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Abstract. In this paper, effect of alternative resource for top predator in food chain model
with holling type III functional response is seen . Proposed model is demonstrated in respect
of analytical as well numerical results. Bifurcation study with the variation of alternative
resource and half saturation constants are done numerically. Simulation results shows that
suitable alternative resource has the capability to prevent top predator extinction.

Received: 11 December 2016, Revised: 20 July 2017, Accepted: 04 November 2017.

Keywords: Mathematical Model, Stability Analysis, Holling type III Functional Response,
Alternative Resource.

Index to information contained in this paper

1 Introduction

2 Mathematical Model

3 Boundenees of the System

4 Existence of Equilibrium Points

5 Local Stability Analysis

6 Global Stability for the Positive Equilibrium Point

7 Permanence of System

8 Numerical Simulation

9 Conclusion

1. Introduction

Food chain model described the interaction of the units in natural ecological sys-
tem. In this world there is no species exists in isolation from other species. Each
species is a part of a community; they must be interacting with many other species.
The interaction of species may be competition for food, dependency for food etc.
Prey dependent prey predator models were studied by many researchers, [1–5, 8].
M.F.Elettreby [3], proposed a new multi team prey predator model, where they
considered prey teams help each other. They studied the local as well as global
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stability and persistence of the model. Kar and Matsudan [7], studied harvesting
efforts on the prey predator system, and obtained exactly one stable limit cycle
that occurs in the system when the positive equilibrium is unstable. Mada Sanjaya
WS et. all [12], studied three species food chain with mixed functional response.
They analyzed dynamical behavior of system at equilibrium point and found that
solution posses Hopf bifurcation.
Mada Sanjaya WS et. all [11], discussed food chain model with Holling type III
functional response for middle predator and top predator and found that the so-
lution posses bifurcation . O.P. Misra and Raveendra Babu A. [9], in the paper
studied the food chain system considering interference of top predator in a pol-
luted environment, they assumed that the presence of top predator reduces the
predatory ability of intermediate predator, and finally shows that the predator
rate of intermediate predator is a bifurcation parameter and Hopf-bifurcation oc-
curs at some critical value of this parameter.
T.K.Kar and Bapan Ghosh [6], in their paper developed two species prey predator
model in which the predator is partally influenced by alternative prey, and the
effects of harvesting efforts on both specie is seen. O.P.Mishra et. all [10], studied a
model for three species system with time lag considering two competing species and
a predator specie which is partially coupled with an alternative prey. They shows
that all the species increase and decrease with respect to constant alternative food
resource .
In all of the above studied no mention for the behavior of alternative resource in
food chain system with holling type III functional response, therefore in this pa-
per a three species food chain model, with holling type III functional response for
middle predator and supper predator. Middle predator is harvested by unnatural
activity and top predator’s growth effected by the presence of alternative resource
which may be an alternative prey for top predator.

2. Mathematical Model

In this chapter we analyse the food chain model composed of a prey, middle preda-
tor and top predator of densities x, y and z. respectively. Before introduce the
model, we would like to describe a brief sketch of the model which may indicate
the biological behavior of the system.

(H1). Here all the participated species is assumed to arise from the coupling of
three interacting species. x (prey) for y (middle predator) and y for z (top
predator), where prime prey x is not interacting with super predator but
y(middle predator) interacting with both x and z. y behavior as predator
for prey and secondary prey for top predator (z). This is an interesting
practical assumption from both mathematical and biological.

(H2). We assume that the growth of both prey (x for y and y for z) in absence
of predator is logistic in nature with carrying capacity K > 0 and L > 0
respectively.

(H3). Here we considered Holling type III functional response for species (x; y)
and also for (y; z)

(H4). In this model, y (middle predator or secondary prey) is harvested and z (top
predator) required besides y as food resource, an alternative food resource
A also.

In view of the above, we have developed three species food chain model with the
above assumptions.
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dx

dt
= rx

(
1− x

K

)
− a1x

2y

x2 + a
(1)

dy

dt
= sy

(
1− y

L

)
+

a2x
2y

x2 + a
− b1y

2z

y2 + b
−Hy (2)

dz

dt
=

b2y
2z

y2 + b
+ (1−A) z − ηz2 − d3z (3)

Where x(0) > 0, y(0) > 0 and z(0) > 0.

Here, r is intrinsic growth rate of prey, K is carrying capacity of prey population,
a1 capturing rate of predator for prey population, a2 Conversion rate of prey, a
Half saturation constant, s be the intrinsic growth rate of predator, L carrying
capacity of environment for predator population, b1 capturing rate of top predator
for middle predator population, b half saturation constant, H harvesting effort,
b2 conversion rate of middle predator, η depletion rate coefficient of top predator
due to self competition and d3 is natural death rate of top predator. Here all the
parameters to be positive constants.

3. Boundenees of the System

In this section, we need to establish that the boundenees of the dependent variables
involving in the system of equations (1-3). The region of attraction for the solution
of the model is shown by the following theorem.

Theorem 3.1 The region of attraction of the system is given as

R = {(x, y, z) : x ⩽ K, y ⩽ δandz ⩽ ϵ} (4)

where δ =

(
s−H +

a2K

K2 + a

)
L

s
and ϵ =

1

η

(
b2δ

2

δ2 + b
− d3 + (1−A)

)
.

Proof : From the equation (1) of the model, we have

dx

dt
⩽ rx

(
1− x

K

)
(5)

then by usual comparison theorem, (Hale 1969), we get

lim
t→∞

supx(t) ⩽ K. (6)

Now from equatiom (2) of the model, we have

dy

dt
⩽ sy

(
1− y

L

)
+

a2K
2y

K2 + a
−Hy
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Then, by usual comparison theorem, (Hale 1969), we get

lim
t→∞

sup y(t) ⩽
{
s−H +

a2K
2

K2 + a

}
L

s
= δ(say) (7)

From equation (3) of the model, we get

dz

dt
=

b2y
2z

y2 + b
− d3z + (1−A)z − ηz2 (8)

now using, value of y from equation (7) in above equation, we get

dz

dt
⩽ b2δ

2z

δ2 + b
− d3z + (1−A)z − ηz2 (9)

by usual comparison theorem, (Hale 1969), we get the following result

lim
t→∞

sup z(t) ⩽
(

b2δ
2

δ2 + b2
− d3 + (1−A)

)
1

η
= ϵ(say) (10)

This completes the proof of theorem.

4. Existence of Equilibrium Points

The above system of equations has eight positive equilibrium points, E0(0, 0, 0),
E1(K, 0, 0), E2(0, (1−H)L, 0), E3(0, 0, z3), E4(x4, y4, 0), E5(x5, 0, z5), E6(0, y6, z6)
and interior equilibrium point Ē(x̄, ȳ, z̄).

(i). Equilibrium point E0(0, 0, 0) is trivial.
(ii). Equilibrium points E1(K, 0, 0), E2(0, (1−H)L, 0) and E3(0, 0, z3)

exists if H < 1 and 0 < A+ d3 < 1 where z3 =
(1−A− d3)

η
.

(iii). The existence of equilibrium point E4(x4, y4, 0) is given by the equations

rx
(
1− x

K

)
− a1x

2y

x2 + a
= 0 (11)

sy
(
1− y

L

)
+

a2x
2y

x2 + a
−Hy = 0 (12)

from the equations (11) and (12) we have,

ϕ(x) = r
(
1− x

K

)
− a1xL

x2 + a

(
1− H

s
+

a2x
2

s(x2 + a)

)
(13)

From (13) at x = 0, ϕ(0) = r > 0 and
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at x = K, ϕ(K) = − a1KL

K2 + a

(
1− H

s
+

a2K
2

s(K2 + a)

)
< 0, for s > H then

there exits a positive point x4 ∈ (0,K) such that ϕ(x4) = 0 and ϕ′(x4) < 0,
iff a > x24.
After finding the value of x4 we obtained the value of y4 from equation (11)
or (12).

(iv). Equilibrium point E5(x5, 0, z5), is obtained

x5 = K and z5 =
(1−A)−d3

η .

(v). Equilibrium point E6(0, y6, z6) is obtained by the equations

sy
(
1− y

L

)
− b1y

2z

y2 + b
−Hy = 0 (14)

b2y
2

y2 + b
+ (1−A)− ηz − d3 = 0 (15)

From (15), we get

z =
1

η

(
b2y

2

y2 + b
+ 1−A− d3

)
(16)

Now from(14) and (16), we get

ξ(y) = s− sy

L
−H − b1y

(y2 + b)η

(
b2y

2

y2 + b
− 1 +A− d3

)
(17)

then at y = 0 , ξ(0) = s−H > 0, and at y = δ , ξ(δ) < 0 if s <
δs

L
+H.

Then there exist a positive point y6 ∈ (0, δ) such that ξ(y6) = 0 and
ξ′(y6) < 0.
Positive value of z6 can be obtained by using the value of y6 from equation
(16).

(vi). The interior equilibrium point Ē(x̄, ȳ, z̄) is obtained by the following equa-
tions

r − rx

K
− a1xy

x2 + a
= 0 (18)

s− sy

L
+

a2x
2

x2 + a
− b1zy

y2 + b
−H = 0 (19)

b2y
2

y2 + b
− d3 + (1−A)− ηz = 0 (20)

Now from equation (18), we obtained

y =
1

x

(
−rx3

a1
+

Krx2

a1
− arx

a1
+

Kar

a1

)
y =

1

x
w(x) , where w(x) = −rx3

a1
+

Krx2

a1
− arx

a1
+

Kar

a1
.
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From equation (20), we obtained z =
1

η

(
b2y

2

y2 + b
+ 1−A− d3

)
now using

the values of y and z in equation(19), we get, following equation

g(x) =
(
w2(x) + bx2

)2 [
(s−H)ηx(x2 + a)− s

L
w(x)η(x2 + a) + a2x

3η
]

−b1w
3(x)(x2 + a)x2 − (1−A− d3)

(
w2(x) + bx2

)
x3

(
x2 + a

)
(21)

From (21), it is easy to see that,

(a). g(0) = − s

La51
K5a6η < 0

(b). g(K) = bK5(K2 + a) [b(s−H)η − (1−A− d3)] + a2b
2K7η,

it is positive if
b(s−H)η > 1−A− d3 as s > H and 1−A > d3.

(c). A little algebraic manipulation yields that, g′(x) > 0 also positive.
Then, there exist a positive root x = x̄ of (21) in (0,K). Using this value

in equation (18)-(20), we get the values of ȳ and z̄, as ȳ =
w(x̄)

x̄
and

z̄ =
1

η

(
b2ȳ

2

ȳ2 + b
+ 1−A− d3

)

5. Local Stability Analysis

In this section we derived the conditions for the local stability of equilibrium points
by computing the eigenvalues of the Jacobian matrix, J of the system (1)-(3), where

J (E) =


r − 2xr

K
− 2aa1xy

(x2 + a)2
−a1x

2

x2 + a
0

2aa2xy

(x2 + a)2
s− 2ys

L
+

a2x
2

x2 + a
− 2bb1yz

(y2 + b)2
−H

−b1y
2

y2 + b

0
2bb2yz

(y2 + b)2
b2y

2

y2 + b
− d3 + 1−A− 2ηz


(22)

The existence of local stability of equilibrium points are give as.
The eigen values of the characteristic equation of jacobian matrix at the equilib-
rium point E0(0, 0, 0) are given as r, s−H and 1−A− d3.All the eigen values are
positive, hence equilibrium point E0 is unstable.

The eigen value of the characteristic equation at E1(K, 0, 0) are −r,

s +
a2K

2

K2 + a
− H and −d3 + 1 − A, so equilibrium point E1 is unstable in

direction y − z but stable in direction x, then it is saddle point.

The eigen value of the characteristic equation atE2(0, (1 − H)L, 0) are r,

−s−H +2sH and
b1L

2(1−H)2

b+ L2(1−H)2
− d3 + (1−A), it is unstable in direction x− z

and stable in direction-y, so it is saddle point.

As the characteristic roots for E3(0, 0, z3) are r, s−H and −d3+(1−A)− 2ηz3,
it is unstable in direction x− y and stable in direction z, then it is saddle point.
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At E4(x4, y4, 0), characteristic equation is given as,[
λ2 + (−A11 −A22)λ+A11A22 −A21A12

]
(A33 − λ) = 0 (23)

Where

A11 = r − 2x4r

K
− 2aa1x4y4

(x24 + a)2
, A12 =

−a1x
2
4

x24 + a
, A21 =

2aa2x4y4
(x24 + a)2

A22 = s− 2y4s

L
+

a2x
2
4

x24 + a
−H, A33 =

b22y4
y24 + b

− d3 + (1−A)

The equilibrium point E4 is unstable along z direction as A33 > 0.

The eigen values of the characteristic equation at equilibrium point E5(x5, 0, z5)

are r − 2x5r

K
, s +

a2x
2
5

x25 + a
−H and −d3 + (1 − A) − 2ηz5, it is stable in direction

x− z and unstable in direction y, hence it is saddle point.

Characteristic equation about the equilibrium point E6(0, y6, z6) is given as,

(λ− r)
(
λ2 +A4λ+B4

)
= 0 (24)

Where

A4 = H − s+
2y6s

L
+

2bb1y6z6
(y26 + b)2

+ ηz6

B4 =

(
H − s+

2y6s

L
+

2bb1y6z6
(y26 + b)2

)
ηz6 +

2bb1b2y
3
6z6

(y26 + b)3

From equation (24), we eigen values λ1 = r, λ2,3 =
−A±

√
A2 − 4B

2
. The

equilibrium point E6 is unstable along x as λ1 = r > 0

Behavior of the system at the interior equilibrium point Ē(x̄, ȳ, z̄) seen by the
characteristic equation of this point by jacobian matrix (22) is given as,

λ3 +Aλ2 +Bλ+ C = 0

where A,B and C is given as
A = C11 + C22 + C33, B = −C11C22 − C11C33 − C22C33 − C32C23 − C12C21

C = C11C22C33 − C11C23C32 − C12C21C33

and value of Cij for all i, j = 1, 2, 3 given by following equations

C11 = r − 2x̄r

K
− 2aa1x̄ȳ

(x̄2 + a)2
, C12 =

−a1x
2

x2 + a
, C21 =

2aa2xy

(x2 + a)2

C22 = s− 2ȳs

L
+

a2x
2

x2 + a
− 2bb1yz

(y2 + b)2
−H, C23 =

−b21y

y2 + b
, C32 =

2bb1yz

(y2 + b)2
,

C33 =
b22y

y2 + b
− d3 + (1−A)− 2ηz

Then by Routh-Hurwitz criteria equilibrium E (x, y, z) , is locally asymptotically
stable if, A > 0, C > 0 and AB > C otherwise it is not stable.

6. Global Stability for the Positive Equilibrium Point

The global stability of system is given by the following theorem.
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Theorem 6.1 The positive equilibrium point Ē(x̄, ȳ, z̄) is globally asymptotically
stable, if the following inequality holds.

(i). (aa2x̄− a1xmaxx̄)
2 <

2sa

L
(x̄2 + a)

(
ra
K (x̄2 + a) + a1aȳ

)
(ii).

(
b2b(ȳ + ymax)− b1ȳ

2 − b1bȳ
)2

<
2ηb2s

L
(ȳ2 + b)2

Proof : Consider the positive definite function, V (x, y, z) as

V (x, y, z) = x− x̄− x̄log
x

x̄
+ y − ȳ − ȳlog

y

ȳ
+ z − z̄ − z̄log

z

z̄
(25)

Where function V (x, y, z) is continuous in R3
+. Now the derivative of V with respect

to time along the solution of the system is given as.

dV

dt
=

(x− x̄)

x

dx

dt
+

(y − ȳ)

y

dy

dt
+

(z − z̄)

z

dz

dt
(26)

then from the system of equations (1)-(3), we obtained

dV

dt
=

dV1

dt
+

dV2

dt
+

dV3

dt

Where
dV1

dt
= (x− x̄)

[
− r

K
(x− x̄)− a1xy

x2 + a
+

a1x̄ȳ

x̄2 + a

]
dV2

dt
= (y − ȳ)

[
− s

L
(y − ȳ) +

a2x
2

x2 + a
− b1zy

y2 + b
− a2x̄

2

x̄2 + a
+ b1ȳ2z̄

ȳ2+b

]
and

dV3

dt = (z − z̄)
[
−η(z − z̄) + b2y2

y2+b −
b2ȳ2

ȳ2+b

]
Then by numerical simulation we obtained following,

dV

dt
= −a11(x− x̄)2−a22(y− ȳ)2−a33(z− z̄)2+a12(x− x̄)(y− ȳ)+a23(y− ȳ)(z− z̄)

Where

a11 =
r

K
+

a1aȳ − a1xx̄ȳ

(x2 + a)(x̄2 + a)
, a22 =

s

L
+

b1z(y
2ȳ + yȳ + b)

(ȳ2 + b)(y2 + b)
, a33 = η,

a12 =
a2a(x+ x̄)− aa1x̄

2 − aa1x

(x2 + a) (x̄2 + a)
and a23 =

b2b(y + ȳ)− b1ȳ
3 − bb1ȳ

(ȳ2 + b)(y2 + b)

Therefor the sufficient condition for
dV

dt
⩽ 0, given by the following inequalities

(a). aii > 0 for all i = 1, 2, 3.
(b). a212 < 2a11a22.
(c). a223 < 2a22a33.

then by using above inequalities, we obtained the following conditions,

(i). (aa2x̄− a1xmaxx̄)
2 <

2sa

L
(x̄2 + a)

(ra
K

(x̄2 + a) + a1aȳ
)

(ii).
(
b2b(ȳ + ymax)− b1ȳ

2 − b1bȳ
)2

<
2ηb2s

L
(ȳ2 + b)2

Hence the theorem.
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7. Permanence of System

In this section we described the permanence of the solution of the system.

Theorem 7.1 Assume that r
(
K2 + a

)
> a1Kδ, s

(
δ2 + b

)
> H

(
δ2 + b

)
+ bδε

and (1−A) > d3, then the solution of system is permanent.

Proof : From first equation of the system, we have

dx

dt
⩾ rx

(
1− x

K

)
− a1Kδ

K2 + a
x

Using comparison principle, we set

lim inf x(t) ⩾ K

r

(
r − a1Kδ

K2 + a

)
= k(say) > 0. (27)

From second equation of the system, we have

dy

dt
⩾ sy

(
1− y

L

)
−Hy − b1δεy

δ2 + b
(28)

=

(
s−H − b1δε

δ2 + b
− sy

L

)
y (29)

Using comparison principle, we set

lim inf y(t) ⩾ L

s

(
s−H − b1δε

δ2 + b

)
= δ0(say) > 0 (30)

From third equation of the system, we have

dz

dt
⩾ ((1−A)− d3 − ηz) z (31)

Using comparison principle, we get

lim inf z(t) ⩾ ((1−A)− d3)

η
= ϵ0(say) > 0 (32)

hence the theorem.

8. Numerical Simulation

In this section, stability of the non-linear system 1-3, in the positive octant, is
investigated numerically by using the following set of parameters.
r = 0.51, K = 100, a1 = 0.98, a = 40, s = 0.5, L = 60, a2 = 0.80, b1 = 0.58,
H = 0.02, b2 = 0.4, b = 40, A = 0.50, η = 0.04, d3 = 0.01.
The eigenvalues of the system are λ1,2 = −0.159146±0.51166i and λ3 = −0.509632
at interior equilibrium point Ē(5.7151, 6.2350, 17.1803) . The real part of eigen
values are negative. So, the interior equilibrium Ē is locally asymptotically stable
in the octant region. Figure (1a) and figure (1b) shows that the equilibrium points
Ē is locally and globally asymptotically stable, for a = 40, b = 40 and A = 0.50.
From figure (2a) - (2b), we observed that at b = 25 and A = 0.50 densities of the
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Figure 1. Time series.

Figure 2. Global stablity for positive equilibrium point Ē at a = 40, b = 40 and A = 0.5.

Figure 3. The time series of system at b = 25.

populations not settle down to their equilibrium values. Now from figure (3a)-
(3b), shows the bifurcation diagram of the system. In figure (3a) and figure (3b),
the system bifurcates when the value of a > 70 and 0.15 < b < 0.30 respectively.
In figure (4a) and (4b), when the value of alternative resource 0.15 < A < 0.3
system is unstable for middle and top predator. In figure (5a) and (5b), we see
that alternative resource has positive effect on middle predator. As the value of ′A′

increases density of middle predator population increases and decreases the density
of top predator. Now in figure (6a)-(6c), here we observed that when the values of
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Figure 4. Bifurcation diagram of the system.

Figure 5. At a = 40 and A = 0.50.

Figure 6. At a = 40 and A = 0.50.

b = 25 and alternative resource A = 0.50 equilibrium points become periodic, but
equilibrium point again stable when value of alternative resource A increase up to
0.75.

9. Conclusion

In this paper, a food chain model with Holling type III functional response
in presence of alternative resource is proposed. Here conditions of preliminary
properties like positivity, boundedness, local and global stabilities of model is
studied. The analytical results have been verified through numerical simulations.
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Figure 7. At a = 40 and b = 40.

Figure 8. At a = 40 and b = 40.

Figure 9. Middle predator population at alternative resource.

Bifurcation analysis is presented with the variation of alternative resource, half
saturation constants of holling type III functional response for prey-middle
predator and middle- top predator. From bifurcation analysis, we observed that
stability of system become extinct for 0.15 < A < 0.30 when a = 40, b = 40.
System again loss their stability at a > 70 and 20 < b < 30 respectively when
A = 0.50. Here it is seen that at suitable value of alternative resource A = 0.75 at
critical value of b = 25 ∈ (20, 30) system is stable. From the figures (5a) and (5b),
it is observed that the equilibrium level of middle and top predator can increase
and decrease respectively with increase the value of alternative resource.
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Figure 10. Top predator population at alternative resource.

Figure 11. When the values of b = 25 and alternative resource A = 0.50 equilibrium points become
periodic, but equilibrium point again stable when value of alternative resource A increase up to 0.75.

Figure 12.
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Figure 13. When the values of b = 25 and alternative resource A = 0.50 equilibrium points become
periodic, but equilibrium point again stable when value of alternative resource A increase up to 0.75.
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