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Abstract. In this paper, we present a class of exact solutions to the Einstein-Maxwell system of equations for a spherically 

symmetric relativistic charged fluid sphere.  The field equations are integrated by specifying the forms of the electric field, 

anisotropic factor, and one of the gravitational potentials which are physically reasonable. By reducing the condition of 

pressure isotropy to a linear, second order differential equation which can be solved in general, we show that it is possible 

to obtain closed-form solutions for a specific range of model parameters.  The solution is regular, well behaved and complies 

with all the requirements of a realistic stellar model. An interesting feature of the new class of solutions is that one can easily 

switch off the electric and/or anisotropic effects in this formulation. Consequently, we regain some of the earlier solutions.  

 
Received: 04 April 2023; Revised: 01 June 2023; Accepted: 20 June 2023.  

Keywords: Relativistic star; exact solutions; Einstein–Maxwell system.  

 

 

1.Introduction 

Solutions of the Einstein-Maxwell system of equations for static spherically symmetric interior 

spacetimes with anisotropic pressures are necessary to describe charged compact objects in 

relativistic astrophysics where the gravitational field is strong as in the case of neutron stars. 

The solutions to the field equations with pressure anisotropy generated have a number of 

different applications in relativistic stellar systems. It is for this reason that a number of 

investigations have been undertaken on the Einstein-Maxwell equations in recent times. A 

wide range of solutions to the Einstein-Maxwell system was compiled by Ivanov [1]. Bowers 

and Liang [2] have extensively analyzed the sources of anisotropy at the stellar interior. 

Subsequently, the origin and effects of local anisotropy on astrophysical objects have been 

reported by many authors [3–4] and Herrera and Santos [5] have reviewed and discussed 

possible causes for local anisotropy in self gravitating systems with examples of both 

Newtonian and general relativistic contexts. Current observations of mass-to-radius ratio of a 

wide range of pulsars have prompted many investigators to propose new theoretical models of 
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compact stars by incorporating different types of matter composition. It is noteworthy that the 

effects of electric field and anisotropy plays an important role in constraining the mass radius 

relationship of a star as demonstrated by Komathiraj et .al [6] and Komathiraj and Sharma [7].  

The role of quark star with charged and anisotropy was pursued by Malaver [8, 9, 10] who 

demonstrated exact analytical solutions. The treatment of Malaver [11, 12] deals with charged 

anisotropic matter with modified Tolman IV potential. From the above motivation it is clear 

that both anisotropy and the electromagnetic field are important in astrophysical processes. 

   In order to obtain the exact solutions of the field equations, various restrictions have been 

placed by investigators on the geometry of spacetime and the matter content. Mainly two 

distinct procedures have been adopted to solve these equations for spherically symmetric and 

static manifolds. Firstly, the coupled differential equations are solved by computation after 

choosing an equation of state. Secondly, the exact Einstein–Maxwell solution can be obtained 

by specifying the geometry and the forms of the anisotropy and electromagnetic field.  The 

models obtained by the first method satisfy a barotropic equation of state, relating the radial 

pressure to the energy density are crucial important as demonstrated by Malaver [13] and 

Malaver and Kasmaei [14, 15, 16, 17] 

 In the recent past many new exact solutions have been developed by latter technique some of 

which are, in fact, generalizations of many of the well-known solutions. Most of the extensions 

have generally been done either by incorporating an electromagnetic field or anisotropy or both 

into the system. The generalized models allow us to study the impacts of charge and/or 

anisotropy on the gross physical behaviour of a compact star. A prime motivating factor for 

such a generalization in most previous works by authors was to fine-tune the stellar observables 

like mass and radius. 

   The objective of this paper is to generate new class of exact solutions corresponding to a 

static spherically anisotropic star possessing a net charge similar to the recent treatment of 

Komathiraj [18]. The idea is that once the anisotropy and/or charge are/is switched off we 

should be able to regain some of the well-behaved, physically interesting stellar solutions 

found earlier. The paper is organized as follows: In Section 2, we write down the Einstein-

Maxwell field equations for a static, spherically symmetric, charged and anisotropic matter 

distribution and then we express the system as a new equivalent system of differential 

equations using a coordinate transformation due to Durgapal and Bannerji [19].  We choose 

particular forms for one of the gravitational potentials, the electric field intensity and the 

anisotropic factor in section 3. This enables us to obtain the master equation in the remaining 

gravitational potential which facilitates the integration process. In section 4, we consider the 

case 𝛼 + 𝛽 =
𝑎+𝑏

𝑎
  and solve the Einstein-Maxwell system in terms of elementary functions.  

Further, we treat the case 𝛼 + 𝛽 ≠
𝑎+𝑏

𝑎
 and generate the solution in a series form which yields 

recurrence relations, which we manage to solve from first principles. We generate two linearly 

independent classes of solutions by determining the specific restriction on the parameters for 

a terminating series; the general solution can be written explicitly in terms of elementary 

functions. In Section 5, the physical viability of the new class of solutions is examined. Finally, 

some concluding remarks are made in Section 6. 

2. Field equations  

We assume a static spherically symmetric spacetime describing the interior of a compact 

relativistic star in the form 
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𝑑𝑠2 = −𝑒2𝜇(𝑟)𝑑𝑡2 + 𝑒2𝜆(𝑟)𝑑𝑟2   + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)                                                (1) 

in Schwarzchild coordinates (𝑥𝑎) = (𝑡, 𝑟, 𝜃, 𝜙), where 𝜇(𝑟) and 𝜆(𝑟) are yet to be determined. 

For an anisotropic imperfect fluid the energy momentum tensor reads 

 

𝑇𝑖𝑗 = diag (−𝜌 −
1

2
𝐸2, 𝑝𝑟 −

1

2
𝐸2, 𝑝𝑡 +

1

2
𝐸2, 𝑝𝑡 +

1

2
𝐸2)                                                                          (2) 

 

In the above 𝜌 is the energy density, 𝑝𝑟 is the radial pressure, 𝑝𝑡   is the tangential pressure, 𝐸 

is the electric field intensity. The Einstein-Maxwell system of field equations corresponding to 

the line element (1) and the matter distribution (2) can be written in the form 

 
1

𝑟2
(1 − 𝑒−2𝜆) +

2𝜆′

𝑟
𝑒−2𝜆 = 𝜌 +

1

2
𝐸2                                                                                      (3) 

−
1

𝑟2
(1 − 𝑒−2𝜆) +

2𝜇′

𝑟
𝑒−2𝜆 = 𝑝𝑟 −

1

2
𝐸2                                                                               (4) 

𝑒−2𝜆 (𝜇′′ + 𝜇′2 +
𝜇′

𝑟
− 𝜇′𝜆′ −

𝜆′

𝑟
) = 𝑝𝑡 +

1

2
𝐸2                                                                   (5) 

1

𝑟2
𝑒−𝜆(𝑟2𝐸)′ = 𝜎                                                                                                                        (6) 

 

In the above 𝜎  is the proper charge density, and a prime (′) denotes derivative with respect to 

the radial coordinate 𝑟. 

   A different but equivalent form of the field equations can be generated if we introduce a new 

independent variable x and introduce new functions 𝑦 and 𝑍 proposed by Durgapal and 

Bannerji [19]: 

 

𝐴2𝑦2(𝑥) = 𝑒2𝜇(𝑟),    𝑍(𝑥) = 𝑒−2𝜆(𝑟),   𝑥 = 𝐶𝑟2                                                                             (7) 

 

where 𝐴 and 𝐶 are arbitrary constants. Under the transformation (7), the system (3)-(6) 

becomes 

     
1 − 𝑍

𝑥
− 2�̇� =  

𝜌

𝐶
+

1

2
 𝐸2                                                                                                                    (8) 

4𝑍
�̇�

𝑦
   +

𝑍 − 1

𝑥
 =

𝑝𝑟

𝐶
−

1

2𝐶
  𝐸2                                                                                                        (9) 

4𝑍𝑥2�̈� + 2�̇�𝑥2�̇�  + (�̇�𝑥 − 𝑍 + 1 −
∆𝑥

𝐶
−

𝐸2𝑥

𝐶
) 𝑦 = 0                                                             (10) 

𝜎2 =    
4𝐶𝑍

𝑥
  (𝑥�̇� + 𝐸)

2
                                                                                                                    (11) 

where a dot (.) denotes differentiation with respect to the variable 𝑥. The quantity Δ = 𝑝𝑡 − 𝑝𝑟 

is defined as the measure of anisotropy which is required to vanish at the center. 

3. Method of generating solutions 

We must make physically reasonable choices for any three of the independent variables and 

then solve the system to generate exact models. In our approach, we plan to solve the Einstein-
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Maxwell system by specifying physically reasonable forms of the gravitational potential 𝑍, 

electric field  𝐸2 and the measure of anisotropy Δ as: 

 

𝑍(𝑥) =
(1 + 𝑎𝑥)2

1 − 𝑏𝑥
                                                                                                                           (12) 

  

 
∆

𝐶
=

𝛼𝑎(𝑎 + 𝑏)𝑥

(1 − 𝑏𝑥)2
                                                                                                                                (13) 

 

𝐸2

𝐶
=

𝛽𝑎(𝑎 + 𝑏)𝑥

(1 − 𝑏𝑥)2
                                                                                                                              (14)  

  

In (12) – (14), 𝑎, 𝑏, 𝛼 and 𝛽 are real constants.  A similar form of the gravitational potential in 

(12) and the electric field in (14) were studied previously by Komathiraj and Maharaj [20] and 

Thirukkanesh and Maharaj [21] in the case of isotropic pressure (∆= 0).   In addition the choice 

for the anisotropic factor given in (13) is regular and well behaved for a wide range of the 

parameter  𝛼.  Therefore, the choices made in (12)-(14) are physically reasonable. Our 

objective is to confirm that this type of potential is also consistent with anisotropic matter. 

Substituting (12)-(14) into (10) we obtain 

 

4(1 + 𝑎𝑥2)(1 − 𝑏𝑥)�̈� + 2(1 + 𝑎𝑥)[2(𝑏 + 𝑎) − 𝑏(1 + 𝑎𝑥)]�̇�

+ (𝑎 + 𝑏)[𝑎 + 𝑏 − (𝛼 + 𝛽)𝑎]𝑦 = 0                                                             (15)  

 

As the equation (15) is difficult to integrate in the above form, we introduce a transformation 

1 + 𝑎𝑥 =
(𝑎 + 𝑏)

𝑏
𝑋,     𝑦(𝑥) = 𝑌(𝑋)                                                                                         (16) 

to obtain a convenient form. Use of transformation (16), (15) becomes 

                                                                                                                                 

4𝑋2(𝑋 − 1)
𝑑2𝑌

𝑑𝑋2
+ 2𝑋(𝑋 − 2)

𝑑𝑌

𝑑𝑋
+ (𝛼 + 𝛽 −

𝑎 + 𝑏

𝑎
) 𝑌 = 0                                           (17) 

 

which is the master equation of the system and has to be integrated to find an exact model for 

a charged sphere with anisotropic pressures. 

4. Classes of exact solutions 

There are two categories of solutions to (17) in terms of different values of the parameters 

𝛼 and 𝛽. The two cases correspond to 

𝛼 + 𝛽 =
𝑎 + 𝑏

𝑎
,         𝛼 + 𝛽 ≠

𝑎 + 𝑏

𝑎
. 

which generates new models.  

4.1 The case    𝜶 + 𝜷 =
𝒂+𝒃

𝒂
 

In this case (17) becomes 
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2𝑋(𝑋 − 1)
𝑑2𝑌

𝑑𝑋2
+ (𝑋 − 2)

𝑑𝑌

𝑑𝑋
= 0                                                                                         (18)   

 

Equation (18) is easily integrable and the solution can be written as 

 

𝑦(𝑥) = 𝑐1 (√
𝑎(𝑏𝑥 − 1)

𝑎 + 𝑏
−tan−1 √

𝑎(𝑏𝑥 − 1)

𝑎 + 𝑏
 ) + 𝑐2                                                           (19) 

in terms of the original variable 𝑥 = 𝐶𝑟2 , where 𝑐1 and 𝑐2 are constants.  The complete 

solution of the Einstein-Maxwell system can be obtained from (8) - (11) in terms of elementary 

functions using the solution (19).  

4.2 The case 𝜶 + 𝜷 ≠
𝒂+𝒃

𝒂
 

With 𝛼 + 𝛽 ≠
𝑎+𝑏

𝑎
,  equation (17) is difficult to solve. It is convenient at this point to introduce 

the transformation 

 

𝑌(𝑋) = 𝑋𝑑𝑈(𝑋),                                                                                                                         (20) 

 

where 𝑑 is a constant. With the help of (20), the differential equation (17) can be written as 

4𝑋2(𝑋 − 1)
𝑑2𝑈

𝑑𝑋2
 + 2𝑋[(4𝑑 + 1)𝑋 − 2(2𝑑 + 1)]

𝑑𝑈

𝑑𝑋

+ [2𝑑(2𝑑 − 1)𝑋 −
𝑎 + 𝑏

𝑎
+ 𝛼 + 𝛽 − 4𝑑2] 𝑈 = 0                                   (21) 

 

Note that there is substantial simplification if we take 

 

𝛼 + 𝛽 −
(𝑎 + 𝑏)

𝑎
= 4𝑑2                                                                                                                  (22) 

 

Then (21) becomes 

2𝑋[𝑋 − 1]
𝑑2𝑈

𝑑𝑋2
 + [(4𝑑 + 1)𝑋 − 2(2𝑑 + 1)]

𝑑𝑈

𝑑𝑋
+ 𝑑(2𝑑 − 1)𝑈 = 0                             (23) 

 

The result (23) is a special case of hypergeometric differential equation which can be integrated 

using the method of Frobenius. When 𝑑 = 0 then 𝛼 + 𝛽 =
(𝑎+𝑏)

𝑎
  and we regain the result of 

Section 4.1. Therefore we take  𝑑 ≠ 0  in this section to ensure that +𝛽 ≠
𝑎+𝑏

𝑎
 . 

   As the point 𝑋 = 1 is a regular singular point of (23), there exist two linearly independent 

solutions of the form of a power series with centre 𝑋 = 1. These solutions can be generated 

using the method of Frobenius. Therefore we can write 

𝑈(𝑋) = ∑ 𝑐𝑖[𝑋 − 1]𝑖+𝑟 ,   𝑐0 ≠ 0,                                                                                                 (24)

∞

𝑖=0
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where 𝑐𝑖 are the coefficients of the series and 𝑟 is the constant. To complete the solution we 

need to find the coefficients 𝑐𝑖 explicitly. On substituting (24) in (23) we obtain the indicial 

equation 

𝑐0𝑟(2𝑟 − 3) = 0 

and the recurrence relation 

𝑐𝑖  =  
− [(𝑖 +  𝑟 −  1)(2𝑖 +  2𝑟 +  4𝑑 −  3) +  𝑑(2𝑑 −  1)] 

(𝑖 +  𝑟)(2𝑖 +  2𝑟 −  3)
 𝑐𝑖−1,

𝑖 ≥  1                                                                                                                    (25) 

which governs the structure of the solution. As 𝑐0 ≠ 0,  we must have 𝑟 = 0 or 𝑟 = 3/2. Withe 

the help of (25) we can express the general form for the coefficient 𝑐𝑖 in terms of the leading 

coefficient 𝑐0 as: 

𝑐𝑖  = (−1)𝑖 ∏
[(𝑝 +  𝑟 −  1)(2𝑝 +  2𝑟 +  4𝑑 −  3) +  𝑑(2𝑑 −  1)]

(𝑝 +  𝑟)(2𝑝 +  2𝑟 −  3)

𝑖

𝑝=1

  𝑐0                  (26) 

It is easy to establish that the result (26) holds for all positive integers 𝑝 using the principle of 

mathematical induction. Now it is possible to generate two linearly independent solutions to 

(23) with the help of (24) and (26). For the parameter value 𝑟 = 0 we obtain the first solution 

𝑈1(𝑋) =  𝑐0 [1 + ∑ (−1)𝑖 ∏
[(𝑝 − 1)(2𝑝 + 4𝑑 − 3)+ 𝑑(2𝑑 − 1)]

𝑝(2𝑝 − 3)
𝑖
𝑝=1

∞
𝑖=1 (𝑋 − 1)𝑖]                        (27)  

   For the parameter value 𝑟 = 3/2  we obtain the second solution 

 

𝑈2(𝑋) =  𝑐0(𝑋 − 1)3/2 [1 + ∑ (−1)𝑖 ∏
[(2𝑝+ 1)(𝑝 + 2𝑑)+ 𝑑(2𝑑 − 1)]

𝑝(2𝑝+ 3)
𝑖
𝑝=1

∞
𝑖=1 (𝑋 −

1)𝑖]                                                                                                                                                       (28)    

In terms of the variable = 𝐶𝑟2 , (27) and (28) become 

 

𝑦1(𝑥) = 𝑐0 [
(𝑏(1 +  𝑎𝑥))

 𝑎 + 𝑏
]

𝑑

 

× [1 + ∑ (−1)𝑖 ∏
[(𝑝 − 1)(2𝑝 + 4𝑑 − 3)+ 𝑑(2𝑑 − 1)]

𝑝(2𝑝 − 3)
 [

(𝑎( 𝑏𝑥−1))

𝑎+𝑏
]

𝑖
𝑖
𝑝=1

∞
𝑖=1 ]                                   (29)   

 

and  

𝑦2(𝑥) = 𝑐0 [
(𝑏(1 +  𝑎𝑥))

𝑎 + 𝑏
]

𝑑

[
(𝑎(𝑏𝑥 − 1))

𝑎 + 𝑏
]

3/2

 

× [1 + ∑ (−1)𝑖 ∏
[(2𝑝+ 1)(𝑝 + 2𝑑 )+ 𝑑(2𝑑 − 1)]

𝑝(2𝑝+ 3)
 [

(𝑎( 𝑏𝑥−1))

 𝑎+𝑏
]

𝑖
𝑖
𝑝=1

∞
𝑖=1 ]                                        (30)  

 

where we have used (16). Thus we can write the general solution to the differential equation 

(23), for the choice of the anisotropic factor (13) and the electric field given in (14), as 

 

𝑦(𝑥) =  𝐴1𝑦1(𝑥) + 𝐴2𝑦2(𝑥)                                                                                           (31) 
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where 𝑦1 and 𝑦2 are given in (29) and (30) respectively, 𝐴1, 𝐴2 are constants. It is clear that 

the quantities 𝑦1 and 𝑦2 are linearly independent functions. From (8) - (11) with the help of 

(12) - (14), the general solution to the Einstein-Maxwell system can be written as 

 

𝑒2𝜆  =
1 −  𝑏𝑥

(1 +  𝑎𝑥)2
                                                                                                                 (32) 

𝑒2𝜈  =  𝐴2 𝑦2                                                                                                                         (33) 

𝜌

𝐶
=

( 𝑏𝑥 − 3)(2𝑎 + 𝑏)

(1 −  𝑏𝑥)2
−

𝑎2𝑥(5 −  3𝑏𝑥)

(1 −  𝑏𝑥)2

−
𝛼𝑎( 𝑎 + 𝑏)𝑥

2(1 −  𝑏𝑥)2
                                                                                       (34) 

𝑝𝑟

𝐶
=

4(1 +  𝑎𝑥)2

1 −  𝑏𝑥

�̇�

𝑦
+

𝑎(2 +  𝑎𝑥) +  𝑏

1 −  𝑏𝑥

+
𝛼𝑎( 𝑎 + 𝑏)𝑥

2(1 −  𝑏𝑥)2
                                                                                           (35) 

𝑝𝑡

𝐶
=

4(1 +  𝑎𝑥)2

1 −  𝑏𝑥

�̇�

𝑦
+

𝑎(2 +  𝑎𝑥) +  𝑏

1 −  𝑏𝑥
+

𝛼𝑎(𝑏 −  𝑎)𝑥

2(1 +  𝑏𝑥)2

+
𝑎(𝛼 +  2𝛽)( 𝑎 + 𝑏)𝑥

2(1 −  𝑏𝑥)2
                                                                          (36) 

𝐸2

𝐶
=

𝛼𝑎( 𝑎 + 𝑏)𝑥

(1 −  𝑏𝑥)2
                                                                                                                    (37) 

𝜎2

𝑐
=

𝛼𝑎𝐶( 𝑎 + 𝑏)(1 +  𝑎𝑥)2(3 −  𝑏𝑥)2

(1 −  𝑏𝑥)5
                                                                            (38) 

∆

𝐶
=

𝛽𝑎( 𝑎 + 𝑏)𝑥

(1 −  𝑏𝑥)2
                                                                                                                    (39) 

where 𝑦 is given by (31). As the choice of the metric function (12) together with the anisotropic 

factor (13) and the electric field intensity (14) have not been considered earlier, to the best of 

our knowledge, the class of solutions (32) - (39) have not been reported previously. It should 

be stressed that the new class of solutions (32) - (39) holds good for isotropic as well as 

anisotropic; charged as well as uncharged cases. The form of the exact solution (32) - (39) is a 

generalisation of the general solution of Komathiraj and Maharaj [20] when  𝛽 = 0 and 𝑏 =

−1 and Thirukkanesh and Maharaj [21] when  𝛽 = 0 the anisotropy vanishes and we regain 

their models. 

     It is interesting to observe that the series in (29) and (30) terminates for specific values of 

the parameters 𝑎, 𝑏, 𝛼 and 𝛽. It is, therefore, possible to generate solutions in terms of 

elementary functions by imposing specific restrictions on the quantity 𝛼 + 𝑏 −
𝑎+𝑏

𝑎
. The 

solutions may be found in terms of polynomials and algebraic functions which is a more 

desirable form for the physical description of a charged anisotropic relativistic star. We can 

express the first category of solution to (23) as 
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𝑦(𝑥) = 𝐴 [
𝑎+𝑏

𝑏(1+𝑎𝑥)
]

𝑛
∑ (−1)𝑖−1 (2𝑖−1)

(2𝑖)!(2𝑛−2𝑖+1)!

𝑛
𝑖=0 [

𝑎(𝑏𝑥−1)

𝑎+𝑏
]

𝑖
  

+𝐵 [
𝑎+𝑏

𝑏(1+𝑎𝑥)
]

𝑛
[

𝑎(𝑏𝑥−1)

𝑎+𝑏
]

3

2 ∑ (−1)𝑖−1 (𝑖+1)

(2𝑖+3)!(2𝑛−2𝑖−2)!

𝑛−1
𝑖=0 [

𝑎(𝑏𝑥−1)

𝑎+𝑏
]

𝑖

                                      (40)  

where 𝛼 + 𝛽 −
𝑎+𝑏

𝑎
= 4𝑛2.  The second category of solution is given by 

 

𝑦(𝑥) = 𝐴 [
𝑎+𝑏

𝑏(1+𝑎𝑥)
]

𝑛−1/2
∑ (−1)𝑖−1 (2𝑖−1)

(2𝑖)!(2𝑛−2𝑖)!

𝑛
𝑖=0 [

𝑎(𝑏𝑥−1)

𝑎+𝑏
]

𝑖
  

+𝐵 [
𝑎+𝑏

𝑏(1+𝑎𝑥)
]

𝑛−1/2
[

𝑎(𝑏𝑥−1)

𝑎+𝑏
]

3

2 ∑ (−1)𝑖−1 (𝑖+1)

(2𝑖+3)!(2𝑛−2𝑖−3)!

𝑛−2
𝑖=0 [

𝑎(𝑏𝑥−1)

𝑎+𝑏
]

𝑖

                               (41)  

 

where 𝛼 + 𝛽 −
𝑎+𝑏

𝑎
= 4𝑛(𝑛 − 1) + 1.   

In the above 𝐴 and 𝐵 are arbitrary constants. Thus we have extracted two classes of solutions 

(40) and (41) in terms of elementary functions from the infinite series solution (31). This class 

of solution helps in the study of the physical features of the model. It is possible to regain a 

number of physically reasonable isotropic (∆ = 0) models from our general class solutions (40) 

and (41) for particular values of parameters.  .  If we set 𝛽 = 0 and 𝑏 = −1 then (40) - (41) 

are the same as the isotropic charged model of Komathiraj and Maharaj [20]. If we set 𝛽 = 0, 

(40) – (41) become the isotropic charged model of  Thirukkanesh and Maharaj [21]. Thus, we 

have regained the two previously reported isotropic charged models from our general class of 

solutions. . 

5. New exact solutions and its physical features 

It is interesting to observe that variety of new solutions can be obtained from the function (40) 

and (41) by substituting particular values for 𝑛. We illustrate one of such sample solution as 

example in this section. 

 

    If we set 𝑏 =  ( 𝛼 +  𝛽 − 5)𝑎, then 𝑛 = 1 and (40) becomes  

 

𝑦(𝑥) =
𝑎1[7 +  𝛼 +  𝛽 +  3𝑎(5 +  𝛼 +  𝛽)𝑥] + 𝑏1[1 +  𝑎(5 +  𝛼 +  𝛽)𝑥]3/2

1 +  𝑎𝑥
          (42) 

where 𝑎1 and 𝑏1 are new constants. Subsequently, the general solution to the Einstein Maxwell 

system (8) - (11) can be expressed as 

 

𝑒2𝜆  =
1 + 𝑎(5 −  𝛼 −  𝛽)𝑥

(1 +  𝑎𝑥)2
                                                                                                       (43) 

𝑒2𝜈  =  𝐴2 𝑦2                                                                                                                                  (44) 
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𝜌

𝐶

=
𝑎(3 −  𝛼 −  𝛽 −  𝑎𝑥)

1 +  𝑎(5 −  𝛼 −  𝛽)𝑥
−

2𝑎(1 +  𝑎𝑥)[3 −  𝛼 −  𝛽 −  𝑎(5 −  𝛼 −  𝛽)𝑥]

[1 +  𝑎(5 −  𝛼 −  𝛽)𝑥]2

+
𝛼𝑎2(4 −  𝛼 −  𝛽)𝑥

2[1 +  𝑎(5 −  𝛼 −  𝛽)𝑥]2
                                                                                                      (45) 

𝑝𝑟

𝐶
=

4(1 +  𝑎𝑥)2

1 +  𝑎(5 −  𝛼 −  𝛽)𝑥

�̇�

𝑦
+

𝑎(𝑎𝑥 −  3 +  𝛼 +  𝛽)

1 +  𝑎(5 −  𝛼 −  𝛽)𝑥
  

−
𝛼𝑎2(4 −  𝛼 −  𝛽)𝑥

2[1 +  𝑎(5 −  𝛼 −  𝛽)𝑥]2
                                                                        (46) 

𝑝𝑡

𝐶
=

4(1 +  𝑎𝑥)2

1 +  𝑎(5 −  𝛼 −  𝛽)𝑥

�̇�

𝑦
+

𝑎(𝑎𝑥 −  3 +  𝛼 +  𝛽)

1 +  𝑎(5 −  𝛼 −  𝛽)𝑥
  

−
(𝛼+2𝛽)𝑎2(4 −  𝛼 −  𝛽)𝑥

2[1 +  𝑎(5 −  𝛼 −  𝛽)𝑥]2
                                                                          (47) 

𝐸2

𝐶
=   −

𝛼𝑎2(4 −  𝛼 −  𝛽)𝑥

2[1 +  𝑎(5 −  𝛼 −  𝛽)𝑥]2
                                                                                            (48) 

∆

𝐶
=   −

𝛽𝑎2(4 −  𝛼 −  𝛽)𝑥

2[1 +  𝑎(5 −  𝛼 −  𝛽)𝑥]2
                                                                                               (49)  

 

where 𝑦 is given in (42). It is remarkable that the solution (43) - (49) completely expressed in 

terms of elementary function. For a physically viable model [22], the class of solutions 

obtained by our approach should satisfy certain regularity and physical requirements. We 

analyse the features of our solutions (43) - (49) and examine whether the solutions can be used 

for describing realistic stars. 

   In (43) and (44), we note that   𝑒  2𝜆(𝑟 = 0) = 1,   (𝑒  2𝜆)
′
(𝑟 = 0) = 0  and 𝑒  2𝜈(𝑟 = 0) =

𝐴2𝑦2(𝑟 = 0),   (𝑒  2𝜈)′(𝑟 = 0) = (𝐴2𝑦2)′(𝑟 = 0).  Thus the gravitational potentials (43) and 

(44) are regular at the centre of the star 𝑟 = 0. 

    Using equation (45), we obtain the central density  𝜌0 = 𝜌(𝑟 = 0) = 4𝑎𝐶(3 −  𝛼 −  𝛽), 
which implies that we must have  𝑎(3 −  𝛼 −  𝛽) > 0.  Using equation (46) at the center of 

the star(𝑟 = 0), we must have   

𝑝𝑟(𝑟 = 0) = 𝑝𝑡(𝑟 = 0) = 4𝐶 (
�̇�

𝑦
) (𝑟 = 0) − 𝑎𝐶(3 − 𝛼 − 𝛽) > 0                                         

The radial pressure and the tangential pressure will be positive if we choose our model 

parameters in such a manner that the above condition is satisfied. 

    At the boundary of the star (𝑟 = 𝑅r), we impose the condition that the radial pressure 

vanishes, i.e., 𝑝𝑅 = 𝑝(𝑥 = 𝐶𝑅2) = 0, which yields 

𝑎1 = −𝑏1[1 +  𝑎𝐶𝑅2(5 −  𝛼 −  𝛽)]
3
2 ×

𝑓1

𝑓2
, 

where 𝑓1  and  𝑓2 are functions of 𝑎, 𝐶, 𝑅, 𝛼 and 𝛽.  Essentially, this equation places a restriction 

on the constants 𝑎1 and  𝑏1. 



10                                                               K. Komathiraj/𝐼𝐽𝑀2𝐶, 13 -02 (2023) 01-11. 

 

      The solution of the Einstein-Maxwell system for 𝑟 > 𝑅 is given by the Reissner-Nordstrom 

metric  

𝑑𝑠2 = − (1 −
2𝑀

𝑟
+

𝑄2

𝑟2
) 𝑑𝑡2 + (1 −

2𝑀

𝑟
+

𝑄2

𝑟2
)

−1

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃𝑑𝜙2),                    

where 𝑀 = 𝑚(𝑅) and 𝑄 = 𝐸(𝑅)𝑅2 are the total mass and charge of the star. Matching the line 

element  (1) with this equation  across the boundary 𝑅, we have 

𝐴2[𝑦(𝐶𝑅2) ]2 = (1 −
2𝑀

𝑅
+

𝑄2

𝑅2
)                                                                                                  

1 + 𝑎(5 − 𝛼 − 𝛽)𝐶𝑅2

(1 + 𝑎𝐶𝑅2)2
= (1 −

2𝑀

𝑅
+

𝑄2

𝑅2
)

−1

                                                                       

where 𝑦 is given by (42). These matching conditions determines the constants  𝐴 as: 

𝐴 =
(1 +  𝑎𝐶𝑅2)3

1 +  𝑎𝐶𝑅2(5 − 𝛼 − 𝛽)
× 𝑓3 

where 𝑓3 is a function of 𝑎, 𝐶, 𝑅, 𝛼 and 𝛽.   

    Thus the simple closed-form nature of the above new solution (43) - (49) facilitates its 

physical analysis as discussed above. Utilizing the above results, we can analyze physical 

viability of the solution (43) - (49) graphically for a given set of choices of model parameters 

as in the recent work by Komathiraj and Sharma [7, 23]. This is under preparation.   

6. Conclusion 

In this paper, we have found new solutions (32) – (39) to the Einstein–Maxwell system (8) – 

(11) by utilizing the method of Frobenius for an infinite series; a particular form for one of the 

gravitational potentials was assumed and the anisotropic factor with electric field intensity was 

specified. These solutions are given in terms of special functions. Moreover, we have 

demonstrated that for the specific set of model parameters, it is possible to obtain closed-form 

solutions from the general series solution. We used this feature to find two classes of exact 

solutions (40) and (41) to the Einstein–Maxwell system in terms of polynomials and product 

of polynomials and algebraic functions. These solutions may be useful in studying the physical 

behaviour of dense charged objects in relativity which will be the objective in future work. The 

advantage of the new class of solutions is that the general form of the closed-form solutions 

can be used to study all possible compositions (isotropic and uncharged, isotropic and charged, 

anisotropic and uncharged and anisotropic and charged). This facilitates an analysis of the 

impacts of electric field and anisotropy of compact stars. The most interesting feature of the 

class of solutions is that many well known stellar solutions can be regained simply by switching 

off the parameters specifying the anisotropy and/or charge distribution in this formulation. It 

will be interesting to probe what other combinations of the model parameters can provide new 

solutions in simple analytic forms. This will be taken up elsewhere. 
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