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Abstract. An epidemic model with optimal control strategies was investigated for Hepatitus C 
Viral disease that can be transmitted through infected individuals. In this study, we used a 
deterministic compartmental model for assessing the effect of different optimal control strategies 
for controlling the spread of Hepatitus C disease in the community. Stability theory of differential 
equations is used to study the qualitative behavior of the system. The basic reproduction number 
that represents the epidemic indicator is obtained by using the condition of endemicity. Both the 
local stability and global stability conditions for disease free equilibrium is established. 
Uniqueness of endemic equilibrium point and its global stability conditions are proved. Numerical 
simulation of the model showed that applying all the intervention strategies can successfully 
eliminate Hepatitus C viral disease from the community. 
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1. Introduction 

Hepatitis (plural hepatitides) is an inflammation of the liver characterized by the presence 
of inflammatory cells in the tissue of the organ [18]. The inflammation of liver causes 
soreness and swelling. Hepatitis is most commonly caused by one of the 5 hepatitis viruses; 
hepatitis A, hepatitis B, hepatitis C, hepatitis D and hepatitis E. Hepatitis C is usually 
spread through contact with blood products [11]. Blood products have been the main agents 
through which HCV is transmitted, but ever since 1992, when it became possible to detect 
the virus in blood, transmissions through transfusions, and organ transmissions have been 
minimal. Most common avenues through which HCV is spread are unprotected sex, 
sharing of contaminated needles among drug addicts and those with other STDs [19]. Some 
people also get this virus from tattoo and piercing salons. It is also possible to contract 
HCV at birth, as it can be transmitted from mother to baby.  

Hepatitis C is very common, potentially fatal disease. Globally, an estimated 170 
million people are living with HCV [10]. This infection is very common in developing 
countries. In Egypt, prevalence ranges from 18-35% in different parts. Even in some 
developed countries like Australia, an estimated 200,000 people are living with HCV, 
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with approximately 150,000 having chronic HCV infection [6] (Figure 1).  

 
Figure 1. Global annual mortality from hepatitis, HIV, tuberculosis and malaria, 2000-2015. 

HCV is undoubtedly the most important cause of chronic Hepatitis. It has also been 
reported to be associated with acute hepatitis, autoimmune chronic hepatitis, cirrhosis, and 
primary hepatocellular carcinoma [16]. Because the infection becomes chronic in more 
than 80% of in the infected people, the disease is an important public health and economic 
problem [3]. 

Different mathematical models have been developed to analyze the transmission 
dynamics of HCV as well as the effectiveness of some intervention strategies against the 
spread of HCV infections. For example, Martcheva and Castillo-Chavez considered a 
model of HCV with chronic infectious stage in a varying population [9]. Their model was 
extended by Yuan and Yang to include the latent period [20]. In particular, there have been 
studies of epidemiological models where optimal control methods were applied. These 
include Kazeem Oare Okosun [14] who studied SEITV (Susceptible, Exposed, Infected, 
Treated and Vaccinated) epidemic model and applied stability analysis theory to find the 
equilibrium solutions and then used optimal control to determine the optimal vaccination 
strategies to reduce acute and chronic stages in the presence of treatment and infected 
immigrants. A similar study conduct was also conducted by Neterindwa Ainea et al. 
without using optimal control strategies [1]. All of the above studies reveal an important 
result for HCV disease transmission dynamics by considering different conditions. In this 
study, we will consider a PSIcIR (Protection, Susceptible, Carrier, Infected, and 
Recovered) model for HCV. Our model is a modified and extended version of the model 
presented in [13] with optimal control strategies for the control of the disease.           

2. Description and formulation of model 

The compartments used in this model consist of five classes: ( )P t  is the compartment 
used for those which are protected against the disease over a period of time. ( )S t  is used 
to represent the number of individuals that are prone to the disease at time t. ( )I t  denotes 
the number of individuals who have been infected with the disease and are capable of 
spreading the disease to those in the susceptible categories. ( )cI t  denotes the number of 
individuals who are infected with the disease and are capable of spreading the disease 
without showing any symptoms of the disease. ( )R t  denote the number of individuals 
who are recovered from the disease. Protected individuals are recruited into the population 
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at per capita rate (1 ) .α− Λ  Susceptible individuals are recruited into the population at per 
capita rate .αΛ  Susceptible individuals acquire typhoid infection at per capita rate .λ   
The susceptible class is increased by birth or emigration at a rate of αΛ  and also from 
recovered class by losing temporary immunity with δ  rate and from protected class by 
losing protection with γ  rate. λ  is the effective force of infection which is given by 

1 2( )A C Nλ β β= +  where 1β  is effective contact rate of individuals with acute HCV 
infected and 2β  is effective contact rate of individuals with chronic HCV infected. ϕ  is 
the rate at which acute infected individuals become chronically infected. µ  is the natural 
mortality rate, 1d  is the disease induced mortality rate due to acute infection, 2d  is the 
disease induced mortality rate due to chronic infection. β  is the rate of treatment of 
chronically infected and joining recovered class, θ  is the rate of treatment of acute 
infected and joining recovered class.  

The acute infected subclass is increased from susceptible subclass by ρλ  screening 
rate. The chronic infected subclass is increased from susceptible subclass by (1 )ρ λ−   
screening rate. Those individuals in the acute infected subclass can get treatment and join 
recovered subclass with a rate of 𝜃𝜃. And those individuals in the chronic infected subclass 
can get treatment and join recovered subclass with a rate of β . The recovered subclass 
also increases with individuals who come from acute infected class by getting treatment 
with a rate of θ  and chronic infected class by getting treatment with a rate of β . In all 
the subclasses, µ  is the natural death rate of individuals, but in the acute infective class 

1d  is disease induced death rate due to acute infection and 2d  is the disease induced death 
rate due to chronic infection. The assumption of this model is that there is re-infection once 
an individual is recovered (Figure 2).  

 
Figure 2. Flow diagram of the model. 

The above model description can be written in five system of differential equation 
below. 

 
 

(1 ) ( ) ,dP P
dt

α γ µ= − Λ − +   (1) 
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( ) ,dS P R S

dt
α γ δ λ µ= Λ + + − +   (2) 

 ( )1 ,dA S d A
dt

ρλ ϕ θ µ= − + + +   (3) 

 ( )2(1 ) ,dC S A d C
dt

ρ λ ϕ β µ= − + − + +   (4) 

 
( ) ,dR A C R

dt
θ β µ δ= + − +   (5) 

where 1 2( )A C Nλ β β= +   is effective force of infection, 1β  is effective contact rate of 
individuals with acute HCV infected and 2β  is effective contact rate of individuals with 
chronic HCV infected. Shortly we may write 1 2A Cλ ε ε= +  for the sake of simplicity, 

where 1
1 N

βε =  and 2
2 N

βε = then 1 2 ,A Cλ ε ε= + N P S A C R= + + + +  with initial 
conditions 0(0) ,P P=  0(0) ,S S=  0(0) ,A A=  0(0) ,C C=  0(0) .R R=   

3. The model analysis 

We assumed the initial condition of the model is non-negative, and now we will show that 
the solution of the model is also positive. 

3.1. Positivity of Solution 

Theorem 3.1 Let { }5
0 0 0 0 0( , , , , ) : 0, 0, 0, 0, 0P S A C R R P S A C R+Ω = ∈ > > > > >  then the 

solutions { , , , , }P S A C R  are positive for 0.t ≥  

Proof  From the system of differential equation, taking the first equation   

1 1
( )

0 0

    (1 ) ( )

( )                (because  (1 ) 0)

( )

( ) 

ln ( ) here   is        w

 

 integration constant

( )              here  (0)  wt

dP P
dt
dP P
dt
dP dt
P
dP dt
P
P t C C

P t P e P Pγ µ

α γ µ

γ µ α

γ µ

γ µ

γ µ
− +

= − Λ − +

⇒ ≥ − + − Λ ≥

⇒ ≥ − +

⇒ ≥ − +

⇒ ≥ − + +

⇒ ≥ =

∫ ∫

1

  ( ) 0   for all  0.
C

P t t
=

∴ ≥ ≥

 

From the second equation, we have 

    ( )

( )

( )

dS P R S
dt
dS R S
dt
dS S R
dt

α γ δ λ µ

δ λ µ

λ µ δ

= Λ + + − +

⇒ ≥ − +

⇒ + + ≥

 

Using appropriate integrating factor 
( ) dt

e
λ ω+∫  and re-arranging we get 
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( )
0     ( )

lim inf ( ) 0

  ( ) 0  for all   0.

t

t

S t S e

S t

S t t

λ µ

αµ αµ
− +

→∞

 Λ Λ
≥ + − 

≥⇒
 

∴ ≥ ≥

  

From the third equation, we have 

( )

( )

( )

( )

( )
( )

1

1

1

1

1 2 2

1
0 0 2

     

 

ln  where  is integration constant 

( ) (0)
  ( ) 0

                
 for

 
 all

   wh
  

ere d t

dA S d A
dt

dA d A
dt
dA d dt
A
dA d dt
A
A d t C C

A t A e A A C
A t

ϕ θ µ

ρλ ϕ θ µ

ϕ θ µ

ϕ θ µ

ϕ θ µ

ϕ θ µ
− + + +

= − + + +

⇒ ≥ − + + +

⇒ ≥ − + + +

⇒ ≥ − + + +

⇒ ≥ − + + + +

⇒ ≥ = =

∴ ≥

∫ ∫

 0.t ≥

 

From the fourth equation, we have 

( )2(1 ) d CdC S A
dt

ρ λ ϕ β µ= − + − + +  

( )2
dC d C
dt

β µ⇒ ≥ − + +  

( )

( )

( )
( )

2

2

2 3 3

2
0 0 3

 

ln  where  is integration constant 

( )                  where (0)
 ( ) 0  for all  0.

d t

dC d dt
c
dC d dt
C
C d t C C

C t C e C C C
C t t

β µ

β µ

β µ

β µ
− + +

⇒ ≥ − + +

⇒ ≥ − + +

⇒ ≥ − + + +

⇒ ≥ = =

∴ ≥ ≥

∫ ∫  

From the fifth equation, we have 
 

    ( )RdR A C
dt

θ β µ δ= + − +  

 
( )RdR

dt
µ δ⇒ ≥ − +  

 
( )dR dt

R
µ δ⇒ ≥ − +  

 
( ) dR dt

R
µ δ⇒ ≥ − +∫ ∫  

 4 4ln ( )    where  is integrationR t C Cµ δ⇒ ≥ − + + constant 
 ( )

0 0 3( )               where (0)tR t R e R R Cµ δ− +⇒ ≥ = =  
  ( ) 0  for all  0.R t t∴ ≥ ≥  

This completes the proof of the theorem.                                                

Therefore, the solution of the model is positive. 
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3.2. Invariant region 

Theorem 3.2 The total population size N  of the system of model equations (1)-(5) is 
bounded in the invariant region .Ω  That is, size of ( )N t  is bounded for all .t   

Proof  In the given model the total population ( )N  is 

.N P S A C R= + + + +  

Based on the techniques on [4] we differentiating N  both sides with respect to t leads to 
dN dP dS dA dC dR
dt dt dt dt dt dt

= + + + + . (6) 

By substituting (1)-(5) into (6), we can get 

( )1 2 .dN N d A d C
dt

µ= Λ − − +  (7) 

In the absence of mortality due to typhoid disease (i.e, 1 2 0d d= = ), equation (7) becomes 

,dN N
dt

µ≤ Λ −  (8) 

Rearranging and integrating both sides of (8), we get 

 
dN dt

Nµ
≤

Λ −∫ ∫  

 5 5
1ln( )  where  is integration constantN t C Cµ
µ
−

⇒ Λ − ≤ +  

 6 6 5ln( )      where N t C C Cµ µ µ⇒ Λ − ≥ − + = −  

 6 where CtN Ae A eµµ −⇒ Λ − ≥ =  
By applying initial condition 0(0) ,N N=  we get 

 0     A Nµ= Λ −   
 ( )0

tN N e µµ µ −⇒ Λ − ≥ Λ −   
 

0 tNN e µµ
µ µ

−Λ − Λ
⇒ ≤ −  

 
 (9) 

 

As t →∞  in (9), the population size N µ
Λ→  which implies that 0 N µ

Λ≤ ≤  . Thus, the 

feasible solution set of the model enters and remain in the region: 

{ }5( , , , , ) : N .P S A C R R µ+
ΛΩ = ∈ ≤  

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it 
is sufficient to study the dynamics of the basic model in Ω . 

Lemma 3.1 (Existence of solution) Solutions of the model equations (1)-(5) together with 
the initial conditions (0) 0,P >  (0) 0,S >  (0) 0,A >  (0) 0,C >  (0) 0R >  exist in 5 ,+   
i.e., the solution of the model  ( ),P t  ( ),S t  ( ),A t  ( )C t  and ( )R t  exist for all t and will 

remain in 5 .+  

Proof  The right hand sides of the system of equations (1)-(5) can be expressed as 
follows: 

 1( , , , , ) (1 ) ( )f P S A C R Pα γ µ= − Λ − + , 
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 2 ( , , , , ) ( ) ,f P S A C R P R Sα γ δ λ µ= Λ + + − +  
 ( )3 1( , , , , ) ,f P S A C R S d Aρλ ϕ θ µ= − + + +  
 ( )4 2( , , , , ) (1 ) ,f P S A C R S A d Cρ λ ϕ β µ= − + − + +  
 5 ( , , , , ) ( ) .f P S A C R A C Rθ β µ δ= + − +  

According to Derrick and Grobsman theorem, let Ω  denote the region  
{ }5( , , , , ) : ( / ) .P S A C R N µ+Ω = ∈ ≤ Λ  

Then equations (1)-(5) have a unique solution if ( ) ( ) ,i jf x∂ ∂ , 1,2,3,4,5i j =  are 

continuous and bounded in Ω . Here, 1 2 3 4 5,  ,  ,   and .x P x S x A x C x R= = = = =   

For 1 :f   

 ( )1 ( ) ( ) ,f P γ µ∂ ∂ = − + < ∞  

 ( )1 ( ) 0 ,f S∂ ∂ = < ∞  

 ( )1 ( ) 0 ,f A∂ ∂ = < ∞  

 ( )1 ( ) 0 ,f C∂ ∂ = < ∞  

 ( )1 ( ) 0 .f R∂ ∂ = < ∞  

For 2 :f   

 ( )2 ( ) ,f P γ∂ ∂ = < ∞  

 ( )2 ( ) ( ) ,f S λ µ∂ ∂ = − + < ∞  

 ( )2 ( ) 0 ,f A∂ ∂ = < ∞  

 ( )2 ( ) 0 ,f C∂ ∂ = < ∞  

 ( )2 ( ) .f R δ∂ ∂ = < ∞  

For 3 :f   

 ( )3 ( ) 0 ,f P∂ ∂ = < ∞  

 ( )3 ( ) ,f S ρλ∂ ∂ = < ∞  

 ( ) ( )3 1( ) , f A dϕ θ µ∂ ∂ = − + + + < ∞  

 ( )3 ( ) 0 ,f C∂ ∂ = < ∞  

 ( )3 ( ) 0 .f R∂ ∂ = < ∞  

For 4 :f   

 ( )4 ( ) 0 ,f P∂ ∂ = < ∞  

 ( )4 ( ) (1 ) ,f S ρ λ∂ ∂ = − < ∞  

 ( )4 ( ) ,f A ϕ∂ ∂ = < ∞  

 ( ) ( )4 2( ) ,f C dβ µ∂ ∂ = − + + < ∞  

 ( )4 ( ) 0 .f R∂ ∂ = < ∞  

For 5 :f   
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 ( )5 ( ) 0 ,f P∂ ∂ = < ∞  

 ( )5 ( ) 0 ,f S∂ ∂ = < ∞  

 ( )5 / ( ) ,f A θ∂ ∂ = < ∞  

 ( )5 ( ) ,f C β∂ ∂ = < ∞  

 ( )5 ( ) ( ) .f R µ δ∂ ∂ = − + < ∞  

Thus, all the partial derivatives ( ) ( ) ,i jf x∂ ∂ , 1,2,3,4i j =  exist, continuous and bounded 

in Ω . Hence, by Derrick and Grobsman theorem, a solution for the model (1)-(5) exists 
and is unique.                                                                           

3.3. Disease free equilibrium (DFE) 

To find the disease free equilibrium we consider the steady state of the system (1)-(5) 
which is 

( )
( )

1

2

(1 ) ( ) 0,
( ) 0,

0,

(1 ) 0,
( ) 0.

P
P R S

S d A

S A d C
A C R

α γ µ
α γ δ λ µ
ρλ ϕ θ µ

ρ λ ϕ β µ
θ β µ δ

− Λ − + =
Λ + + − + =

− + + + =

− + − + + =

+ − + =

 (10) 

Equating (10) at 0,  0A C= =  and solving the non-infected state variables. We get the 
following  
From the first equation of (10), (1 ) ( ) 0.Pα γ µ− Λ − + =  Solving for P  we get 

(1 ) .P α
γ µ
− Λ

=
+

 

From the second equation of (10), ( ) 0.P R Sα γ δ λ µΛ + + − + =  Solving for S  we get 
( ) .
( )

S γ αµ
µ µ γ
Λ +

=
+

 

Therefore, the disease free equilibrium 0E  becomes 

0
(1 ) ( ), ,0,0,0 .

( )
E α γ αµ

γ µ µ µ γ
 − Λ Λ +

=  + + 
                                                     

3.4. Endemic equilibrium point 

To find the endemic equilibrium point *E  we considered the steady state of the system 
(1)-(5) for all state variables. 
From the first equation of (10) we have 

 

*

*

     (1 ) ( ) 0
(1 )

P

P

α γ µ
α

γ µ

− Λ − + =
− Λ

⇒ =
+

 

Let 
1 2 .y A Cε ε= +  (11) 

From the third equation of (10) we have 
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( )
( )

( )

* *
1

* *
1

*
1
*

 0S d A

yS d A

d A
y

S

ρλ ϕ θ µ

ρ ϕ θ µ

ϕ θ µ
ρ

− + + + =

⇒ = + + +

+ + +
⇒ =

 

(12) 
From the fourth of (10) equation we have 

 
( )
( )

* * *
2

* * *
2

    (1 ) 0

(1 ) 0

S A d C

yS A d C

ρ λ ϕ β µ

ρ ϕ β µ

− + − + + =

⇒ − + − + + =
 

Substituting equation (12) here we get 

 

   ( ) ( )
*

1 * * *
2*(1 ) 0

d A
S A d C

S
ϕ θ µ

ρ ϕ β µ
ρ

+ + +
− + − + + =  

 

( ) ( )* * *
1 2(1 ) 0d A A d Cρ ϕ θ µ ρϕ β µ ρ⇒ − + + + + − + + =   

( ) ( )* *
1 2(1 ) d A d Cρ ϕ θ µ ρϕ β µ ρ⇒ − + + + + = + +     

( )
( )

*
1*

2

(1 ) d A
C

d
ρ ϕ θ µ ρϕ

ρ β µ
− + + + +  ⇒ =

+ +
 (13) 

From the fifth equation of (10) we have 
    * * *( ) 0A C Rθ β µ δ+ − + =   

 * *
* A CR θ β

µ δ
+

⇒ =
+

 (14) 

Substituting equation (13) into (14) we get 
 

   

( )
( )

*
1*

2*

(1 ) d A
A

B d
R

ρ ϕ θ µ ρϕ
θ β

ρ µ
µ δ

− + + + +  +
+ +

=
+

 

 

 ( ) ( ) ( )
( )

*
2 1 1*

2( )
A d d d

R
d

ρθ β µ β ϕ θ µ ρβ θ µ
ρ µ δ β µ

+ + + + + + − + +
⇒ =

+ + +
 (15) 

Now from equation (12) we have 
 

   ( ) *
1
*

d A
y

S
ϕ θ µ

ρ
+ + +

=  
 

 ( ) *
1* d A

S
y

ϕ θ µ
ρ

+ + +
⇒ =  (16) 

From equation (11), 1 2 y A Cε ε= +  and using equation (13) we get 

( )
( )

*
1

1 2
2

(1 )
,

d A
y A

d
ρ ϕ θ µ ρϕ

ε ε
ρ β µ

− + + + +  = +
+ +

 (17) 

Substituting equation (17) in (16) we get 
 

   
( )

( )
( )

*
1*

1*
1 2

2

*(1 )

d A
S

d A
A

ϕ θ µ

ρ ϕ θ µ ρϕ
ρ ε ε

ρ β µ

+ + +
=

 − + + + +  + 
+ ∆ +  
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 ( )
( )
( )

1*

1
1 2

2

(1 )
S

ϕ θ µ

ρ ϕ θ µ ρϕ
ρ ε ε

ρ β µ

+ + ∆ +
⇒ =

 − + + ∆ + +  +  + ∆ + 

 
 

 ( )( )
( )( )
1 2*

1 2 1 2(1 )
d d

S
d

ρ ϕ θ µ β µ
ρ ρε ε ρ ϕ θ µ ε ρϕ

+ + + + +
⇒ =

+ − + + + +
 

 

 ( )( )
( )( )
1 2*

1 2 1 2(1 )
d d

S
d

ϕ θ µ β µ
ρε ε ρ ϕ θ µ ε ρϕ

+ + + + +
⇒ =

+ − + + + +
 (18) 

Again, we consider equation (15). For the sake of simplicity put 
( ) ( ) ( )

( )
2 1 2

2
.

( )
d d d

a
d

ρθ β µ β ϕ θ µ ρβ θ µ
ρ µ δ β µ

+ + + + + + − + +  =
+ + +

 

Thus equation (15) can be shortly written as                             
* *.R aA=  (19) 

Now taking the second equation of the steady state (10) 
    * * *( ) 0P R Sα γ δ λ µΛ + + − + =   

 ( )* * * * * *
1 2 0P R A C S Sα γ δ ε ε µ⇒ Λ + + − + − =  (20) 

From equation (13) we have 
* *.C bA=  (21) 

where ( ) ( )1 2(1 ) .b d dρ ϕ θ µ ρϕ ρ β µ= − + + + + + +    
Substituting equation (19) and (21) into equation (20) we get 

    ( )* * * * * *
1 2 0P aA A bA S Sα γ δ ε ε µΛ + + − + − =   

 ( )* * * *
1 2A a b S S Pδ ε ε µ α γ ⇒ − + = − Λ −    

 

( )

* *
*

*
1 2

S PA
a b S
µ α γ
δ ε ε

− Λ −
⇒ =

− +
 (22) 

From equation (21) we have  
( )
( ) ( )

* *
1*

*
2 1 2

(1 )
.

d S PC
d a b S

ρ ϕ θ µ ρϕ µ α γ
ρ β µ δ ε ε

 − + + + +  − Λ − =   + + − + 
 

From equation (19) we have  
( ) ( ) ( )

( ) ( )

* *
2 1 1*

*
2 1 2

.
( )

d d d S PR
d a b S

ρθ β µ β ϕ θ µ ρβ θ µ µ α γ
ρ µ δ β µ δ ε ε

 + + + + + + − + +  − Λ − =   + + + − + 
 

Therefore, ( )* * * * * *, , , ,E P S A C R=  is an endemic equilibrium point such that * 0,P >  
* 0,S >  * 0,A >  * 0,C > * 0R >  exists. 

3.5. Basic reproduction number ( )0ℜ   

The basic reproduction number is the average number of secondary cases a typical 
infectious individual will cause in a completely susceptible population [2]. In this section, 
we obtained the basic reproduction number which is the threshold parameter that governs 
the spread of the disease. For the given model the endemic equilibrium point *E  exists in 
the feasible region ,D  the necessary and sufficient condition is that: 
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* ( )0
( )

S γ αµ
µ µ γ
Λ +

< <
+

 or equivalently *
( ) 1.

( )S
γ αµ

µ µ γ
Λ +

≥
+

 

Define 0 *
( ) ,

( )S
γ αµ

µ µ γ
Λ +

ℜ =
+

 thus 

 
  

( ) ( )
( )( )

1 2 2 1 2
0

1 2

(1 )( ) ,
( )

d d
d d

ρε β µ ε ρ ϕ θ µ ε ρϕγ αµ
µ µ γ ϕ θ µ β µ

+ + + − + + + + Λ +  ℜ =
+ + + + + +

 
 

 

( ) ( ) ( )( )
1 2 2

1 2 1 2
0

(1 )( ) .
( ) d d d d

ρε ε ρ ε ρϕ

ϕ θ µ β µ ϕ θ µ β µ

γ αµ
µ µ γ

−

+ + + + + + + + + +

 Λ +
∴ℜ = + + +  

 (23
) 

Since 1
1 N

βε =  and 2
2 N

βε =  the basic reproduction number on (23) becomes 

( ) ( ) ( )( )
1 2 2

1 2 1 2
0

(1 )( ) .
( ) d d d d

r ρβ β ρ β ρϕ

ϕ θ µ β µ ϕ θ µ β µ

αµ
µ γ

−

+ + + + + + + + + +

 +
∴ℜ = + + +  

 

Considering equation (23) above, we give interpretation of the basic reproduction number 
for our model as follows. 

When a single infective is introduced in a population with a probability ρ  it is acute 
infected, it makes 1β   contact per unit time. This is multiplied by the average infectious 
period ( )11 dϕ θ µ+ + +  for acute infectious; with probability 1 ρ−  the infective is a 
chronic, and hence make 2β  effective per unit time during the average time 
( )21 dβ µ+ +  it remains a chronic infected. This number should be augmented by the 

number of infectious ( )2 2dρβ β µ+ +  caused by this infective after it becomes acute 
infectious, with a probability ( )1dϕ ϕ θ µ+ + +  to survive the acute stage. Therefore, 
the expression in the square bracket in (23) is the per capita average number of secondary 
infections. This number multiplied by the number of susceptible at disease free 
equilibrium, ( ) ( )γ αµ µ µ γΛ + +  gives 0.ℜ  

3.6. Local stability of disease-free equilibrium 

Proposition 3.1 The disease free equilibrium point is locally asymptotically stable if 
0 1ℜ <  and unstable if 0 1.ℜ >  

Proof  To proof the proposition we first construct a Jacobean matrix for the system (1)-
(5) at DFE 

( )
( )

0 1

2

( ) 0 0 0 0
0 0

.0 0 0 0
0 0
0 0

0
( )

EJ d
d

γ µ
γ µ δ

ϕ θ µ
ϕ β µ
θ β δ µ

− + 
 − 
 = − + + +
 

− + + 
 − + 

 (24) 

Now we compute the Jacobean matrix at disease free equilibrium and investigate its 
stability effect due to the reproduction number 0.ℜ  
From the Jacobean matrix (28), we obtain a characteristic polynomial by evaluating 

( )0
det 0EJ Iλ− =  as follows. 



224                              M. Shigute Wameko /𝐼𝐼𝐼𝐼𝐼𝐼2𝐶𝐶, 09 -03 (2019) 213-237. 
 

 

1

2

3

( ) 0 0 0 0
0 0

0 0 0 0 0,
0 0 0
0 0

K
K

K

γ µ λ
γ µ λ δ

λ
ϕ λ
θ β λ

− + −
− −

− =
−

−

 

where ( )1 1 ,K dϕ θ µ= − + + +  ( )2 2K dβ µ= − + +  and 3 ( ).K δ µ= − +  Therefore, 

( )1 2 3 1( ),  ,  ,dγ µ λ µ λ ϕλ θ µ= − + = − = − + + +  and 

( )( )2 3 0K Kλ λ− − = ( )2
2 3 2 3 0K K K Kλ λ⇒ − + + =  

By Routh-Huarth criteria 
( ) ( )1 2 3 2 ( ) 0,a K K dβ µ δ µ= − + = + + + + >  

( )2 2 3 2 ( ) 0.a K K dβ µ δ µ= = + + + >  
All the eigen values of the Jacobean matrix at disease free equilibrium point are strictly 
negative. Therefore, the DFE point 𝐸𝐸0  is locally asymptotically stable if and only if 

0 1.ℜ <  Hence the proposition is proved.                                               

3.7. Global stability of disease free equilibrium  

In this section, we analyze the global stability of the disease free equilibrium point by 
applying the technique used in [12]. We write the model equation (1)-(5) in the form: 

( ), 1

2

,

,

s
s DFE s i

i
i

dX A X X A X
dt

dX A X
dt

 = − +

 =


 

where sX  is the vector representing the non-transmitting compartment and iX  is the 
vector representing the transmitting compartments. The disease free equilibrium is globally 
asymptotically stable if A  has negative eigen values and 2A  is a Metzler matrix (i.e., the 
off-diagonal elements of 2A  are non-negative). 

For the model equation (1)-(5) we have ( , , )T
sX P S R=  and ( , ,)T

iX A C=  where the 
superscript T  refers to a transpose of the matrix. 

We need to check whether a matrix A for non-transmitting compartments has real 
negative eigen values and that 2A  is Metzler matrix. From the equation for non-
transmitting compartments in the model we can get: 

( ) 0 0
.

0 0 ( )
A

γ µ
γ µ δ

δ µ

− + 
 = − 
 − + 

 

From the matrix A  above, we get the eigen values 1 ( ),λ γ µ= − +  2λ µ= −  and 

3 ( )λ δ µ= − +  all are real and negative. This implies that the system 

( ), 1
s

s DFE s i
dX A X X A X
dt

= − +  

is locally and globally asymptotically stable at disease free equilibrium if 2A  is Metzler 
matrix. 
Using suitable rearrangement, we get  
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( )
( )

* *
1 1 2

2 1* *
2 2 2

0 0
 and  0 0 .

(1 )

S d S
A A

S S d

ρε ϕ θ µ ρε

ρε ϕ ρ ε β µ θ β

  − + + +  = =   + − − + +     

 

Since the off-diagonal elements of 2A  are non-negative so 2A  is a Metzler matrix. 
Hence, the DFE point is globally asymptotically stable.   

Lemma 3.2 For 0 1,ℜ >  a unique endemic equilibrium point *E  exists and no endemic 
otherwise.  

Proof  The endemic equilibrium point denoted by ( )* * * * * *, , , ,E P S A C R=  and it occurs 

when the disease persists in the community. 

For the disease to be endemic, 0dA
dt

>  and 0dC
dt

>  that is: 

 ( )1 0,dA S d A
dt

ρλ ϕ θ µ= − + + + >  (25) 

 ( )2(1 ) 0.dC S A d C
dt

ρ λ ϕ β µ= − + − + + >  (26) 

From inequality (26) we get 
    ( )2 (1 )d C S Aβ µ ρ λ ϕ+ + < − +   
 

2

(1 ) S AC
d

ρ λ ϕ
β µ
− +

⇒ <
+ +

 (27) 

From inequality (25) we get 
 

   
1

SA
d

ρλ
ϕ θ µ

<
+ + +

 (28) 

 

1

SA
d

ρλ ϕϕ
ϕ θ µ

⇒ <
+ + +

  

 
( )( )2 1 2

A S
d d d
ϕ ρλ ϕ

β µ ϕ θ µ β µ
⇒ <

+ + + + + + +
 (29) 

From (27) we have 
 

   
2 2 2

(1 ) (1 )S A S AC
d d d

ρ λ ϕ ρ λ ϕ
β µ β µ β µ
− + −

< = +
+ + + + + +

  

 
     

( )( )2 2 1

(1 ) S S
d d d
ρ λ ρλ ϕ

β µ β µ ϕ θ µ
−

< +
+ + + + + + +

  

 
( )( )

2

1

2
2

2 2

(1 ) S SC
d d d

ε ρ λ ε ρλ ϕ
ε

β µ β µ ϕ θ µ
−

⇒ < +
+ + + + + + +

 (30) 

From (28) we have 
 

   
1

SA
d

ρλ
ϕ θ µ

<
+ + +

 
 

 1
1

1
A

d
ρε

ε
ϕ θ µ

⇒ <
+ + +

 (31) 

Combining (30) and (31) we get 

   
( )( )

1 2 2
1 2

1 2 2 1

(1 )S S SA C
d d d d

ρε λ ε ρ λ ε ρλ ϕ
ε ε

ϕ θ µ β µ β µ ϕ θ µ
−

+ < + +
+ + + + + + + + + +
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( )( )

1 2 2

1 2 2 1

(1 )S
d d d d

ε ρ ε ρ ε ρϕ
λ

ϕ θ µ β µ β µ ϕ θ µ
 −

= + + 
+ + + + + + + + + +  

 

 ( )( )
1 2 2

1 2 12

(1 )S
d d d d

ε ρ ε ρ ε ρϕ
λ λ

ϕ θ µ β µ β µ ϕ θ µ
 −

⇒ < + + 
+ + + + + + + + + +  

 

 ( )( )
1 2 2

1 2 2 1

(1 )1 S
d d d d

ε ρ ε ρ ε ρϕ
ϕ θ µ β µ β µ ϕ θ µ
 −

⇒ < + + 
+ + + + + + + + + +  

 

Since 0
( )
( )

S S γ αµ
µ µ γ
Λ +

< =
+

, we have  

( )( )
1 2 2

1 2 2 1

(1 )( )1
( ) d d d d

ε ρ ε ρ ε ρϕγ αµ
µ µ γ ϕ θ µ β µ β µ ϕ θ µ

 −Λ +
< + + 

+ + + + + + + + + + +  
 

0 1⇒ℜ >  
Thus, a unique endemic equilibrium exists when 0 1.ℜ >                                

3.8. Global stability of endemic equilibrium point (EE) 

Theorem 3.3 If 0 1,ℜ >  the endemic equilibrium point *E  of the model is globally 
asymptotically stable. 
Proof  To prove the global asymptotic stability of the endemic equilibrium point we use 
the method of Lyapunov function. Define 

( )
*

* * * * * * * * * * *
* *

* * * *
* *

, , , , ln ln ln

                                    ln ln .

P S AL P S A C R P P P S S S A A A
P S A

C RC C C R R R
C R

     = − − + − − + − −     
    

   + − − + − −   
   

 

By direct calculating the derivative of L along the solution of the system (1)-(5) we get 
* * * * *dL P P dP S S dS A A dA C C dC R R dR

dt P dt S dt A dt dt R tC d
         − − − − −

= + + + +         
         

 

   
* *

[(1 ) ( ) ] [ ( ) ]P P S SP P R S
P S

α γ µ α γ δ λ µ
   − −

= − Λ − + + Λ + + − +   
   

 

   

( ) ( )
* *

1 2(1 )A A C CS d A S A C
C

d
A

ρλ ϕ θ µ ρ λ ϕ β µ
   − −

+ − + + + + − + − + +         
   

 

   
*

[ ( ) ]R R A C R
R

θ β µ δ
 −

+ + − + 
 

 

* *

1 [(1 ) ( ) ] 1 [ ( ) ]dL P P S
P S

P R S
dt

α γ µ α γ δ λ µ
   

⇒ = − − Λ − + + − Λ + + − +   
   

 

   

( ) ( )
*

1

*

21 1 (1 )A S d A S A d
A

C
C

Cρλ ϕ θ µ ρ λ ϕ β µ
   

+ − − + + + + − − + − + +         
   

 

   
*

1 [ ( ) ]R A C R
R

θ β µ δ
 

+ − + − + 
 
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dL G F
dt

⇒ = −  

where 
( ) ( )* * * * *

1 2( ) ( ) ( )G P S d A d C Rγ µ λ µ ϕ θ µ β µ µ δ= + + + + + + + + + + + +  
and 

* ** * *

1 2 (1 ) ( ) [(1 ) ] [ ] .S CP A R
P S A C RF d A d C P R S S A A Cα γ δ ρλ ρ λ ϕ θ β= + + − Λ + + + + − + + +  

Thus if G F<  then 0.dL dt ≤ Noting that 0dL dt =  if and only if * ,P P=  * ,S S=  
* ,A A=  *C C=  and *.R R=   

Therefore, the largest compact invariant set in { }( , , , , ) : 0P S A C R dL dtΩ = ∈Ω =  is 

the singleton *E  by Lasalle invariant principle [5] it implies that the endemic equilibrium 
point is globally asymptotically stable in Ω  if .G F<                                   

4. Sensitivity analysis 

The total human mortality and morbidity attributable to HCV disease can be best reduced 
by investigating the relative importance of the parameters featuring in the basic 
reproduction number. To determine how best we can do in order to reduce mortality and 
morbidity due to HCV disease, it is crucial to know the relative importance of different 
factors responsible for its transmission and prevalence.  

Sensitivity analysis was carried out to determine the model robustness to parameter 
values. This will help us in identifying and verifying model parameters that most influence 
the pathogen fitness threshold for the pathogens. Further, values obtained for sensitivity 
indexes indicate which parameters should be targeted most for intervention purposes. 
Sensitivity analysis of 0ℜ  with respect to each parameter. The sensitivity analysis of the 
parameters can be calculated as follows: 

0 0

0

1,ℜ ∂ℜ Λ
Λ = × = +

∂Λ ℜ
 

0 0

0

0.41.γγ
γ

ℜ ∂ℜ
= × = +

∂ ℜ
 

Similarly, we can get the sensitivity index of each parameter. 

Table 1. Sensitivity index table. 

Parameter Sensitivity Index 

Λ  +ve 
γ  +ve 

1ε  +ve 

2ε  +ve 
ϕ  +ve 
µ  -ve 

1d  -ve 

2d  -ve 
θ  -ve 
β  -ve 

Table 1 shows the sensitivity indices of 0ℜ  to the parameter for HCV model, evaluated 
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based on the values on Table 2. The parameters are ordered from the most sensitive to least 
sensitive. This result shows that, when the parameters values of ,Λ  ,γ 1,ε  2ε  and ϕ  
increases while the other are kept constant they increase the value of 0ℜ  which implies 
they increases the endemicity of the disease. Whereas the parameters ,µ   1,d 2 ,d θ and 
β  decrease the value of 0ℜ  while the other are kept constant which implies they 
decrease the endemicity of the disease. 

Table 2. Parameter values for typhoid fever model. 

Parameter 
symbol Parameter description Value Source 

Λ  Recruitment rate 100 [1] 
α  Proportion of susceptible individuals at birth 0.1 Assumed 
µ  Natural mortality rate 0.0004 [1] 

1d  The disease induced mortality rate due to acute 
infection 0.03 Assumed 

2d  The disease induced mortality rate due to chronic 
infection 0.05 Assumed 

1β  Effective contact rate of individuals with acute 
infected 0.002 Assumed 

2β  Effective contact rate of individuals with chronic 
HCV infected 0.001 Assumed 

ρ  The probability at which the susceptible joining 
into acute infected 0.65 Assumed 

γ  Rate of loss of protection 0.35 Assumed 
β  The rate of treatment of chronically infected and 

joining recovered class 0.3 Assumed 

δ  Removal rate from recovered subclass to 
susceptible subclass 0.05 [1] 

θ  The rate of treatment of acute infected and joining 
recovered class 0.23 [1] 

ϕ  The rate at which acute infected individuals 
become chronically infected 0.05 [1] 

 

5. Extension into an optimal control 
In this section we apply optimal control method for the system (1)-(5) by using 
Pontryagin’s maximum principle. The optimal control model is an extension of HCV 
model by incorporating the following three controls mentioned below. 
i. 1u  is the prevention effort, that protect susceptible from contracting the disease.  
ii. 2u  is the treatment used for acute infected individuals. 
iii. 3u  is the treatment used for chronic infected individuals. 
After incorporating 1 2,  u u  and 3u  in HCV model (1)-(5), we get the following optimal 
model of HCV disease. 
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( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

1 2 2 1

1 2 3 2

2 3

(1 ) ( ) ,

1 ,

1 1 ,

(1 ) 1 1 ,

( ) .

dP P
dt
dS P R u S S
dt
dA u S u A u A d A
dt
dC u S u A u C d C
dt
dR u A u C R
dt

α γ µ

α γ δ λ µ

ρ λ θ ϕ µ

ρ λ ϕ β µ

θ β µ δ

 = − Λ − +

 = Λ + + − − −


= − − + − − − +



= − − + − − + − +

 = + + + − +

 (36) 

The control functions, 1 2( ),  ( )u t u t  and 3( )u t are bounded, Lebesgue integrable functions, 
which is defined as 

( ){ }1 2 3 1 2 3( ), ( ), ( ) : 0 ( ) 1,  0 ( ) 1,  0 ( ) 1,  0 .U u t u t u t u t u t u t t T= ≤ < ≤ < ≤ < ≤ ≤  
Our aim is to obtain a control ,U  and ,  ,  ,  P S A C  and R  that minimized the proposed 
objective function J and the form of objective functional is taken in line with the literature 
on epidemic model [17], given by: 

1 2 3

3
2

1 20, 1,

1min  ,
2

ft

i iu u u i
J b A b C w u dt

=

 
= + + 

 
∑∫  (37) 

where 1 2,  b b  and iw  are positive. The expression 21
2 i iw u  represents costs which is 

associated with the controls iu  and ft  is the final time. The coefficients are balancing 

cost factors. Now we seek to find an optimal triple control * *
1 2,  u u  and *

3 ,u  such that 

( ) ( ){ }* * *
1 2 3 1 2 3 1 2 3, , min , , : , , ,J u u u J u u u u u u U= ∈  (38) 

where ( ){ }1 2 3, ,uU J u u=  is a measurable set and , ][0 ft t∈  for the control set. 

5.1. Existence of an optimal control 

The necessary condition that an optimal solution must satisfy comes from maximum 
principle [15]. The existence of an optimal control pair can be proved by using the results 
[4].      

The system of equation (1)-(5) is bounded by a linear system for a finite time interval 
so that the existence of linear system is guaranteed [4, Theorem 4.1, p68-69] (see the detail 
of the proof). 
For the optimal control problems, we need to check the following properties are satisfied. 

(1) The set of controls and corresponding state variables is non-empty. 
(2) The control set U  is convex and closed. 
(3) The RHS of the state system (1)-(5) is bounded by a linear function in the state and 

control. 
(4) The integrand of the objective functional is concave on .U  

(5) The function is bounded below by ( )2 2 2 2
2 1 1 2 3

a

a a u u u− + +  where 1 20,  0a a> >   

and 1.α >  

The existence result in [8, 1982, Theorem 9.2.1, p 182] for the system (1)-(5) with bounded 
coefficients is used to satisfy condition 1. The control set U  is convex and closed by 
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definition. 
The RHS of the state system (1)-(5) satisfies condition 3 as the state solutions are a priori 
bounded. The integrand in the objective functional 

3 21
1 2 2 1 i ii

b A b C w u
=

+ + ∑  is clearly 

concave on .U  Finally, there are 1 20,  0a a> >  and 1α >  satisfying 

( )
3

2 2 2 2 2
1 2 2 1 1 2 2

1

1
2

,
a

i i
i

b A b C w u a a u u u
=

+ + ≤ − + +∑  

because the state variables are bounded. Hence, there exist an optimal control ( )1 2 3, ,u u u  
that minimize the objective functional, ( )1 2 3, , .J u u u   

5.2. Hamiltonian and optimality system 

The necessary condition for the optimal pair is obtained using the “Pontryagin’s maximum 
principle” ([15]). Therefore, using this principle, we get a Hamiltonian which is defined as 

( )1 2 1 2 4 53 3( , , , , , ) , , , , , ,dP dS dA dC dRH P S A C R t L A C u u u t
dt dt dt dt dt

λ λ λ λ λ= + + + + +  

where ( ) 3 2
1 2 1 2 13

1, , , , , ,
2 i ii

L A C u u u t b A b C w u
=

= + + ∑ and iλ  is adjoint variable to be 

determined suitably by using Pontryagin’s maximum principle. 

Theorem 5.1 For an optimal control set 1 2,  u u  and 3u  that minimizes J  over U  there 
are an adjoint variables 1 2 5, ,...,λ λ λ  such that 

( )

( )( ) ( )( )

( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1
1 1 2 1

2
2 1 1 2 3 1 1 2

4 1 1 2

1 2 1 1 3 1 1 2 2 1

4 1 1 2 5 2

4
2 2 2

3

1

1 1

        (1 ) 1 ,

1 1 1

(1 ) 1 1 ,

1

,

          

d u u
dt

d u A C u A C
dt

u A C
d b u S u S u u d
dt

u S u u

d b u S
dt

λ
λ γ µ λ γ

λ
λ µ ε ε λ ρ ε ε

λ ρ ε ε
λ

λ ε λ ρε θ ϕ µ

λ ρ ε ϕ λ θ

λ
λ ε

= + −

= + − + − − +  

− − − +

= − + − − − − + − − − +  

− − − + − − +  

= − + − ( ) ( )

( ) ( )

3 2 1 4 2 1

3 2 5 3

5
2 5

1 (1 ) 1

          ,

( ),

u S u S

u d u

d
dt

λ ρε λ ρ ε

β µ λ β

λ
λ δ λ µ δ

− − − − −

− + + + − +













 






= − − +

 (39) 

with transversality conditions 0,  1,) .( 2, 5i ft iλ = = …  Furthermore, we obtained the 

control set ( )* * *
1 2 3, ,u u u  characterized by * 0iH u∂ ∂ =  for 1,2,3.i =  Hence we obtain  

( ){ }*
1 1( ) max 0,min 1, ,u t σ=  

( ){ }*
2 2( ) max 0,min 1, ,u t σ=  

( ){ }*
3 3( ) max 0,min 1, ,u t σ=  

where  
( )( )1 1 1 2 2 3 4 1(1 ) ,yP S A C wσ λ ε ε λ λ ρ λ ρ = + + − + + − 
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[ ]2 3 4 5 2(1 )A wσ λ ϕ λ ρ λ= − − − , 
and ( )3 4 5 3 .c wσ λ λ= −   

Proof The adjoint variables and transversality conditions are standard results of 
Pontryagin’s maximum principle. To obtain the adjoint equations we differentiate the 
Hamiltonian H  with respect to the state variables ,  ,  ,  P S A C  and R  respectively and 
then we obtain 

( )1
1 1 2 1

d H u u
dt P
λ

λ γ µ λ γ∂
= − = + −

∂
, 

( )( ) ( )( )

( )( )

2
2 1 1 2 3 1 1 2

4 1 1 2

1 1

       (1 ) 1 ,

d H u A C u A C
dt S

u A C

λ
λ µ ε ε λ ρ ε ε

λ ρ ε ε

∂
= − = + − + − − +  ∂
− − − +

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3
1 2 1 1 3 1 1 2 2 1

4 1 1 2 5 2

1 1 1

       (1 ) 1 1 ,

d H b u S u S u u d
dt A

u S u u

λ
λ ε λ ρε θ ϕ µ

λ ρ ε ϕ λ θ

∂
= − = − + − − − − + − − − +  ∂
− − − + − − +  

 

( ) ( ) ( )

( ) ( )

4
2 2 1 2 3 2 1 4 2 1

3 2 5 3

1 1 (1 ) 1

       ,

d H b u S u S u S
dt C

u d u

λ
λ ε λ ρε λ ρ ε

β µ λ β

∂
= − = − + − − − − − −∂

− + + + − +

 

5
2 5 ( ).d H

dt R
λ

λ δ λ µ δ∂
= − = − − +

∂
 

Again using the method of Pontryagin et.al [15], we obtain the controls by solving 
* 0iH u∂ ∂ =  for 1,2,3i =  then 

 ( )( )*
1 1 1 2 2 3 4 1(1 ) ,u yP S A C wλ ε ε λ λ ρ λ ρ = + + − + + −   

 [ ]*
2 3 4 5 2(1 ) ,u A wλ ϕ λ ρ λ= − − −  

 ( )*
3 4 5 3 .u c wλ λ= −  

Thus, writing * *
1 2,  u u  and *

3u  using standard control arguments involving the bounds on 
the controls, we conclude 

1
*
1 1 1

1

0   if   0,
 if   0 1,

1    if   1.
u

σ
σ σ

σ

≤
= < <
 ≥

 
2

*
2 2 2

2

0   if   0,
 if   0 1,

1    if   1.
u

σ
σ σ

σ

≤
= < <
 ≥

 
3

*
3 3 3

3

0    if   0,
  if   0 1,

1     if   1.
u

σ
σ σ

σ

≤
= < <
 ≥

 

This implies  
( ){ }*

1 1max 0,min 1, ,u σ=  

( ){ }*
2 2max 0,min 1, ,u σ=  

( ){ }*
3 3max 0,min 1, ,u σ=  

The optimality system is formed from the optimal control system and the adjoint variable 
system by incorporating the characterized control set and initial and transversality 
condition. 



232                              M. Shigute Wameko /𝐼𝐼𝐼𝐼𝐼𝐼2𝐶𝐶, 09 -03 (2019) 213-237. 
 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( )( ) ( )( )

1

1 1

1 2 2 1

1 2 3 2

2 3

1
1 1 2 1

2
2 1 1 2 3 1 1 2

(1 ) ,

1 ,

1 1 ,

(1 ) 1 1 ,

) ,

1

  

,

(

1

dP u P P
dt
dS u P R u S S
dt
dA u S u A u A d A
dt
dC u S u A u C d C
dt
dR u A u C R
dt
d u u
dt

d u A C u A C
dt

α γ µ

α γ δ λ µ

ρ λ θ ϕ µ

ρ λ ϕ β µ

θ β µ δ

λ
λ γ µ λ γ

λ
λ µ ε ε λ ρ ε ε

= − Λ − −

= Λ + + − − −

= − − + − − − +

= − − + − − + − +

= + + + − +

= + −

= + − + − − +  

( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

4 1 1 2

3
1 2 1 1 3 1 1 2 2 1

4 1 1 2 5 2

4
2 2 1 2 3 2 1 4 2 1

3 2

5
2 5

 (1 ) 1 ,

1 1 1

(1 ) 1 1 ,

1 1 (1 ) 1

   ,

( ),

u A C
d b u S u S u u d
dt

u S u u

d b u S u S u S
dt

u d

d
dt

λ ρ ε ε
λ

λ ε λ ρε θ ϕ µ

λ ρ ε ϕ λ θ

λ
λ ε λ ρε λ ρ ε

β µ

λ
λ δ λ µ δ

















− − − +

= − + − − − − + − − − +  

− − − + − − +  

= − + − − − − − −

− + + + 

= − − +






















 

(40
) 

such that ( ) 0,  1,2, ,5,i ft iλ = = …  0(0) ,P P=  0(0) ,S S=  0(0) ,A A=  

0(0)C C=  and 0(0) .R R=  

 
 
 

 

6. Numerical simulations 

In the present work, we have used PSACR epidemic model with control measures. The 
simulations are carried out in order to explore the impacts of control measures on the HCV 
disease dynamics. Following parameter values are used in the model for simulation 
purpose 

1 2 1 2100,  0.1,  0.004,  0.03,  0.05,  0.002,  0.001,  165,d dα µ β β ρΛ = = = = = = = =   

1 2 10.35,  0.3,  0.05,  0.23,  0.05,  6,  100,  50,   2,T b b wγ β δ θ ϕ= = = = = = = = =   

2 3 3,  5,w w= =   
and initial values (0) 200,  (0) 600,  (0) 180,  (0) 120,  (0) 200.P S A C R= = = = =   

The optimal control solution is obtained by solving the optimality system (40), which 
consists of the state system, the adjoint system and transversality condition. To solve the 
state system we use a forward fourth-order Runge-kutta method and solve the adjoint 
system using a backward fourth-order Runge-Kutta method. The solution iterative scheme 
involves making a guess of the controls and solves the state system using forward fourth 
order Runge-Kutta scheme. Due to the transversality conditions, the adjoint equations are 
then solved by the backward fourth-order Runge-Kutta scheme using the current iterations 
solutions of the state equations. The controls are then updated using a convex combination 
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of the previous controls and the values obtained using the characterizations. The updated 
controls are then used to repeat the solution of the state and adjoint systems. This process 
is repeated until the values in the current iteration are close enough to the previous iteration 
values [7].  

In this section we investigate numerically the effect of the following optimal control 
strategies on the spread of the disease in a population. 

i. Using prevention effort 1( ),u  that protect susceptible from contracting the disease 

2( 0u =  and 3 0)u = .  
ii. Using treatment effort 2( )u  for acute infected individuals 1( 0u =  and 3 0).u =  
iii. Using treatment effort 3( )u  for chronic infected individuals 1( 0u =  and 2 0).u =  
iv. Using prevention 1( )u  for susceptible and treatment 2( )u  for acute infected 

individuals 3( 0).u =  
v. Using prevention 1( )u  for susceptible and treatment 3( )u  for chronic infected 

individuals 2( 0).u =  
vi. Using treatment 2( )u for acute and treatment 3( )u for chronic infected individuals 

1( 0).u =  
vii. Using all the three controls, prevention effort 1( ),u  treatment effort 2( )u  and 

treatment effort 3( ).u  

6.1. Control with prevention only 

In Figure 3, we observe that due to the implementation of prevention effort on susceptible 
population the proportion of acute and chronic infected population decreases as compared 
with the case without control. This implies prevention minimizes the rate of joining 
individuals in to acute and chronic compartments. Thus, we can deduce that optimized 
prevention reduces the burden of the both acute and chronic infection of HCV. 

  
Figure 3. Simulation of optimal control with prevention only. 

6.2. Controls with only treatment for acute infected population 2( )u  

The HCV treatment control 2u  (treatment given for acute infected population) is used to 
optimize the objective functional J; the other controls ( 1u  and 3u ) relating to HCV are set 
to zero. From Figure 4 it is observed that the acute infected population decreases with time 
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since some of the acute infected population are recruited for treatment and remaining joins 
the chronic infected class. As the rate of control 2( )u  increases, the acute infected 
population decreases with time leading to the decrease of chronic infected population. As 
a result it is possible to say applying a control measure on acute infected population leads 
to a faster reduction of proportion of both acute and chronic infected population as 
compared to the case without applying the control measure.                                   

  

Figure 4. Simulation of optimal control with treatment for acute infectious only. 

6.3. Controls with treatment only for chronic infected population 3( )u  

The HCV treatment control 𝑢𝑢3 is used to optimize the objective functional ;J  the other 
controls ( 1u  and 2u ) relating to HCV are set to zero. From Figure 5 we observe that 
initially the control 3u  has no effect on the dynamics of chronic infected population. In 
the mean time the proportion of chronic infected population decrease with time leading to 
faster declining of chronic infected population. 

 

Figure 5. Simulation of optimal control with treatment for chronic infectious only. 

6.4. Controls with prevention and treatment for acute infected population 1 2(   )u and u   

The HCV treatment controls 1u  and 2u  are used to optimize the objective functional ;J
the other control 3u  relating to HCV is set to zero. We observe from Figure 6 that this 
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strategy shows there is a significant effect in reducing the proportion of both acute and 
chronic infected population in than the previous strategies. This situation occurred due to 
the fact that the control 1u  minimizes both acute and chronic infected population which 
will join both compartments whereas the control 2u  minimizes the proportion of acute 
infectious population as a result the chronic infectious population will be minimized. 

  
Figure 6. Simulation of optimal control with prevention and treatment for acute infectious. 

6.5. Controls with Prevention and treatment for chronic infected population 1 3(   )u and u   

The HCV treatment controls 1u  and 3u  are used to optimize the objective functional ;J  
the other control 2u  relating to HCV is set to zero. We observe from Figure 7 that this 
strategy shows there is a higher reduction of the proportion of population of chronic 
infected population than the acute infectious population. 

  

Figure 7. Simulation of optimal control with prevention and treatment for chronic infectious. 

6.6. Controls with prevention and treatment for chronic infected population 
2 3(   )u and u  

The HCV treatment controls 2u  and 3u  are used to optimize the objective functional ;J  
the other control 1u  relating to HCV is set to zero. We observe from Figure 8 that this 
strategy shows there is only a slight variation as compared to the case without control. This 
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occurred due to the fact that the higher recruitment rate of susceptible populations to both 
acute and chronic compartments.  

  
Figure 8. Simulation of optimal control with treatment for acute and chronic infectious. 

6.7. Controls with prevention 1( ),u  treatment 2( ),u  and treatment 3( )u  

Here we used all the three intervention strategies which enable to minimize the objective 
functional .J  We observe from Figure 9 that the proportion of both acute and chronic 
infectious population vanishes rapidly before the specified time. Therefore, applying this 
strategy helps to eradicate HCV from the population. 

  

Figure 9. Simulation of optimal control with all the three strategies. 

7. Discussions and conclusions       

In this study a deterministic mathematical model of HCV consisting acute and chronic 
stages with optimal control strategies has been established. The model incorporates the 
assumption that all populations are equally susceptible. Both qualitative and numerical 
analysis of the model was done. We have shown that there exists a feasible region where 
the model is well posed and biologically meaningful in which a unique disease free 
equilibrium point exists. The steady state points were obtained and their local and global 
stability conditions were investigated. The model has a unique disease free equilibrium if 

0 1ℜ <  and has endemic equilibrium if 0 1ℜ > . Sensitivity analysis of the model was 
done. It was observed that mortality rate has higher impact in minimizing the burden of 
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the disease when the parameter increases which is not biologically reasonable to use it as 
a control mechanism. 

For the given model an optimal control problem is formulated by incorporating 
different control strategies. The optimality condition was established by Pontryagin’s 
maximum principle. A numerical simulation of the model was conducted and different 
combinations of control strategies were compared. It was observed that prevention has a 
significant impact in minimized the burden of the disease. It was also shown that treatments 
given for acute and chronic infected population minimizes the burden of the disease. 
Finally, it was observed that applying all the three control strategies eliminate HCV disease 
from the population.  
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