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1. Introduction

In 2020, Wazwaz extended the Sakovich equation (see [17]) to two new Painlev-
integrable models of the same order as the Sakovich equation and of (2 + 1) and
(3 + 1) dimensions given as (see [19]):

uxt + uyy + 2uuxy + 6u2u2xx + uxx + uxy = 0, (1)
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and

uxt + uyy + 2uuxy + 6u2u2xx + uxx + uxy + uxz + uyz = 0. (2)

Recently, multi-wave and interaction solutions and some Lie symmetry analysis to
Equation (1) have been studied [15].
In the present work, we used Lies method to examine and find the answers of
Equation (2). Next, an optimal system of subalgebras is presented associated with
Lie symmetry algebra. The second-order linear PDE called (2 + 1)-dimensional
second-order Sakovich equation was established:

uxt + uyy + 2uuxy + 6u2uxx + 2u2xx = 0, (3)

which is quadratic in uxx, and satisfies the Painlev test for integrability. The equa-
tion of Sakovich doesn’t have a scattering expression uxxx, which is not the case
in the KdV equation. Nonlinear equations are widely used in evaluating nonlinear
wave phenomena. Therefore, such equations have been considered by scientists for
years and have made it possible to conduct detailed studies. Korteweg-De Vries
(KdV) equation is one of the in-depth equations analyzed. The establishment of a
completely integrable model, which describes the true characteristics of the scien-
tific and engineering fields, is in progress, and a wide range of useful findings are
being obtained. Several properties of the integrable equations include the presence
of a Lax pair, which can be solved by the IST technique, satisfying the Painlev
criterion, having infinite symmetry and Hamiltonian and Bi-Hamiltonian formulas,
and other criteria [4, 12]. Through the Lie symmetry group process, the problem
of symmetry categorization is extensively taken into account for various equations
in different spaces [1–4, 6, 16]. On the contrary, Lies approach (symmetry group
approach), which is a computational, algorithmic method for obtaining group-
invariant solutions, is largely used in resolving differential equations. Through the
mentioned process; proper solutions can be achieved through known ones, investi-
gation of the invariant solutions, so also reduction of the ODEs order [5, 10, 13].
Studies in this area are in progress since such equations depict the states and
properties of nonlinear phenomena, broaden vision in terms of physical aspects,
and then become more practical in engineering and other sciences. So, the search
for accurate solutions is important in non-linear equations in several ways, like
plasma laser radiation [11, 18].
The paper is presented in several chapters as follows. The infinitesimal generators

of the symmetry algebra of Equation (2) are specified along with some other results
obtained in Section 2. In Section 3, we make the optimal ideal subalgebras of Eq.(2).
Following the third section, we discover the similarity solutions, Lie invariants, and
similarity reduction based on the infinitesimal symmetries of Eq.(2). In Section 4,
we show reductions for differential equations as well as for definite solutions. In the
last section, we obtain the associated non-classical symmetries of Eq.(2).

2. The symmetry computation of Eq.(2)

Normally,

∆β((x
1, ..., xm), (u1, ..., un)(p)) = 0, 1 ⩽ β ⩽ t, (4)

is a set of PDE of order p. (u1, ..., un)(i) represents the i-order derivative of U
regarding x, 0 ⩽ i ⩽ p. On both X and U , infinitesimal transformations Lie group
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acts as:

x̃i = xi + εξi((x1, ..., xm), (u1, ..., un)) + o(ε2), 1 ⩽ i ⩽ m, (5)

ũj = uj + εϕj((x
1, ..., xm), (u1, ..., un)) + o(ε2), 1 ⩽ j ⩽ n,

in which the infinitesimal transformations for (x1, ..., xm) and (u1, ..., un), are de-
noted by ξi and ϕj respectively. A given infinitesimal generator equivalent to the
transformations group (5) is

V =

p∑
i=1

ξi((x1, ..., xm), (u1, ..., un))∂xi +

q∑
j=1

ϕj((x
1, ..., xm), (u1, ..., un))∂uj . (6)

We apply x, y,z and t instead of x1, x2, x3 and x4 respectively, and for simplicity

ξj = ξj(x, y, z, t, u), j = 1, · · · , 4,
ϕ = ϕ(x, y, z, t, u).

Here, an infinitesimal transformations one parameter Lie group is taken to apply
the process for Eq.(2) as:

x̃ = x+ εξ1 + σ(ε2),

ỹ = y + εξ2 + σ(ε2),

z̃ = z + εξ3 + σ(ε2),

t̃ = t+ εξ4 + σ(ε2),

ũ = u+ εϕ+ σ(ε2).

The equivalent symmetry generator is:

V = ξ1∂x + ξ2∂y + ξ3∂z + ξ4∂t + ϕ∂u. (7)

The criterion of invariance has associated with the equations:

Pr(2)V [uxt + uyy + 2uuxy + 6u2u2xx + uxx + uxy + uxz + uyz] = 0. whenever
uxt + uyy + 2uuxy + 6u2u2xx + uxx + uxy + uxz + uyz = 0.

Since infinitesimal transformation are based on x,y,z, t and u, adjusting the coef-
ficients at 0, we obtain: 

−4ξ1uu = −ξ4x = 0,

−4ξ2uu = −4ξ4uu = 0,

−ξ3u = −8ξ3ux = 0,

−4ξ3uu = 4ϕuu = 0,

...

The number of generated equations is 48. We express the answer to the above set
of equations in the form of the following theorem:
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Table 1. Lie bracket of Eq.(2).

[ , ] ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7

ϑ1 0 0 0 0 0 0 1
5ϑ

1

ϑ2 ∗ 0 0 0 0 −ϑ1 2
5ϑ

1 + 3
5ϑ

2

ϑ3 ∗ ∗ 0 0 −ϑ1 5
3ϑ

1 − 4
15ϑ

1 + 3
5ϑ

3

ϑ4 ∗ ∗ ∗ 0 ϑ1 + ϑ2 −2
3ϑ

1 + ϑ3 2
3ϑ

1 + ϑ4

ϑ5 ∗ ∗ ∗ ∗ 0 0 −2
5ϑ

6

ϑ6 ∗ ∗ ∗ ∗ ∗ 0 −2
5ϑ

6

ϑ7 ∗ ∗ ∗ ∗ ∗ ∗ 0

Theorem 2.1 The Lie point symmetry group of Eq.(2) has a Lie algebra made by
(7), with coefficients as follows:

ξ1 =
1

15
(3x+ 6y + 10t− 4z)C1

+
1

15
(−10t− 15y + 25z)C3 + C5t+ C7 − zC5,

ξ2 =
3

5
C1y + C5t+ C6,

ξ3 =
3

5
C1z + C3t+ C4,

ξ4 =C1t+ C2,

ϕ =
1

30
(2− 12u)C1 −

1

6
C3,

(8)

where Ci ∈ R, i = 1, ..., 7.

Corollary 2.2 One-parameter Lie group of Eq.(2) for every point symmetry con-
tains the infinitesimal generators as:

ϑ1 =∂x,

ϑ2 =∂y,

ϑ3 =∂z,

ϑ4 =∂t,

ϑ5 =(t− z)∂x + t∂y,

ϑ6 =− (
2

3
t+ y − 5

3
z)∂x + t∂z −

1

6
∂u,

ϑ7 =(
1

5
x+

2

5
y +

2

3
t− 4

15
z)∂x +

3

5
y∂y +

3

5
z∂z

+ t∂t − (− 1

15
+

2

15
u)∂u,

(9)

We present the Lie algebra for Eq.(2) with Table (1). The data in the ijth row
and column of Table (1) are marked with [Xi, ϑj ] = ϑiϑj−ϑjϑi where i, j = 1, ..., 7.
For instance, the flow of ϑ7 in Corollary 2.2 is

Φϵ = (ye
3

5
ϵ+

5

6
teϵ− 2

3
e

3

5
ϵ+e

1

5
ϵ(−y− 5

6
t+

2

3
z+x), ye

3

5
ϵ, ze

3

5
ϵ, teϵ,

1

6
+e−

2

5
ϵ(−1

6
+u)).



Table 2. Adjoint representation of g

Ad ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7

ϑ1 ϑ1 +
1

5
sϑ7 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7

ϑ2 ϑ1 − sϑ6 +
2

5
sϑ7 ϑ2 +

3

5
sϑ7 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7

ϑ3 ϑ1 − sϑ5 +
5

3
sϑ6 − 4

15
sϑ7 ϑ2 ϑ3 +

3

5
sϑ7 ϑ4 ϑ5 ϑ6 ϑ7

ϑ4 ϑ1 + sϑ5 − 2

3
sϑ6 +

2

3
sϑ7 ϑ2 + sϑ5 ϑ3 + sϑ6 ϑ4 + sϑ7 ϑ5 ϑ6 ϑ7

ϑ5 ϑ1 + sϑ3 − sϑ4 ϑ2 − sϑ4 ϑ3 ϑ4 ϑ5 − 2

5
sϑ7 ϑ6 ϑ7

ϑ6 ϑ1 + sϑ2 − 5

3
sϑ3 + (

5

6
s2 +

2

3
s)ϑ4 ϑ2 ϑ3 − sϑ4 ϑ4 ϑ5 ϑ6 − 2

5
sϑ7 ϑ7

ϑ7 e

−1

5
s
ϑ1 + (e

−3

5
s
− e

−1

5
s
)ϑ2 e

−3

5
s
ϑ2 e

−3

5
s
ϑ3 e−sϑ4 e

2

5
s
ϑ5 e

2

5
s
ϑ6 ϑ7

+(
−2

3
e

−3

5
s
+

2

3
e

−1

5
s
)ϑ3

+(
5

6
e−s−5

6
e

−1

5
s
)ϑ4

3. Classification of one-dimensional subalgebras

The one-parameter optimal system of Eq.(2) can be determined utilizing the sym-
metry group. Such subgroups must be obtained by presenting various solutions.
Therefore, invariant solutions should be searched not connected to a transforma-
tion in the whole symmetry group. An optimal set of subalgebras is yielded. The
issue of categorizing 1D subalgebras would be similar to the question of categoriz-
ing the adjoint representation orbits. One representative is considered from each
group of equivalent subalgebras, to solve an optimum set of subalgebras problems
[13, 14]. The adjoint representation of each ϑt, t = 1, ..., 7 is defined as:

Ad(exp(s.ϑt).ϑr) = ϑr − s.[ϑt, ϑr] +
s2

2
.[ϑt, [ϑt, ϑr]]− · · · , (10)

where s represents the parameter and [ϑt, ϑr] is presented in Table (1) for t, r =
1, · · · , 7 ([13], page 199). Let g is the Lie algebra generated by (9). The adjoint
action for g is given according to Table (2). Considering the Ibragimovs method,
an optimal system of one-dimensional subalgebras is presented in the form of the
following theorem.

Theorem 3.1 Considering the Ibragimovs method, the 1D optimal system of sub-
algebras for Eq.(2) are as follows:

1 : ϑ1, 8 : ϑ2 ± ϑ3,
2 : ϑ2, 9 : ϑ2 ± ϑ6,
3 : ϑ3, 10 : ϑ3 ± ϑ5

4 : ϑ4, 11 : ϑ4 ± ϑ5,
5 : ϑ5, 12 : ϑ4 ± ϑ6,
6 : ϑ6, 13 : ϑ5 ± ϑ6,
7 : ϑ7, 14 : ϑ4 ± ϑ5 ± ϑ6,

Proof According to Table 1, we find that the center is empty. Therefore, it is
necessary to specify the subalgebras:

〈ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6, ϑ7〉.
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Considering basis {ϑ1, · · · , ϑ7} and a vector field X =
∑7

i=1 aiϑ
i, for t = 1, · · · , 7,

the map:

{
Ad(exp(sϑt).X) : g → g

X 7→ Ad(exp(sϑt).X)

is a linear function. The associated matrix of functions Ad(exp(siϑ
i).X), 1 ⩽ i ⩽ 7

are reported as:

Ad(exp(siϑ
i).X) = [a1 a2 a3 a4 a5 a6 a7]M

i
7×7



ϑ1

ϑ2

ϑ3

ϑ4

ϑ5

ϑ6

ϑ7


,

where

M1 =



1 0 0 0 0 0
−1

5
s1

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, M2 =



1 0 0 0 0 s2
−2

5
s2

0 1 0 0 0 0
−3

5
s2

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

M3 =



1 0 0 0 s3
−5

3
s3

4

15
s3

0 1 0 0 0 0 0

0 0 1 0 0 0
−3

5
s3

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, M4 =



1 0 0 0 −s4
2

3
s4

−2

3
s4

0 1 0 0 −s4 0 0
0 0 1 0 0 s4 0
0 0 0 1 0 0 −s4
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

M5 =



1 0 −s5 s5 0 0 0
0 1 0 s5 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1 0
2

5
s5

0 0 0 0 0 1 0
0 0 0 0 0 0 1


, M6 =



1 −s6
5

3
s6

5

6
s26 −

2

3
s6 0 0 0

0 1 0 0 0 0 0
0 0 1 s6 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0 1
2

5
s6

0 0 0 0 0 0 1


,

6



and for instance, for matrix M7 we have:

Ad(exp(s7ϑ
7).X) =

[a1 a2 a3 a4 a5 a6 a7]



e
−1

5
s7 e

−3

5
s7

−2

3
e

−3

5
s7 −5

6
e−s7 0 0 0

−e
−1

5
s7 +

2

3
e

−1

5
s7 −5

6
e

−1

5
s7

0 e
−3

5
s7 0 0 0 0 0

0 0 e
−3

5
s7 0 0 0 0

0 0 0 e−s7 0 0 0

0 0 0 0 e
2

5
s7 0 0

0 0 0 0 0 e
2

5
s7 0

0 0 0 0 0 0 1





ϑ1

ϑ2

ϑ3

ϑ4

ϑ5

ϑ6

ϑ7


.

From Ad(exp(s1ϑ
1)) ◦ Ad(exp(s2ϑ

2)) ◦ · · · ◦ Ad(exp(s7ϑ
7)), we can shorten X as

follows:
For a7 6= 0, the coefficients a1, a2, a3, a4, a5 and a6 can be disappeared by setting,

s1 =
−5a1
a7

, s2 =
−5a2
3a7

, s3 =
−5a3
3a7

, s4 =
−a4
a7

, s5 =
5a5
2a7

, s6 =
5a6
2a7

respectively.

When required, by scaling X, we assume a7 = 1. Thus, x turns into the case (7).

Let a7 = 0. Consider a vector

(a1, a2, a3, a4, a5, a6, 0). (11)

For a6 6= 0 , the coefficients a1, a3 disappeared by adjusting, s2 =
a1
a6

, s4 =
−a3
a6

respectively. Thus, (11) is reduced to

(0, a2, 0, a4, a5, a6, 0). (12)

Let a7 = 0 and a6 = a5 6= 0, for vector (12), the coefficient a2 can be disappeared

by setting s4 =
−a2
a5

. Thus, by scaling X, we suppose a4 = 1 and a6 = a5 = ±1.

Thus, X gives rise to the case (14). For a4 = 0, by scaling X, a5 = 1 and a6 = ±1
are supposed. Thus, X gives rise to the case (13).

Let a7 = a5 = 0 and a6 6= 0. Thus, (12) is reduced to

(0, a2, 0, a4, 0, a6, 0). (13)

Let a7 = a5 = 0 and a6 = a4 6= 0, for vector (13), the coefficient a2 is vanished

by s5 =
a2
a4

adjusting a. Thus, we assume a4 = 1, a6 = ±1, by scaling X. Hence,

X turns into the case (12).

Let a7 = a5 = a4 = 0 and a6 6= 0, in vector (13). Thus, by scaling X, we assume
a2 = 1 and a6 = ±1. Thus, X gives rise to the case (9). For a2 = 0, we assume
a6 = 1, by scaling X. Therefore, X gives rise to the case (6).

Let a7 = a6 = 0. Thus, (11) is reduced to

(a1, a2, a3, a4, a5, 0, 0). (14)
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For a7 = a6 = 0 and a5 6= 0, for vector (14), the coefficients a1 , a2 are vanished

by setting, s3 =
a1
a5

,s4 =
−a2
a5

respectively. Therefore, (11) is reduced to

(0, 0, a3, a4, a5, 0, 0). (15)

Let a7 = a6 = 0 and a5 = a4 6= 0, for vector (15), the coefficient a3 can be

disappeared by setting s6 =
a3
a4

. Thus, by scaling X, we suppose a4 = 1, a5 = ±1.

Thus, X turns into the case (11).

Let a7 = a6 = a4 = 0 and a5 6= 0, in vector (15). Thus, by scaling X, we assume
a3 = 1 and a5 = ±1. Thus, X gives rise to the case (10). For a3 = 0, by scaling X,
we assume a5 = 1. Thus, X gives rise to the case (5).

Let a7 = a6 = a5 = 0. Thus, (14) is reduced to

(a1, a2, a3, a4, 0, 0, 0). (16)

Let a7 = a6 = a5 = 0 and a4 6= 0, for vector (16), the coefficients a1, a2, a3

can be disappeared by setting s5 =
a1
a4

, s5 =
a2
a4

, s6 =
a3
a4

respectively. Thus, we

assume a4 = 1, by scaling X. Thus, X gives rise to the case (4).

Let a7 = a6 = a5 = a4 = 0. Thus, (14) is reduced to

(a1, a2, a3, 0, 0, 0, 0). (17)

Let a7 = a6 = a5 = a4 = 0 and a3 6= 0, for vector (17), the coefficient a1

is vanished by setting s5 =
−a1
a3

. Thus, by scaling X, we assume a2 = 1, and

a3 = ±1. Thus, X gives rise to the case (8). For a2 = 0, we suppose a3 = 1, by
scaling X. Hence, X gives rise to the case (3).

Let a7 = a6 = a5 = a4 = a3 = 0. Thus, (17) is reduced to

(a1, a2, 0, 0, 0, 0, 0). (18)

Let a7 = a6 = a5 = a4 = a3 = 0 and a2 6= 0, for vector (18), the coefficient a1 is

vanished by adjusting s6 =
−a1
a2

. Thus, we assume a2 = 1 by scaling X. Therefore,

X gives rise to the case (2). For a2 = 0, we suppose a1 = 1, by scaling X. Thus,
X gives rise to the case (1).
We have obtained all cases, and the proof is complete. ■

4. Equivalent solutions of Equation (2)

First, symmetry reduction of Eq.(2) is classified, taking into account the subalge-
bras of Theorem 3.1. It is essential to look for a new form of Equation (2) in specific
coordinates. In these new coordinates, reduction occurs. Independent variables p, q
and r must be found for the infinitesimal generator to create these coordinates.
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Hence, the equation is expressed in novel coordinates through the chain rule re-
ducing the system. Table 3.1 shows the similarity variables pi, qi, ri and hi for 1D
subalgebras in Theorem 3.1. Using each similarity variable, the reduced PDE of
Eq.(2) is found (Table 4).
For example, we calculated the invariants related to subalgebra H5 := ϑ2 + ϑ3,

by solving the characteristic equation as follows:

dx

0
=

dy

1
=

dz

1
=

dt

0
=

du

0
.

Thus, the new variables are:

p = x, q = y − z, r = t, h = u,

where h(p, q, r) meets a decreased PDE with three variables as:

hpr + hqq − 2hhpq + 6h2hpp + 2h2pp + hpp − hqq = 0. (19)

Subalgebra ϑ2+ϑ3, and the decreased equation (19) are presented in Tables 3 and
4, by the case (5). Equivalent solution of Eq. (19) becomes:

h(p, q, r) = u(x, y, z, t) = −4C3
2 cosh θ − C4 cosh θ − 12C3

2

6C2 cosh θ
,

where θ = 1
6

1
C2

(6C1C2 +6C2
2x− 6tC2

2 − 16tC6
2 + tC2

4 +6C4C2z− 6C4C2y))
2. Using

a similar argument, for the vector ϑ2, Equation (2) is decreased as:

hpr + 6h2hpp + 2h2pp + hpp + hpq = 0, (20)

where the independent variables are as p = x, q = z, r = t and the dependent
function is as u = h(p, q, r). The equivalent solution of Eq. (20) becomes:

h(p, q, r) = u(x, y, z, t) = −2C2
2

3

(cosh θ − 3)

cosh θ
,

where θ =
(
C1 + C2x+ C3t− 8

3zC
5
2 − zC3 − zC2

)2
. Also, for the vector ϑ3, Equa-

tion (2) decreased as:

hpr + hqq + 2hhpq + 6h2hpp + 2h2pp + hpp + hpq = 0, (21)

where the independent variables are as p = x, q = y, r = t and the dependent
function is as u = h(p, q, r). The equivalent solution of Eq. (21) is derived as:

h(p, q, r) = u(x, y, z, t) = −4C3
2 cosh θ + C3 cosh θ − 12C3

2

6C2 cosh θ
,

where θ = (16
1
C2

(6C1C2 + 6C2
2x+ 6yC3C2 − 16tC6

2 − 6tC3C2 − 6tC2
2 − 5tC2

3 ))
2. For

case (4), in Tables 3 and 4, the corresponding solution is derived as:

h(p, q, r) = u(x, y, z, t) = −4C3
2 cosh θ + C3 cosh θ − 12C3

2

6C2 cosh θ
,
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Table 3. Similarity solution.

i Hi pi qi ri wi ui
1 ϑ1 y z t u h(p, q, r)
2 ϑ2 x z t u h(p, q, r)
3 ϑ3 x y t u h(p, q, r)
4 ϑ4 x y z u h(p, q, r)
5 ϑ2 + ϑ3 x y − z t u h(p, q, r)

6 ϑ4 + ϑ5 y −1

2
t2 + z −5

9
t3 +

1

3
t2 + yt− 5

3
zt+ x u+

1

6
t h(p, q, r)

...
...

...
...

...
...

...

Table 4. Reduced equations.

1 hp + hrq = 0,
2 hpr + 6h2hpp + 2h2pp + hpp + hpq = 0,
3 hpr + hqq + 2hhpq + 6h2hpp + 2h2pp + hpp + hpq = 0,
4 hqq + 2hhpq + 6h2hpp + 2h2pp + hpp + hpq + hpr + hqr = 0,
5 hpr − 2hhpq + 6h2hpp + 2h2pp + hpp = 0,
6 6hq − 10hr + 6hp + 12hhrp + 36hr − h2 + 12h2r + 6hr + 6hrp + 6hrq + 6hpq = 0.
...

...

where θ = (16
1

C3+C2
(6C1C3+6C1C2+6xC3C2+6C2

2x+6C2
3y+6yC3C2− 16zC6

2 −
6zC3C2 − 6zC2

2 − 5zC2
3 ))

2.

5. Non-classical symmetries

Here, using the method of non-classical symmetries, we try to get closer to the
solutions to the equation. Indeed, the method of non-classical symmetries is applied
to get other solutions for a system of PDEs and ODEs. For years, this method has
been applied in many types of research and plays an influential role in solving
partial differential equations. Now, we apply a variant of this method used by Cai
Guoliang et al. [7].
Using the notation

ξj = ξj(x, y, z, t, u), j = 1, · · · , 4,
ϕ = ϕ(x, y, z, t, u),

one relates to the infinitesimal generator V given by

V = ξ1∂t + ξ2∂x + ξ3∂y + ξ4∂z + ϕ∂u, (22)

the following first order PDE system

ξ1ut + ξ2ux + ξ3uy + ξ4uz − ϕ, (23)

representing the features of the vector field V . Equation (23) is known as the
invariant surface condition in our context. To obtain the nonclassical symmetries,
we have:

Pr(2)V [uxt + uyy + 2uuxy + 6u2u2xx + uxx + uxy + uxz + uyz] = 0. whenever
uxt + uyy + 2uuxy + 6u2u2xx + uxx + uxy + uxz + uyz = 0,
ξ1ut + ξ2ux + ξ3uy + ξ4uz − ϕ = 0.

10



To obtain a system of the determining equations with respect to ξ1, ξ2, ξ3, ξ4 and ϕ,
the governing equation of (24) should be solved. Solving the determining equations
of (24) results in the non-classical symmetries of (2). During the solving of the non-
classical symmetries of (2), there are two cases needed to discuss:

ξ1 = 1, ξ1 = 0. (24)

For case ξ1 = 1, we can get the following determining nonlinear PDE system for
the symmetries of (2):

4ξ4uξ
4
x = 0, 4φuu = 0,−8ξ3x = 0,−4ξ3xx = 0,−8ξ4x = 0,−4ξ4xx = 0,

4ξ3uξ
3
x + 4φuu = 0,−4ξ2xx + 8φxu = 0, 4ξ4uξ

3
x + 4ξ3uξ

4
x + 4φuu = 0,

· · · .

The number of generated equations is 25. The general solution of this nonlinear
PDE system is the following result.

Theorem 5.1 In case ξ1 = 1, for equation (2), we have the following infinitesi-
mals:

ξ2 =
1

5

5C3C1t+ C1x− 5C1zC3 + 4C1z + 5C4C1 + 30z + 5C3C2

C1t+ C2
,

ξ3 =
1

5

5C1tF1(t) + 3C1y + 5F1(t)C2

C1t+ C2
,

ξ4 =
1

5

2C1t+ 3C1z + 30t+ 5C5

C1t+ C2
,

ϕ =− 1

5

(2uC1 + 5)

C1t+ C2
,

(25)

where Ci ∈ R, i = 1, ..., 5 and

5

(
d

dt
F1(t)

)
C1t− 5C1C3 + 2C1 + 5C1F1(t) + 5

(
d

dt
F1(t)

)
C2 − 20 = 0.

From (25) we get the following infinitesimal generators:

Corollary 5.2 In case ξ1 = 1, for Eq.(2) in addition to infinitesimal generators
in Corollary 2.2 we get the additional nonclassical operators:

ϑ1 =∂t +
1

5

(x+ 34z − 30y)

t
∂x +

1

5

(18t+ 3y)

t
∂y

+
1

5

(32t+ 3z)

t
∂z −

1

5

(2u+ 5)

t
∂u,

ϑ2 =∂t +
1

5
(30z − 30y)∂x + 4t∂y + 6t∂z − ∂u.

For case ξ1 = 0, set ξ4 = 1. We can get the following determining nonlinear PDE
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system for the symmetries of (2):

4φuu = 0,−8ξ3x = 0,−ξ3x = 0,−4ξ3xx = 0,−6ξ2x + 2φu = 0,−4ξ2xx + 8φxu = 0,

− 8ξ3z − 2ξ3y + ξ2x − ξ3x − 2uξ3x + ξ3ξ3x − ξ3 = 0, ξ2x − ξ2uφ+ ξ3ξ3y = 0, · · ·

The number of generated equations is 19. The general solution of this nonlinear
PDE system is the following result.

Theorem 5.3 In case ξ1 = 0, for equation (2) we have the following infinitesimals:

ξ2 =− −C2z − 6y + 6t+ tC2 − C4

−6t+ C1

ξ3 =− 10t+ tC2 − C3

−6t+ C1

ϕ =
1

−6t+ C1
,

(26)

where Ci ∈ R, i = 1, ..., 4.

From (26), we get the following infinitesimal generators:

Corollary 5.4 In case ξ1 = 0, for Eq.(2) ,we get the additional non-classical
operators:

ϑ1 = − −6y + 6t

−6t+ 1
∂x −

10t

−6t+ 1
∂y + ∂z +

1

−6t+ 1
∂u,

ϑ2 =
1

6

−z − 6y + 7t

t
∂x +

11

6
∂y + ∂z −

1

6

1

t
∂u,

ϑ3 =
1

6

−6y + 6t

t
∂x +

1

6

10t− 1

t
∂y + ∂z −

1

6

1

t
∂u,

ϑ4 =
1

6

−1− 6y + 6t

t
∂x +

5

3
∂y + ∂z −

1

6

1

t
∂u.
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