Journal of Linear and Topological Algebra Vol. 02*, No.* 04*,* 2013*,* 255*-* 261

Some algebraic properties of Lambert Multipliers on *L* 2 **spaces**

A. Zohri^{a,*} and S. Khalil Sarbaz^a

^a*Faculty of Mathematical Sciences, Payame Noor University, P. O. BOX 19395-3697, Tehran, I. R. Iran.*

Received 11 September 2013; revised 9 December 2013; accepted 27 December 2013.

Abstract. In this paper, we determine the structure of the space of multipliers of the range of a composition operator C_{φ} that induces by the conditional expectation between two $L^p(\Sigma)$ spaces.

*⃝*c 2013 IAUCTB. All rights reserved.

Keywords: Conditional expectation, multipliers, multiplication operators, composition operators.

2010 AMS Subject Classification: Primary 47B20; Secondary 47B38.

1. Introduction and Preliminaries

Let $L(X, \Sigma, \mu)$ be a *σ*-finite measure space. For any complete *σ*-finite sub-algebra $\mathcal{A} \subseteq \Sigma$ with $1 \leqslant p \leqslant \infty$, the *L*^{*p*}-space $L^p(X, \mathcal{A}, \mu | \mathcal{A})$ is abberivated by $L^p(\mathcal{A})$, and its norm is denoted by $\|.\|_p$. We understand $L^p(\mathcal{A})$ as a Banach sub-space of $L^p(\Sigma)$. The support of a measurable function *f* is defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set.

To examine the weighted composition operators efficiently, Lambert in [5] associated with each transformation *T*, the so-called conditional expectation operator $E(\cdot|\mathcal{A}) = E(\cdot)$ is defined for each non-negative measurable function *f* or for each $f \in L^p(\Sigma)$, and is uniquely determined by the conditions:

(i) *E*(*f*) is *A*-measurable and

*[∗]*Corresponding author.

E-mail address: zohri a@pnu.ac.ir (A. Zohri).

(ii) If *A* is any *A*-measurable set for which $\int_A f d\mu$ converges we have

$$
\int_A f d\mu = \int_A E(f) d\mu.
$$

This operator will play a major role in our work, and we list here some of its useful properties:

- If *g* is *A*-measurable then $E(fg) = E(f)g$.
- $|E(f)|^p \le E(|f|^p).$
- $||E(f)||_p \le ||f||_p$.
- If $f \geq 0$ then $E(f) \geq 0$; if $f > 0$ then $E(f) > 0$.
- $E(|f|^2) = |E(f)|^2$ if and only if $f \in L^p(\mathcal{A})$.

As an operator on $L^p(\Sigma)$, $E(\cdot)$ is the contractive idempotent and $E(L^p(\Sigma)) = L^p(\mathcal{A})$. The real-valued Σ-measurable function *f* is said to be conditionable with respect to *A* if $\mu({x \in X : E(f^+)(x) = E(f^-)(x) = \infty}) = 0$. In this case $E(f) := E(f^+) - E(f^-)$. If *f* is complex-valued, then *f* is conditionable if the real and imaginary parts of *f* are conditionable and their respective expectations are not both infinite on the same set of positive measure. In this case, $E(f) := E(Ref) + iE(Imf)$ (see [3]). We denote the linear space of all conditionable Σ -measurable functions on *X* by $L^0(\Sigma)$. For *f* and *g* in $L^0(\Sigma)$, we define $f \star g = fE(g) + gE(f) - E(f)E(g)$. Let $1 \leq p, q \leq \infty$. A measurable function $u \in L^0(\Sigma)$ for which $u \star f \in L^q(\Sigma)$ for each $f \in L^p(\Sigma)$, is called Lambert multiplier (see [6]). In other words, $u \in L^0(\Sigma)$ is Lambert multiplier if and only if the corresponding \star -multiplication operator $T_u: L^p(\Sigma) \to L^q(\Sigma)$ defined as $T_u f = u \star f$ is bounded.

In the next section, Lambert multipliers acting between two different $L^p(\Sigma)$ spaces are characterized by using some properties of conditional expectation operator. In section 3, Fredholmness of corresponding *⋆*-multiplication operators will be investigated.

2. New results of Lambert multipliers on *L***² spaces**

In this paper we will assume $\mu(X) < \infty$.

Definition 2.1 For *f* and *g* in $L^0(\Sigma)$, we define

$$
f \star g = fE(g) + gE(f) - E(f)E(g).
$$

Definition 2.2 A measurable function $u \in L^0(\Sigma)$ for which $T_u(f) = u * f$ for each $f \in L^2(\Sigma)$, is called Lambert operator.

Definition 2.3 A measurable function $u \in L^0(\Sigma)$ for which $u * f \in L^2(\Sigma)$ for each $f \in L^2(\Sigma)$, is called Lambert multiplier.

In other words, $u \in L^0(\Sigma)$ is Lambert multiplier if and only if the corresponding \star -multiplication operator $T_u: L^2(\Sigma) \to L^2(\Sigma)$ defined as $T_u f = u \star f$ is bounded.

Theorem 2.4 Suppose $u \in L^0(\Sigma)$. Then $u \in K_2^*$ if and only if $E(|u|^2) \in L^\infty(\mathcal{A})$.

Proof. See [4].

Definition 2.5 Define K_2^{\star} , the set of all Lambert multiplier from $L^2(\Sigma)$ into $L^2(\Sigma)$, as

follows:

$$
K_2^* = \left\{ u \in L^0(\Sigma) : u \star L^2(\Sigma) \subseteq L^2(\Sigma) \right\}.
$$

Note K_2^* is a vector subspace of $L^0(\Sigma)$.

Definition 2.6 Suppose $u \in L^0(\Sigma)$. Then we define

$$
\mathcal{R} = \{ \lambda I + T_u : u \in K_2^{\star} \text{ and } \lambda \in \mathbb{C} \}.
$$

Hereafter we shall denote $\lambda I + T_u$ (*I* is identity operator) simply as $\lambda + T_u$.

Proposition 2.7 Show *R* is closed under addition and $T_{u+v} = T_u + T_v$ for every $u, v \in$ K_2^* .

Proof. Let $\lambda + T_u$ and $\gamma + T_v$ be in \mathcal{R} . Then, for any $f \in L^2(\Sigma)$,

$$
[(\lambda + T_u) + (\gamma + T_v)]f = (\lambda + T_u)f + (\gamma + T_v)f
$$

\n
$$
= (\lambda f + T_u f) + (\gamma f + T_v f)
$$

\n
$$
= \lambda f + (uE(f) + fE(u) - E(u)E(f))
$$

\n
$$
+ \gamma f + (vE(f) + fE(v) - E(v)E(f))
$$

\n
$$
= (\lambda + \gamma)f + (u + v)E(f) + fE(u + v) - E(u + v)E(f)
$$

\n
$$
= (\lambda + \gamma)f + T_{u+v}f.
$$

Then $(\lambda + \gamma)f + T_{u+v}f = (\delta + T_y)f$ where $\delta = \lambda + \gamma$ and $y = u + v$. Since $|u + v|^2 \leq$ $2(|u|^2+|v|^2)$ and E is a linear operator, thus $E(|u+v|^2) \leq 2(E(|u|^2)+E(|v|^2)).$ It follows that $y \in K_2^*$. Therefore, $\mathcal R$ is closed under addition and $T_{u+v} = T_u + T_v$.

Proposition 2.8 a. Show R is closed under multipliers and $T_{\lambda u} = \lambda T_u$ for any $f \in L^2(\Sigma)$ and $\lambda \in \mathbb{C}$.

b. *R* is commutative under composition operators.

Proof. a. Suppose $f \in L^2(\Sigma)$ and $\lambda \in \mathbb{C}$, thus we have

$$
(\lambda T_u)f = \lambda T_u f
$$

= $\lambda uE(u) + fE(u) - E(u)E(f)$
= $(\lambda u)E(f) + fE(\lambda u) - E(\lambda u)E(f)$
= $T_{\lambda u}f$,

it follows $\lambda T_u = T_{\lambda u}$. Otherwise since

$$
E(|\lambda u|^2) = E(|\lambda|^2|u|^2) = |\lambda|^2 E(|u|^2),
$$

this equality shows that if $E(|u|^2) \in L^{\infty}(\mathcal{A})$, then $E(|\lambda u|^2)$. Thus if $T_u \in \mathcal{R}$, then *T*_{λu} = λT_u for any $\lambda \in \mathbb{C}$.

b. We show R is commutative. Suppose T_u and T_v be in R . Thus

$$
T_uT_vf = T_u(vE(f) + fE(v) - E(v)E(f))
$$

= $vE(u)E(f) + fE(vE(u)) - E(vE(u))E(f) + uE(v)E(f) - E(uE(v))E(f).$

similarly we have

$$
T_vT_uf = T_v(uE(f) + fE(u) - E(u)E(f))
$$

= $vE(u)E(f) + fE(vE(u)) - E(vE(u))E(f) + uE(v)E(f) - E(uE(v))E(f).$

The above equality shows that $T_u T_v = T_v T_u$. Therefor, $\mathcal R$ is commutative. Now, we show $T_u T_v \in \mathcal{R}$. Note that

$$
T_u T_v f = T_{(uEv + vEu)}f - T_{EvEu}f = T_{(uEv + vEu)}f - T_{E(uEv)}f.
$$

also

$$
E(|uEv + vEu|^2) \leq 2(E|uEv|^2 + E|vEu|^2)
$$

$$
\leq 2(E|u|^2E|v|^2 + E|v|^2E|u|^2)
$$

$$
= 4E|v|^2E|u|^2,
$$

and

$$
E|EvEu|^{2} = E(|Ev|^{2}|Eu|^{2}) \le E(E|v|^{2}E|u|^{2}) = E|v|^{2}E|u|^{2},
$$

which implies $T_v T_u$ be in \mathcal{R} , since by $E|u|^2$ and $E|v|^2$ are bounded operators. In general, for every $\gamma, \lambda \in \mathbb{C}$ we have

$$
(\lambda + T_v)(\gamma + T_u) = \lambda \gamma + \lambda T_v + \gamma T_u + T_v T_u.
$$

Thus by the above equalities (b) hold.

Theorem 2.9 R is a commutative operator algebra.

Proof. By Propositions $[2.7]$ and $[2.8]$, it is trivial.

If $\mathfrak U$ is an algebra of bounded operators, then its commutant $\mathfrak U''$ is the set of all bounded operators that commute with every element in $\mathfrak U$ (see [1, 2]). In symbols and in the context of Lambert multipliers:

■

$$
\mathcal{R}'' = \left\{ A \in B \left(L^2(\Sigma) \right) : AT = TA \ for \ any \ T \in \mathcal{R} \right\}.
$$

Theorem 2.10 Suppose M_h is multiplication operator. Set

$$
\mathcal{L}^{\infty}(\mathcal{A}) := \Big\{ M_h : h \in L^{\infty}(\mathcal{A}) \Big\},\
$$

then $\mathcal{L}^{\infty}(\mathcal{A}) \subseteq \mathcal{R}''$.

Proof. Let $f \in L^2(\Sigma)$. Then for any $h \in L^{\infty}(\mathcal{A})$, we have

$$
T_u M_h f = T_u(hf) = uE(hf) + h f E(u) - E(u)E(hf)
$$

= $h(uEf + fEu - uEf) = hT_u f = M_h T_u f.$

Therefor $\mathcal{L}^{\infty}(\mathcal{A}) \subseteq \mathcal{R}''$. . ■

3. Some results of Lambert multipliers on *L***² spaces**

In this section we bring some facts and definitions, which will be used later.

Definition 3.1 Let $T_u: L^2(\Sigma) \longrightarrow L^2(\Sigma)$. Define

$$
W := \left\{ u \in L^{0}(\Sigma) : T_{u} \text{ is bounded on } L^{2}(\Sigma) \right\}.
$$

We already know one important property of function in W , namely, $E(|u|^2)$ is bounded. However, Since

 $|E(u)|^2 \le E|u|^2$,

we see that $u \in W$ implies that $E(u)$ is bounded. Therefore, if a function is both *A−*measurable and in *W*, then it must be bounded. Our next Lemma states that the converse also holds.

Lemma 3.2 $W \bigcap L^0(\mathcal{A}) = L^\infty(\mathcal{A})$.

Proof. Let $s \in L^{\infty}(\mathcal{A})$. Since *s* is *A*−measurable, then $T_s f = sf$ for $f \in L^2(\Sigma)$. Also, we know $L^2(\mathcal{A}) \subset L^2(\Sigma)$, thus we get

$$
||T_s f||_2^2 = \int_X |T_s f|^2 d\mu = \int_X |s f|^2 d\mu \le ||s||_{\infty}^2 \int_X |f|^2 d\mu = ||s||_{\infty}^2 ||f||_2^{\infty}
$$

so that $T_s f \in L^2(\sigma)$ for all *f*. Hence, $W \cap L^0(\mathcal{A})$. The converse we proved in the remarks leading up to the Lemma.

Theorem 3.3 T_u is normal if and only if $u \in L^\infty(\mathcal{A})$.

Proof. Assume T_u is normal. Then, for any $f \in L^2(\Sigma)$,

$$
T_u T_u^* f = T_u^* T_u f.
$$

Now, we have

$$
T_u^* T_u f = E(u) E(\bar{u}f)
$$
\n⁽¹⁾

and

$$
T_u^* T_u f = E(f) E(|u|^2) + E(u) E(\bar{u}f) - E(\bar{u}) E(u) E(f).
$$
 (2)

Therefore we conclude from [1] and [2]

$$
E(u)E(|u|^2) = E(f)|E(u)|^2.
$$

The last equation holds for every L^2 function, so in particular it must hold for any strictly positive *A−* measurable *L* 2 function *s*:

$$
E(s)E(|u|^2) = E(s)|E(u)|^2,
$$

then by letting $E(s) = s$ we have

$$
sE(|u|^2) = s|E(u)|^2.
$$

Since $s > 0$, this gives

$$
|E(u)|^2 = E(|u|^2).
$$

However, we saw that this is equivalent to *u* being *A*– measurable. By [3.2], $u \in L^{\infty}(\mathcal{A})$.

Conversely, now suppose, that $u \in L^{\infty}(\mathcal{A})$. Then, for $f \in L^{2}(\Sigma)$, $T_{u}f = uf$ and $T^*_{u} f = \bar{u} f$. Therefore,

$$
T_u T_u^* f = T_u(\bar{u}f) = u(\bar{u}f) = |u|^2 f
$$

and

$$
T_u^* T_u f = T_u^*(uf) = \bar{u}(uf) = |u|^2 f.
$$

Hence, $T_u T_u^* = T_u^* T_u$. Thus, T_u is normal.

Theorem 3.4 T_u is self-adjoint if and only if $u \in L^\infty(\mathcal{A})$ is real-valued.

Proof. Assume T_u is self-adjoint. Then, T_u is normal and by Theorem [3.3] $u \in L^{\infty}(\mathcal{A})$. Therefore, we must only show that *u* is real-valued. Let $f \in L^2(\Sigma)$. Then, $T_u^* f = T_u f$ can be written as

$$
E(\bar{u}f) + E(\bar{u}) (f - E(f)) = uE(f) + fE(u) - E(u)E(f).
$$

Since *u* is *A*− measurable, $\bar{u}f = uf$ which implies $(u - \bar{u})f = 0$. This last equality holds for any L^2 function. In particular, it holds for strictly positive $s \in L^2(\mathcal{A})$. Therefore, $u = \bar{u}$.

Conversely, suppose $u \in L^{\infty}(\mathcal{A})$ is real-valued. For $f \in L^{2}(\Sigma)$,

$$
T_u^* f = uf = T_u f.
$$

Hence, T_u is self-adjoint.

References

- [1] C. Burnap, I. L. B. Jung and A. Lambert, *Separating partial normality classes with composition operators*, J. Operator Theory 53, No. 2 (2005), 381-397.
- [2] J. T. Campbell, M. Embry-Wardrop, R. J. Fleming, and S. K. Narayan, *Normal and quasinormal weighted composition operators*, Glasgow Math. J. 33, No. 3 (1991), 275-279.
- [3] J. D. Herron, *Weighted conditional expectation operators on Lp-spaces*, UNC Charlotte Doctoral Dissertation.
- [4] M. R. Jabbarzadeh and S. Khalil Sarbaz, *Lambert multipliers between Lp-spaces*, Czech. Math. J. 60 (135), No. 1 (2010), 31-43.
- [5] A. Lambert, *Hyponormal composition operators*, Bull. London Math. Soc. 18, No. 4 (1986), 395-400.
- [6] A. Lambert and T. G. Lucas, *Nagatas principle of idealization in relation to module homomorphisms and conditional expectations*, Kyungpook Math. J. 40, No. 2 (2000), 327-337.

■