

3 1000 80 9.7709e-06 0.823754 - - -
5000 80 9.7709e-06 1.549614 73 9.6995e-05 10.591806
10000 82 9.6675e-06 15.591125 75 8.9336e-05 103.256340
100 110 9.4602e-06 0.788803 29 5.88E-05 0.608293

4 1000 - - - 214 9.4753e-05 17.300552
5000 - - - 40 7.2186e-06 7.480797
10000 - - - 40 0 65.391351
100 6 6.8151e-07 0.032962 105 9.3785e-05 2.126298

5 1000 72 7.7178e-06 1.13311 27 9.1619e-05 2.246521
5000 11 4.4383e-08 0.440859 117 9.0373e-05 16.357734
10000 44 3.6077e-06 15.770507 215 2.2548e-07 296.202722
100 18 6.6893e-06 0.042864 12 9.7213e-05 0.242993

6 1000 19 5.3848e-06 0.159687 14 2.4332e-05 1.246371
5000 19 7.6152e-06 0.290403 14 3.4411e-05 2.454668
10000 20 8.6693e-06 3.311656 15 4.8282e-05 20.169900

Table 2. Numerical results based on dimension of problem (n), Number of iterations and CPU Time

(in seconds) of problems 7-10

ATTCG Algorithm TPRP Algorithm
P Dim Iter ||Fk|| CPU time Iter ||Fk|| CPU time

100 47 7.7441e-06 0.206083 88 9.4836e-05 1.790001
7 1000 47 8.8743e-06 2.26032 169 9.8728e-05 12.475926

5000 54 8.9868e-06 2.26032 103 8.4127e-05 14.483080
10000 46 9.9537e-06 2.26032 124 9.9146e-05 174.486999
100 33 5.4102e-06 0.050556 56 7.9809e-05 1.179710

8 1000 35 7.5751e-06 0.22769 59 8.7283e-05 4.438580
50000 36 6.4277e-06 0.421889 60 9.7255e-05 8.267500
10000 38 7.3174e-06 5.162862 65 9.3375e-05 84.734466
100 10 1.6671e-06 0.024914 14 4.7435e-05 0.110289

9 1000 11 2.3311e-06 0.0345 14 8.2750e-06 0.130116
5000 12 2.4561e-06 - 15 1.8503e-05 0.126861
10000 12 3.1133e-06 - 17 2.6168e-05 0.339827
100 3 7.8660e-07 0.019034 84 9.4809e-05 1.641791

10 1000 3 1.7589e-06 0.087521 92 9.0329e-05 6.522887
5000 3 2.4875e-06 0.164283 95 9.2769e-05 12.342695
10000 8 1.3604e-12 2.205701 92 9.1449e-05 116.483472
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Figure 1. Performance profile of ATTCG and DF-SDCG methods with respect to number
of iterations for Examples 1-10
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Figure 2. Performance profile of ATTCG and DF-SDCG methods with respect to CPU
time in seconds for Examples 1-10

In the experiments, we compare the performance of the method introduced in this
work with that of DF-SDCG conjugate gradient methods for large scale nonlinear
systems of equations in order to check it’s effectiveness. Numerical computations
have been performed in MATLAB R2013a on a PC with Intel CELERON(R) pro-
cessor with 4.00GB of RAM and CPU 1.80GHz. We used 10 test problems with
dimensions 100, 1000, 5000 and 10000 to test the performance of the proposed
method in terms of the number of iterations (NI) and the CPU time (in seconds).
We defined a termination of the method whenever

∥F (xk)∥ < 10−4. (36)

The table list the numerical results, where Iter and Time stand for the total
number of all iterations and the CPU time in seconds, respectively; ||Fk|| is the
norm of the residual at the stopping point. We also used ”-” to represent failure
during iteration process due one of the following:

1. The number of iteration and/or the CPU time in second reaches 1000;
2. Failure on code execution due to insufficient memory;
3. If ||Fk|| is not a number (NaN).
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In Table 1 and 2 we listed numerical results.The numerical results indicated that the
proposed method, ATTCG algorithm compared to a DF-SDCG Algorithm [9] for
large-scale nonlinear equations has minimum number of iterations and CPU time.
Figures 1 and 2 are performance profiles derived by Dolan and More [11] which
show that our claim is justified, that is, less CPU time and number of iterations
for each test problem. Furthermore, on average, our||Fk|| is small which signifies
that the solution obtained is true approximation of the exact solution compared to
the DF-SDCG Algorithm [9].

5. Conclusion

In this paper a new three-term conjugate gradient algorithm as modification
of memoryless BFGS quasi-Newton update with descent direction, has been
presented. The convergence of this algorithm was proved using a derivative free
linesearch. Intensive numerical experiments on some benchmark nonlinear system
of equations of different characteristics proved that the suggested algorithm is
faster and more efficient compared to a DF-SDCG Algorithm for large-scale
nonlinear equations [9].
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