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Abstract In this work, a non-integer order Airy equation involving Liouville differential
operator is considered. Proposing an undetermined integral solution to the left fractional
Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed
form. A similar suggestion to the right FADE, converts it into an equation in the Laplace
domain. An illustration to the approximation and asymptotic behavior of the integral solution
to the left FADE with respect to the existing parameters is presented.
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1. Introduction

Airy equation, whether in its original form which is given by

D2
xy − xy = 0, (1)

or in more general eigenvalue-form as

D2
xy − λr(x)y = 0, (2)
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has appeared in diverse areas including optics and quantum mechanics as well. The
mathematical beauty of both mentioned forms comes from the existence of a turn-
ing point that merges two exponential and oscillatory branches of a solution. For
a comprehensive reference, including the history, a full discussion of the solutions
and physical applications see [12].
A modern appearance of Airy function is linked to the concept of the Airy beams.
The (potential free) Schrödinger’s equation

i
∂ψ

∂z
+

1

2

∂2ψ

∂x2
= 0, (3)

which has a solution in terms of Airy function Ai(x; z), can be converted via a
coordinate transform into the Airy equation. The solution to the equation (3)
formulates a non-diffracting waveform that is called Airy beams. This unusual
non-diffracting property of the waves, has interested experts in atomic physics
and optics [2, 3, 8]. However, for solutions to some nonlinear forms of (3) which
satisfy a certain integral criterion, we encounter solitons [6].

There are different approaches pertaining to the solutions of (1.2). In [4], section
4, an asymptotic studies of solutions which are given by assuming an integral
on a contour in the complex plane (which has to be known), is suggested. As a
homotopy analysis based approach, [10] obtains a series which was comparable
with asymptotic and approximate based solutions and satisfy the expected
behaviour of the Airy function.

Since it is stated in [9] (and also discussed in section 2.1.3 [11]), non-local
fractional calculus in its very nature, suggests the notion of the memory, in which
the memory effect is given by the convolution kernel, that is δ(t− τ) is replaced by
(t− τ)−α, where α is a positive non-integer. Due to this stickiness in time, which is
interpreted as a memory effect, in dynamic equations, all the moments in a finite
(Riemann-Liouville and Caputo FC) or infinite (Liouville FC) time domain must
be taken into account, since the differentiation process via an integro-differential
operator with the convolution kernel is non-localized.

There are a few contributions to study Airy DE in the local or non-local fractional
case. In [1], using Laplace transform method, solutions to the Airy FDE in the
Caputo sense of the form

CD2α
0+y − (λ+ µx)y = 0 (4)

is derived.
An eigenvalue value problem

Dαy(x)− λxy(x) = 0, 1 < α < 2

y(0) = A, y′(0) = B, −∞ < x, y < +∞ (5)

where Dα is the conformable differential operator which is a local differential op-
erator, has been studied in [5] and this is the first local non-integer order study in
the literature which involves a local derivative.
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This work, studies the left and right FADE in the sense of Liouville of the form{
D2α

− ω(λ)− λαω(λ) = 0
D2α

+ ω(λ)− λαω(λ) = 0,
(6)

in which α, λ ∈ C with R(α) ⩾ 0 and R(λ) > 0. To the best knowledge of
authors, there is no other contribution to the Airy equation which involves non-
local fractional derivative. By suggesting an integral solution on a finite domain,
and implementing a fractional integration by parts, an asymptotic behaviour of
the derived solution (with respect to the main variable and the upper limit of
the integral) will be illustrated. An interesting aspect of this method is to include
arbitrary order α and it provides a mathematical view to study the solutions of
the equations (6) while α grows rapidly.

2. Calculus in the Liouville Sense

We start off with some preliminary definitions:
Definition 2.1. ([7], Sec 2.3) Suppose z ∈ R and α ∈ C with R(α) > 0. The
left and right sided fractional integrals on the half-axis in the Liouville sense are
defined (respectively) by

Iα+ψ(z) =
1

Γ(α)

∫ z

−∞

ψ(t)

(z − t)1−α
dt. (7)

Iα−ψ(z) =
1

Γ(α)

∫ ∞

z

ψ(t)

(t− z)1−α
dt. (8)

Correspondingly, the left and right sided fractional derivative in the Liouville sense
are defined (respectively) by

Dα
+ψ(z) =

1

Γ(n− α)
(
d

dz
)n

∫ z

−∞

ψ(t)

(z − t)α−n+1
dt. (9)

Dα
−ψ(z) =

1

Γ(n− α)
(− d

dz
)n

∫ ∞

z

ψ(t)

(t− z)α−n+1
dt. (10)

where R(α) ⩾ 0 and n = [R(α)] + 1.
By [7], Property 2.5(c) and Property 2.11(b), if R(λ) > 0, R(α) ⩾ 0, then

Dα
−e

−λz = λαe−λz (α ⩾ 0), (11)

Dα
+e

λz = λαeλz (α ⩾ 0). (12)

Suppose Ω ⊂ R be a domain and let Iα+(L
p(Ω)) (Iα−(L

p(Ω))) denotes the set of
all functions f : Ω → R for which, there exists ϕ ∈ Lp(Ω) such that f = Iα+ϕ
(f = Iα−ϕ).
Fractional integration by parts (which will be utilized later) is given in Property

2.14 [7]:
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If α > 0, then the relation∫ ∞

−∞
f(z)(Dα

+g)(z)dz =

∫ ∞

−∞
g(z)(Dα

−f)(z)dz (13)

holds for f ∈ Iα−(L
p(R)) and g ∈ Iα+(L

q(R)) provided that p > 1, q > 1 and
1
p + 1

q = 1 + α.

3. Main Result

For the initiation, consider the second equation of (6), which is

D2α
+ ω(λ)− λαω(λ) = 0, (14)

with R(α) ⩾ 0, R(λ) > 0. Setting

ω(λ) =

∫ T

0
ψ(z)eλzdz, (15)

with T > 0 and fractional differentiating of order 2α, provided ψ vanishes outside
(0, T ), gives rise to

∂2α+ ω(λ) =
1

Γ([R(2α)]− 2α+ 1)
(
∂

∂λ
)n

∫ λ

−∞

∫ T

0

ψ(z)eµz

(λ− µ)2α−[R(2α)]+2
dzdµ

=

∫ T

0

ψ(z)

Γ([R(2α)]− 2α+ 1)
(
∂

∂λ
)n

∫ λ

−∞

eµz

(λ− µ)2α−[R(2α)]+2
dµdz

=

∫ T

0
ψ(z)∂2α+ eλzdz =

∫ T

0
z2αψ(z)eλzdz. (16)

Taking ψ(z) and eµz in (13) formally as f and g, we have:∫ ∞

−∞
f(z)Dα

+g(z)dz =

∫ T

0
ψ(z)∂α+e

λzdz = λαω(λ). (17)

To satisfy the sufficient conditions to utilize fractional integration by parts, we
should have ψ ∈ Iα−(L

p(0, T )), which is equivalent to the existence of ϕ ∈ Lp(0, T )

with Iα−(ϕ) = ψ and it gives ϕ = Dα
−ψ ∈ Lp(0, T ). On the other hand, eλz should

satisfy eλz ∈ Iα+(L
q(0, T )), with Iα+ϕ1 = eλz and it gives

ϕ1 = Dα
+e

λz = λαeλz ∈ Lq(0, T ) (18)

Now, implementing (13) and using (16) together with (14), one obtains∫ T

0
eλz

{
z2αψ(z)−Dα

−ψ(z)
}
dz = 0. (19)

Assuming the continuity of Dα
−ψ(z), we infer that

Dα
−ψ(z) = z2αψ(z), (20)
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that is

1

Γ(n− α)
(− d

dz
)n

∫ T

z

ψ(t)

(t− z)α−n+1
dt = z2αψ(z). (21)

where n = [R(α)] + 1 and we have

zD
α
Tψ(z) = z2αψ(z). (22)

where zD
α
T is the Riemann-Liouville (right) differential operator. In favour of as-

suming ψ ∈ Iα−(L
p(0, T )) and from Lemma 2.6(a) [7], equation (22) can be con-

verted into an integral equation:

ψ(z) =
1

Γ(α)

∫ T

z

t2αψ(t)

(t− z)1−α
dt. (23)

The approximate solution of equation (23) using Adomian decomposition
method(ADM), with the help of Mathematica for α = 2

3 , we find

ψ(z) ≃ T 2

2Γ
(
2
3

) +
Tx

3Γ
(
2
3

) − x2

2Γ
(
2
3

) − πx2

9
√
3Γ

(
2
3

) −−2x2 log(x)

9Γ
(
2
3

) +

14x3

81TΓ
(
2
3

) 3F2

(
1, 1,

10

3
; 2, 4;

x

T

)
+

2x2 log(T )

9Γ
(
2
3

) +
x2 log(3)

3Γ
(
2
3

) , (24)

where 3F2(a; b; c) is the generalized hypergeometric function.
Thus, for (14)

w(λ) ≃− 1

λ
+
eλT

λ
− 3640

729λ6T 3Γ
(
2
3

) +
3640eλT

729λ6T 3Γ
(
2
3

) +
140

81λ5T 2Γ
(
2
3

) − 4900eλT

729λ5T 2Γ
(
2
3

)−
28

27λ4TΓ
(
2
3

) +
3836eλT

729λ4TΓ
(
2
3

) +
5

3λ3Γ
(
2
3

) − 8165eλT

2187λ3Γ
(
2
3

) − 4γ

9λ3Γ
(
2
3

) +
2π

9
√
3λ3Γ

(
2
3

)−
2πeλT

9
√
3λ3Γ

(
2
3

) +
T

3λ2Γ
(
2
3

) +
3677TeλT

2187λ2Γ
(
2
3

) +
2πTeλT

9
√
3λ2Γ

(
2
3

) − T 2

2λΓ
(
2
3

) +
205T 2eλT

4374λΓ
(
2
3

)−
−

2G3,0
2,3

(
−Tλ

∣∣∣∣ 1, 1
0, 0, 3

)
9λ3Γ

(
2
3

) +
T 2 log(3)eλT

3λΓ
(
2
3

) − 4 log(λ(−T ))
9λ3Γ

(
2
3

) +
2T log(3)eλT

3λ2Γ
(
2
3

) .

(25)

where Gp,q
m,n

(
z

∣∣∣∣a1, · · · , apb1, · · · , bq

)
is the Meijer G function and γ is Euler’s constant.

Assuming λ ∈ R+, the plot in Fig.1, shows the approximate solution expressed by
(25) when α = 2

3 . The plot in Fig.2 shows the asymptotic behaver of (25), when
λ → ∞ and T is fixed. The plot in Fig.3 shows the asymptotic behaver of (25),
when T → ∞ and λ is fixed.
For the first equation of (6), let

ω(λ) =

∫ ∞

0
ψ(z)e−λzdz. (26)



112 M. Nategh et al./ IJM2C, 07 - 02 (2017) 107-113.

Figure 1. The approximate solution in the case α = 2
3 for Eq. (25).

Figure 2. The asymptotic behaver of (25), when λ→ ∞ and T is fixed.

Figure 3. The asymptotic behaver of (25), when T → ∞ and λ is fixed.

with the assumption ψ ≡ 0 outside the half axis [0,∞). Then the equation reads

D2α
− ψ̂(λ)− λαψ̂(λ) = 0. (27)

which is the same equation in the Laplace domain. Similar to (16)-(22), the follow-
ing integral equation is obtained

ψ(z) =
1

Γ(α)

∫ z

0

t2αψ(t)

(z − t)1−α
dt, (28)

provided ψ ∈ I−(L
p(0,∞)).

4. Conclusion

In this paper, using fractional integration by parts in the Liouville sense, the left and
right Airy fractional differential equations have been studied and an approximation
of the integral solution to the left FADE has been illustrated.
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