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Using Chebyshev polynomials zeros as point grid for numerical

solution of linear and nonlinear PDEs by differential quadrature-

based radial basis functions
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Abstract. Radial Basis Functions (RBFs) have been found to be widely successful for the
interpolation of scattered data over the last several decades. The numerical solution of non-
linear Partial Differential Equations (PDEs) plays a prominent role in numerical weather
forecasting, and many other areas of physics, engineering, and biology. In this paper, Differ-
ential Quadrature (DQ) method- based RBFs are applied to find the numerical solution of
the linear and nonlinear PDEs. The multiquadric (MQ) RBFs as basis function will introduce
and applied to discretize PDEs. Differential quadrature will introduce briefly and then we
obtain the numerical solution of the PDEs. DQ is a numerical method for approximate and
discretized partial derivatives of solution function. The key idea in DQ method is that any
derivatives of unknown solution function at a mesh point can be approximated by weighted
linear sum of all the functional values along a mesh line.

Received: 7 September 2016, Revised: 11 December 2016, Accepted: 13 February 2017.

Keywords: radial basis function, differential quadrature, PDE, collocation method.

Index to information contained in this paper

1 Introduction

2 The description of Differential Quadrature (DQ) method

3 How we select the nodes

4 Chebyshev polynomials

5 Determining weighting coefficients

6 Numerical examples

7 Conclusions

1. Introduction

Since the radial basis functions (RBFs) method is a meshfree method which is very
easy to used, so many of researchers are very interested to work on it. RBFs are a
powerful tool in interpolation multivariable functions or approximation solution of
partial or ordinary differential equations. RBFs have really a meshfree nature. We
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Table 1. most popular RBFs

RBF Name Formula

Multiquadric φ(rj) =
√

r2j + c2

Inverse multiquadric φ(rj) =
1√

r2j+c2

Thin plate spline φ(rj) = r2j ln(r2j + c2)

Gaussian φ(rj) = e−cr2j

introduce RBF in this paper. Some of RBFs has a shape parameter c and we called
them parametric RBFs. Parametric RBFs have very interested properties, they are
smooth and infinitely differentiable. In interpolation or solving PDEs numerically,
their system matrix is nonsingular and thus interpolation problem with RBFs or
problem of solving PDE with RBFs has a unique solution and this is great.
It is well known that the value of c strongly influences the accuracy of approxi-
mation, which is used to approximate the solution of PDEs. Thus, there exists a
problem of how to select a ”good” value of c so that the numerical solution of PDEs
can achieve satisfactory accuracy. In general, there are three main factors that could
affect the optimal shape parameter c for giving the most accurate results. These
three factors are the scale of supporting region, the number of supporting nodes,
and the distribution of supporting nodes [1]. Among the three factors, the effect of
nodes distribution is the most difficult to be studied since there are infinite kinds
of distribution [1]. Of course Shu and his associates completely investigated this
problem in [1].
We Assume that f be a real value function that defined on the real line R, then
the function φ : Rd → R that φ(rj) = f(rj) and rj = ||x − xj || where x, xj ∈ Rd

is said a radial function. ||.|| Is the Euclidian norm and xj is a special mesh point
and called the center of radial function. List of most popular RBFs are shown in
Table 1. We note that again rj = ||x− xj ||
RBFs are usually divide into two categories: globally supported and locally sup-
ported RBFs. we say, the RBF is called locally supported if limr→∞ φ (r) = 0,
and called globally supported if limr→∞ φ (r) = ∞. Multiquadric and thin plat
spline are globally supported and inverse multiquadric and Gaussian are the locally
supported RBFs. In this paper, we are interested to used globally supported and in
particular MQ. The MQ method was originally used for interpolation of scattered
data. MQ is a RBF that was introduced by Hardy for multivariate data inter-
polation [2]. Franke tested this and other functions, and found that multiquadric
yielded faster convergence than other radial basis functions [3]. The use of MQ as a
basis function in the global collocation method for solving PDEs was proposed by
Kansa [4], the free parameter c in MQ is known as the shape parameter because
its value affects the shape of the function [5]. The accuracy of the global colloca-
tion method could be increased by increasing the value of the shape parameter [5].
When the shape parameter is too large, however, round- off error dominates, and
the method loses its accuracy [5].

2. The description of Differential Quadrature (DQ) method

The differential quadrature (DQ) method was introduced by Richard Bellman and
his associates in the early of 1970s [6], [7]. The basic idea of the DQ method is that
any derivative at a mesh point can be approximated by a weighted linear sum of
all the functional values along a mesh line [7]. Currently, the DQ method has been
extensively applied in engineering for the rapid and accurate solution of various
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linear and nonlinear differential equations [8], [9], [10]. Differential quadrature (DQ)
method is a numerical method for solving partial or ordinary differential equations.
In this method, we approximate the spatial derivatives of the function f at mesh
points xi∈ Rd using linear weighted sum of all the functional values at points in the
domain of the problem. We assume N grid points on the real axis with step length.
In the case d = 2, The discretization of the nth and the mth order derivatives
by DQ method at a point (x i,yi) with respect to x and y, respectively, is given

by equations (1) and (2) that f
(n)
x is nth order derivative of f with respect to x

and f
(m)
y is mth order derivative of f with respect to y. however we will have the

following equations

f (n)
x (xi, yi) =

N∑
j=1

w
(n)
ij f (xj , yj) , i = 1, 2, . . . , N, (1)

f (m)
y (xi, yi) =

N∑
j=1

v
(m)
ij f (xj , yj) , i = 1, 2, . . . , N. (2)

Now, for the case of dependent time PDEs, if t be the temporal variable , then the
equations of DQ discretization for the first and for the second order derivatives of
a univariable function are as below

f ′(xi, t) =

N∑
j=1

wijf(xj , t) , i = 1, 2, . . . , N (3)

f ′′(xi, t) =
N∑
j=1

vijf(xj , t) , i = 1, 2, . . . , N (4)

Where wij and vij are unknown and we called them the weighting coefficients
of the derivatives of first and second order. There are many approaches to find
these coefficients such as Bellmans approaches [11], Ram Jiwari in [6] and Shus
approach in [8]. From these approaches, Shus approach is very general approach
in the recent years. The function f(x, y) in (3) and (4) are called test functions
and for obtain the weighting coefficients we need a suitable test function. Some of
the most general test functions are: Legendre polynomials, Lagrange interpolation
polynomials, Lagrange interpolated cosine and Radial Basis Functions. We are
interested that use RBFs and in particular Multiquadric (MQ) as test functions in
this paper. However in 2-dimansion case, for obtaining the coefficients wij and vij
we substitute the function MQ with equation

φk (x, y) =

√
|x− xk|2 + |y − yk|2 + c2,

in the equations (1) and (2) and obtain the below equations [7].

{
φ
(n)
kx (xi, yi) =

∑N
j=1w

(n)
ij φk(xj , yj), i = 1, 2, . . . , N, i ̸= k,∑N

j=1w
(n)
ij = 0 i = k.

(5)
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{
φ
(m)
ky (xi, yi) =

∑N
j=1 v

(m)
ij φk(xj , yj), i = 1, 2, . . . , N, i ̸= k,∑N

j=1 v
(m)
ij = 0 i = k.

(6)

That φ
(n)
kx and φ

(m)
ky are nth and mth order of derivative of φk with respect to x

and y respectively. For the given i, any of equation systems of (5) and (6) has N
unknowns with N equations. So, with solving this equation system, we can obtain
the weighting coefficients. In section five, we will describe completely how to solve
(5) and (6) for any i and obtain the coefficients. Now, note that, we can see easily
that, the first and second order derivatives of MQ are as below:

φ
(1)
kx (x, y) =

x− xk√
(x− xk)2 + (y − yk)2 + c2

(7)

φ
(2)
kx (x, y) =

(y − yk)
2 + c2

((x− xk)2 + (y − yk)2 + c2)
3

2

(8)

That, in above, φ
(1)
kx and φ

(2)
kx are the first and the second order derivative of φk

with respect to x respectively. Off curse, the first and the second order derivative
of φk with respect to y will obtained as below

φ
(1)
ky (x, y) =

y − yk√
(x− xk)2 + (y − yk)2 + c2

(9)

φ
(2)
ky (x, y) =

(x− xk)
2 + c2

((x− xk)2 + (y − yk)2 + c2)
3

2

(10)

That, in above, φ
(1)
ky and φ

(2)
ky are the first and the second order derivative of φk

with respect to y respectively.

3. How we select the nodes

It is well known that the position of the nodes is a very important subject in
interpolation or numerical solution of PDE problems. The accuracy and conver-
gences speed are depended on nodes position. For selecting the nodes xi ∈ Rd there
are many methods, uniform grid, random grid and the Chebyshev-Gauss-Lobatto
point’s grid. But in this paper we used zeros of Chebyshev polynomials as nodes
xi ∈ Rd. It is well known that, in problem of interpolation of a real value func-
tion, interpolate function has minimum value of error when the nodes have been
the zeros of Chebyshev polynomials, we will introduce and describe the Chebyshev
polynomial briefly in the next section, and we will used the Chebyshev polynomials
zeros as node grid for numerical solution of PDEs with DQ- based RBFs method.
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4. Chebyshev polynomials

Chebyshev polynomials defined on [0, 1] and denoted by Tn(x) and represented as
below:

Tn(x) = cos(n arccosx) (11)

If we let x = cos θ then we have θ = arccosx, so, (11) will rewriting as below

Tn(x) = cosnθ (12)

From the

cos((n+ 1)θ) + cos((n− 1)θ) = 2 cos θ cosnθ

And with use of the (11) and (12) we have

Tn+1(x) + Tn−1(x) = 2xTn(x)

Or we can say

Tn+1(x) = 2xTn(x)− Tn−1(x) (13)

From the iterative formulae of (13) and with note that

T0(x) = 1 T1(x) = x

That obtain from (11) directly, we can obtain all of the Tn(x) formulation. Here
we present some of Chebyshev polynomials:

T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

For obtaining zeros of Chebyshev polynomials we first note that x is called a zero
of Tn(x) if we have

Tn(x) = cosnθ = 0 =⇒ nθ = kπ +
π

2
= (2k + 1)

π

2

So we obtain the below formulae

θ =
(2k + 1)π

2n

And because of x = cos θ then the zeros of Tn(x) will obtained as following iterative
formulae

xk = cos
(2k + 1)π

2n
, k = 0, 1, 2, · · · , n− 1
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5. Determining weighting coefficients

In this section, for 2-dimansion’s case, we describe how obtain the weighting coef-

ficients w
(1)
ij ,w

(2)
ij , v

(1)
ij and v

(2)
ij . First we note that {xi}Ni=1 are zeros of Chebyshev

polynomial of degree N , now for every i = 1, 2, · · · , N we set xi = yi. Then the
set of {(xi, yj)} that i, j = 1, 2, · · · , N are all of the nodes which we discretized
the PDEs in this points. We can see easily that we have N2 nodes. If we denote
this N2 nodes as {(xk, yk)}N

2

k=1 then we can easily see that k = i + (j − 1)N that
i, j = 1, 2, · · · , N . Of course, these unknown coefficients will obtain from (5) and

(6) as follow. We just describe how determining w
(1)
ij , and then w

(2)
ij , v

(1)
ij and v

(2)
ij

will obtained completely in a similar manner. If we extend the (5) for n = 1 and
for M = N2 nodes (xi, yi), i = 1, 2, · · · ,M , then for any k and i = 1, 2, · · · ,M
we have M equation with M unknown w

(1)
ij that i, j = 1, 2, · · · ,M However, with

solution of this M equation with M unknown w
(1)
ij we determine all of the arrays

of ith row of below matrix:

W (1) =



w
(1)
11 w

(1)
12 . . . w

(1)
1M

w
(1)
21 w

(1)
22 . . . w

(1)
2M

...
...

. . .
...

w
(1)
M1 w

(1)
M2 . . . w

(1)
MM


.

The ith row of W (1) is the solution of the following linear system of equations:



w
(1)
i1 φ11 + w

(1)
i2 φ12 + · · ·+ w

(1)
iMφ1M = φ

(1)
1i ,

w
(1)
i1 φ21 + w

(1)
i2 φ22 + · · ·+ w

(1)
iMφ2M = φ

(1)
2i ,

...

w
(1)
i1 φ(i−1)1 + w

(1)
i2 φ(i−1)2 + · · ·+ w

(1)
iMφ(i−1)M = φ

(1)
(i−1)i,

w
(1)
i1 + w

(1)
i2 + · · ·+ w

(1)
iM = 0,

w
(1)
i1 φ(i+1)1 + w

(1)
i2 φ(i+1)2 + · · ·+ w

(1)
iMφ(i+1)M = φ

(1)
(i+1)i,

...

w
(1)
i1 φM1 + w

(1)
i2 φM2 + · · ·+ w

(1)
iMφMM = φ

(1)
Mi.

(14)

And in matrix form we can rewrite the system of (14) as follow:

ΦW
(1)
i = φ(1).
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That

Φ =



φ11 φ12 . . . φ1M

φ21 φ22 . . . φ2M
...

...
. . .

...
φ(i−1)1 φ(i−1)2 . . . φ(i−1)M

1 1 · · · 1
φ(i+1)1 φ(i+1)2 . . . φ(i+1)M

...
...

. . .
...

φM1 φM2 . . . φMM


,

and

W
(1)
i = [w

(1)
i1 , w

(1)
i2 , · · · , w(1)

iM ]T ,

and

φ(1) = [φ
(1)
1i , φ

(1)
2i , · · · , φ

(1)
Mi]

T .

That φij is multiquadric RBF and defined as

φij = φi(xj , yj) =
√

(xi − xj)2 + (yi − yj)2 + c2.

Also, φ
(1)
ij is the first order derivative of φi with respect to x in (xj , yj). We did

obtained the first order derivative of multiquadric in (7). However with solution of

linear system of equations in (14) we get the unknown coefficients w
(1)
ij .

6. Numerical examples

Example 6.1 in this section we explain how employ our method for solving PDEs.
Consider the 2-dimansion Poisson equation in a square domain [−1, 1] × [−1, 1]
that we getting it from [7].

∂2u

∂x2
+

∂2u

∂y2
= −2π2 sinπx sinπy. (15)

Now we discretized the above PDE as below

∂2u(xi, yi)

∂x2
+

∂2u(xi, yi)

∂y2
= −2π2 sinπxi sinπyi , i = 1, 2, · · · ,M.

That M = N2 and then from the concept of Differential Quadrature method we
obtain the following equations

M∑
j=1

w
(2)
ij u(xj , yj) +

M∑
j=1

v
(2)
ij u(xj , yj) = −2π2 sinπxi sinπyi , i = 1, 2, · · · ,M.

(16)

In equation system (16), we note that the coefficients w
(2)
ij and v

(2)
ij were ob-

tained before, from (5) and (6), and indeed they are not unknown. The equation
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Table 2. Relative error for a linear problem (Example 6.1)

Number of nodes L2 error ×10−2 Optimal shape parameter c CPU times (s)

4 0.0814 1.524 0.026
16 0.0103 1.216 0.051
36 0.0018 1.143 0.083
49 0.00748 1.029 0.110
64 0.00817 0.935 0.184
81 0.02573 0.729 0.223

(16) is a linear system of equations that includes M equations and M unknown
{u(xi, yi)}Mi=1 We can easily rewriting (16) as below

M∑
j=1

(w
(2)
ij + v

(2)
ij )u(xj , yj) = −2π2 sinπxi sinπyi , i = 1, 2, · · · ,M. (17)

And then in matrix form, the system of equation of (17) rewriting as below

AU = B. (18)

That in (18) we have

A =



w
(2)
11 + v

(2)
11 w

(2)
12 + v

(2)
12 . . . w

(2)
1M + v

(2)
1M

w
(2)
21 + v

(2)
21 w

(2)
22 + v

(2)
22 . . . w

(2)
2M + v

(2)
2M

...
...

. . .
...

w
(2)
M1 + v

(2)
M1 w

(2)
M2 + v

(2)
M2 . . . w

(2)
MM + v

(2)
MM


M×M

.

U = [u(x1, y1), u(x2, y2), . . . , u(xM , yM )]T ,

B = −2π2[sin(πx1) sin(πy1), sin(πx2) sin(πy2), . . . , sin(πxM ) sin(πyM )].

That in above notations, T is representing the transpose of a matrix or a vector.
With solution of (17) we obtain the numerical solution of PDE in (15). For ob-
taining the numerical results for the Example 6.1 by proposed method, we used
MATLAB software and get the results in Table 2.
Now, to clearly show the behavior of the RBF- based DQ method for the Example
6.1, the relative errors are plotted against shape parameter c for various nodes
and optimal shape parameters c are plotted against number of nodes. This can be
observed from Figure1.

Example 6.2 Now we solve a nonlinear PDE with this method, consider the below
nonlinear PDE that we get that from [7]. We suppose that [−1, 1]× [−1, 1] be the
domain of this problem.

∂2u

∂x2
+

∂2u

∂y2
+ u(

∂u

∂x
+

∂u

∂y
)− 2(x+ y)u = 4, (19)
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with the below Dirichlet boundary condition for the four edges of the square domain

{
u(x = −1) = 1 + y2, u(x = 1) = 1 + y2,
u(y = −1) = 1 + x2, u(y = 1) = 1 + x2.

(20)

We can see easily that the exact solution of this problem is u(x, y) = x2 + y2. This
example is very different with first example, because this problem is nonlinear and
hence the system of equations that we obtain from discretization of (19) is nonlinear
and indeed it is not easy to solve it. If we assume that sequence {xi}Ni=1 be the
zeros of Chebyshev polynomial from degree N , then for discretization of (19) we
assume that the sequence {(xk, yk)}N

2

k=1 be the grid points where in that we have
k = i + (j − 1)N where i, j = 1, 2, · · · , N . However, with the above assumptions,
we have discretized the equation (19) as follow

∂2u(xi, yi)

∂x2
+
∂2u(xi, yi)

∂y2
+u(xi, yi)(

∂u(xi, yi)

∂x
+
∂u(xi, yi)

∂y
)−2(xi+yi)u(xi, yi) = 4.

(21)
That i = 1, 2, · · · ,M = N2. Now with applying DQ method we have the following
equations

∑M
j=1w

(2)
ij u(xj , yj) +

∑M
j=1 v

(2)
ij u(xj , yj) + u(xi, yi)[

∑M
j=1w

(1)
ij u(xj , yj)

+
∑M

j=1 v
(1)
ij u(xj , yj)]− 2(xi + yi)u(xi, yi) = 4 , i = 1, 2, · · · ,M.

Or

M∑
j=1

(w
(2)
ij + v

(2)
ij )u(xj , yj)+u(xi, yi)

M∑
j=1

(w
(1)
ij + v

(1)
ij )u(xj , yj)−2(xi+yi)u(xi, yi) = 4.

(22)

If we set aij = w
(2)
ij + v

(2)
ij and bij = w

(1)
ij + v

(1)
ij then we can rewriting (22) as below

M∑
j=1

aijuj + ui

M∑
j=1

bijuj − 2(xi + yi)ui = 4. (23)

That in (23) we have uk = u(xk, yk) for k = 1, 2, · · · ,M However, (23) is a nonlinear
system of equations and we will solved it with Jacobi iteration method. First, we
know ith equation of (23) is as follow

M∑
j=1,j ̸=i+1

aijuj + ai(i+1)ui+1 + ui

M∑
j=1,j ̸=i+1

bijuj + bi(i+1)uiui+1 − 2(xi + yi)ui = 4.

And we have easily

ui+1 =
1

ai(i+1) + bi(i+1)ui
{4 + 2(xi + yi)ui −

M∑
j=1,j ̸=i+1

aijuj − ui

M∑
j=1,j ̸=i+1

bijuj}.
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Table 3. Relative error for a linear problem (Example 6.2)

Number of nodes L2 error ×10−2 Optimal shape parameter c CPU times (s)

4 0.1584 1.524 1.227
16 0.0519 1.216 2.008
36 0.0053 1.143 2.109
49 0.0129 1.029 2.675
64 0.0417 0.935 3.013
81 0.0698 0.729 3.158

Figure 1. Optimal shape parameter against number of nodes in the left and relative error against shape
parameter in the right.

In above we have i = 1, 2, · · · ,M − 1. Until now, we obtain u2, u3, · · · , uM , now
for obtaining u1 from Mth equation of (23) we get the following equation

u1 =
1

aM1 + bM1uM
{4 + 2(xM + yM )uM −

M∑
j=2

aMjuj − uM

M∑
j=2

bMjuM}.

Now, with an initial approximation [u
(0)
1 , u

(0)
2 , · · · , u(0)M ]T , we obtain the solution of

PDE (19) in (xk, yk), k = 1, 2, · · · ,M from the following iterative equations

u
(n+1)
i+1 =

1

ai(i+1) + bi(i+1)u
(n)
i

{4+2(xi+yi)u
(n)
i −

M∑
j=1,j ̸=i+1

aiju
(n)
j −u

(n)
i

M∑
j=1,j ̸=i+1

biju
(n)
j },

and

u
(n+1)
1 =

1

aM1 + bM1u
(n)
M

{4 + 2(xM + yM )u
(n)
M −

M∑
j=2

aMju
(n)
j − u

(n)
M

M∑
j=2

bMju
(n)
M }.

That in above u
(n)
k is approximation of exact solution u(xk, yk) in step n of iteration.

For obtaining the numerical results for the Example 6.2 by proposed method, we
used MATLAB software and get the following results that shownin Table 3.
Now, to clearly show the behavior of the RBF- based DQ method for the nonlin-

ear example (Example 6.2 ), the relative errors are plotted against shape parameter
c for various nodes and optimal shape parameters c are plotted against number of
nodes. This can be observed from Figure 2.
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Figure 2. Optimal shape parameter against number of nodes in the left and relative error against shape
parameter in the right.

7. Conclusions

From the numerical results in Tables 2 and 3, we see that the optimal shape pa-
rameter c where we obtained in the linear problem are same with those that we
obtained in nonlinear case. We may expect that, for a fixed mesh points distribu-
tion, the optimal shape parameter c in the RBF- based DQ method remains the
same for various problems. This phenomenon has also been observed by Shu [7]. It
can be seen from tables 2 and 3 that the accuracy of numerical results can be im-
proved by increasing the number of nodes, but when the number of nodes is further
increased after a critical value, the accuracy of numerical results is decreased, be-
cause , when the number of nodes is inceased, the condition number of the matrix
becomes very large and the equations system tend to be ill- conditioned.
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