Journal of Linear and Topological Algebra Vol. 02, No. 04, 2013, 255-261

Some algebraic properties of Lambert Multipliers on L^2 spaces

A. Zohri^{a,*} and S. Khalil Sarbaz^a

^a Faculty of Mathematical Sciences, Payame Noor University, P. O. BOX 19395-3697, Tehran, I. R. Iran.

Received 11 September 2013; revised 9 December 2013; accepted 27 December 2013.

Abstract. In this paper, we determine the structure of the space of multipliers of the range of a composition operator C_{φ} that induces by the conditional expectation between two $L^{p}(\Sigma)$ spaces.

 \bigodot 2013 IAUCTB. All rights reserved.

Keywords: Conditional expectation, multipliers, multiplication operators, composition operators.

2010 AMS Subject Classification: Primary 47B20; Secondary 47B38.

1. Introduction and Preliminaries

Let $L(X, \Sigma, \mu)$ be a σ -finite measure space. For any complete σ -finite sub-algebra $\mathcal{A} \subseteq \Sigma$ with $1 \leq p \leq \infty$, the L^p -space $L^p(X, \mathcal{A}, \mu | \mathcal{A})$ is abberivated by $L^p(\mathcal{A})$, and its norm is denoted by $\|.\|_p$. We understand $L^p(\mathcal{A})$ as a Banach sub-space of $L^p(\Sigma)$. The support of a measurable function f is defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set.

To examine the weighted composition operators efficiently, Lambert in [5] associated with each transformation T, the so-called conditional expectation operator $E(\cdot|\mathcal{A}) = E(\cdot)$ is defined for each non-negative measurable function f or for each $f \in L^p(\Sigma)$, and is uniquely determined by the conditions:

(i) E(f) is \mathcal{A} -measurable and

^{*}Corresponding author. E-mail address: zohri_a@pnu.ac.ir (A. Zohri).

Print ISSN: 2252-0201 Online ISSN: 2345-5934

(ii) If A is any \mathcal{A} -measurable set for which $\int_A f d\mu$ converges we have

$$\int_A f d\mu = \int_A E(f) d\mu.$$

This operator will play a major role in our work, and we list here some of its useful properties:

- If g is \mathcal{A} -measurable then E(fg) = E(f)g.
- $|E(f)|^p \leq E(|f|^p).$
- ||E(f)||_p ≤ ||f||_p.
 If f≥ 0 then E(f) ≥ 0; if f > 0 then E(f) > 0.
- $E(|f|^2) = |E(f)|^2$ if and only if $f \in L^p(\mathcal{A})$.

As an operator on $L^p(\Sigma)$, $E(\cdot)$ is the contractive idempotent and $E(L^p(\Sigma)) = L^p(\mathcal{A})$. The real-valued Σ -measurable function f is said to be conditionable with respect to \mathcal{A} if $\mu(\{x \in X : E(f^+)(x) = E(f^-)(x) = \infty\}) = 0$. In this case $E(f) := E(f^+) - E(f^-)$. If f is complex-valued, then f is conditionable if the real and imaginary parts of f are conditionable and their respective expectations are not both infinite on the same set of positive measure. In this case, E(f) := E(Ref) + iE(Imf) (see [3]). We denote the linear space of all conditionable Σ -measurable functions on X by $L^0(\Sigma)$. For f and g in $L^0(\Sigma)$, we define $f \star g = fE(g) + gE(f) - E(f)E(g)$. Let $1 \leq p, q \leq \infty$. A measurable function $u \in L^0(\Sigma)$ for which $u \star f \in L^q(\Sigma)$ for each $f \in L^p(\Sigma)$, is called Lambert multiplier (see [6]). In other words, $u \in L^0(\Sigma)$ is Lambert multiplier if and only if the corresponding *-multiplication operator $T_u: L^p(\Sigma) \to L^q(\Sigma)$ defined as $T_u f = u \star f$ is bounded.

In the next section, Lambert multipliers acting between two different $L^p(\Sigma)$ spaces are characterized by using some properties of conditional expectation operator. In section 3, Fredholmness of corresponding ***-multiplication operators will be investigated.

New results of Lambert multipliers on L^2 spaces 2.

In this paper we will assume $\mu(X) < \infty$.

Definition 2.1 For f and q in $L^0(\Sigma)$, we define

$$f \star g = fE(g) + gE(f) - E(f)E(g).$$

Definition 2.2 A measurable function $u \in L^0(\Sigma)$ for which $T_u(f) = u \star f$ for each $f \in L^2(\Sigma)$, is called Lambert operator.

Definition 2.3 A measurable function $u \in L^0(\Sigma)$ for which $u \star f \in L^2(\Sigma)$ for each $f \in L^2(\Sigma)$, is called Lambert multiplier.

In other words, $u \in L^0(\Sigma)$ is Lambert multiplier if and only if the corresponding *-multiplication operator $T_u: L^2(\Sigma) \to L^2(\Sigma)$ defined as $T_u f = u \star f$ is bounded.

Theorem 2.4 Suppose $u \in L^0(\Sigma)$. Then $u \in K_2^*$ if and only if $E(|u|^2) \in L^\infty(\mathcal{A})$.

Proof. See [4].

Definition 2.5 Define K_2^{\star} , the set of all Lambert multiplier from $L^2(\Sigma)$ into $L^2(\Sigma)$, as

follows:

$$K_2^{\star} = \left\{ u \in L^0(\Sigma) : u \star L^2(\Sigma) \subseteq L^2(\Sigma) \right\}.$$

Note K_2^{\star} is a vector subspace of $L^0(\Sigma)$.

Definition 2.6 Suppose $u \in L^0(\Sigma)$. Then we define

$$\mathcal{R} = \{ \lambda I + T_u : u \in K_2^* \text{ and } \lambda \in \mathbb{C} \}.$$

Hereafter we shall denote $\lambda I + T_u$ (*I* is identity operator) simply as $\lambda + T_u$.

Proposition 2.7 Show \mathcal{R} is closed under addition and $T_{u+v} = T_u + T_v$ for every $u, v \in K_2^*$.

Proof. Let $\lambda + T_u$ and $\gamma + T_v$ be in \mathcal{R} . Then, for any $f \in L^2(\Sigma)$,

$$[(\lambda + T_u) + (\gamma + T_v)]f = (\lambda + T_u)f + (\gamma + T_v)f$$

$$= (\lambda f + T_u f) + (\gamma f + T_v f)$$

$$= \lambda f + (uE(f) + fE(u) - E(u)E(f))$$

$$+ \gamma f + (vE(f) + fE(v) - E(v)E(f))$$

$$= (\lambda + \gamma)f + (u + v)E(f) + fE(u + v) - E(u + v)E(f)$$

$$= (\lambda + \gamma)f + T_{u+v}f.$$

Then $(\lambda + \gamma)f + T_{u+v}f = (\delta + T_y)f$ where $\delta = \lambda + \gamma$ and y = u + v. Since $|u+v|^2 \leq 2(|u|^2 + |v|^2)$ and E is a linear operator, thus $E(|u+v|^2) \leq 2(E(|u|^2) + E(|v|^2))$. It follows that $y \in K_2^*$. Therefore, \mathcal{R} is closed under addition and $T_{u+v} = T_u + T_v$.

Proposition 2.8 a. Show \mathcal{R} is closed under multipliers and $T_{\lambda u} = \lambda T_u$ for any $f \in L^2(\Sigma)$ and $\lambda \in \mathbb{C}$.

b. \mathcal{R} is commutative under composition operators.

Proof. a. Suppose $f \in L^2(\Sigma)$ and $\lambda \in \mathbb{C}$, thus we have

$$\begin{split} (\lambda T_u)f &= \lambda T_u f \\ &= \lambda u E(u) + f E(u) - E(u) E(f) \\ &= (\lambda u) E(f) + f E(\lambda u) - E(\lambda u) E(f) \\ &= T_{\lambda u} f, \end{split}$$

it follows $\lambda T_u = T_{\lambda u}$. Otherwise since

$$E\left(|\lambda u|^2\right) = E\left(|\lambda|^2|u|^2\right) = |\lambda|^2 E(|u|^2),$$

this equality shows that if $E(|u|^2) \in L^{\infty}(\mathcal{A})$, then $E(|\lambda u|^2)$. Thus if $T_u \in \mathcal{R}$, then $T_{\lambda u} = \lambda T_u$ for any $\lambda \in \mathbb{C}$.

b. We show \mathcal{R} is commutative. Suppose T_u and T_v be in \mathcal{R} . Thus

$$T_u T_v f = T_u \Big(v E(f) + f E(v) - E(v) E(f) \Big)$$

= $v E(u) E(f) + f E \Big(v E(u) \Big) - E \Big(v E(u) \Big) E(f) + u E(v) E(f) - E \Big(u E(v) \Big) E(f).$

similarly we have

$$T_v T_u f = T_v \Big(u E(f) + f E(u) - E(u) E(f) \Big)$$

= $v E(u) E(f) + f E \Big(v E(u) \Big) - E \Big(v E(u) \Big) E(f) + u E(v) E(f) - E \Big(u E(v) \Big) E(f).$

The above equality shows that $T_uT_v = T_vT_u$. Therefor, \mathcal{R} is commutative. Now, we show $T_uT_v \in \mathcal{R}$. Note that

$$T_u T_v f = T_{(uEv+vEu)} f - T_{EvEu} f = T_{(uEv+vEu)} f - T_{E(uEv)} f dv$$

also

$$E(|uEv + vEu|^2) \leq 2(E|uEv|^2 + E|vEu|^2)$$

$$\leq 2(E|u|^2E|v|^2 + E|v|^2E|u|^2)$$

$$= 4E|v|^2E|u|^2,$$

and

$$E|EvEu|^2 = E\left(|Ev|^2|Eu|^2\right) \leqslant E\left(E|v|^2E|u|^2\right) = E|v|^2E|u|^2,$$

which implies $T_v T_u$ be in \mathcal{R} , since by $E|u|^2$ and $E|v|^2$ are bounded operators. In general, for every $\gamma, \lambda \in \mathbb{C}$ we have

$$(\lambda + T_v)(\gamma + T_u) = \lambda \gamma + \lambda T_v + \gamma T_u + T_v T_u.$$

Thus by the above equalities (b) hold.

Theorem 2.9 \mathcal{R} is a commutative operator algebra.

Proof. By Propositions [2.7] and [2.8], it is trivial.

If \mathfrak{U} is an algebra of bounded operators, then its commutant \mathfrak{U}'' is the set of all bounded operators that commute with every element in \mathfrak{U} (see [1, 2]). In symbols and in the context of Lambert multipliers:

$$\mathcal{R}'' = \left\{ A \in B\left(L^2(\Sigma) \right) : AT = TA \text{ for any } T \in \mathcal{R} \right\}.$$

Theorem 2.10 Suppose M_h is multiplication operator. Set

$$\mathcal{L}^{\infty}(\mathcal{A}) := \Big\{ M_h : h \in L^{\infty}(\mathcal{A}) \Big\},\$$

then $\mathcal{L}^{\infty}(\mathcal{A}) \subseteq \mathcal{R}''$.

Proof. Let $f \in L^2(\Sigma)$. Then for any $h \in L^{\infty}(\mathcal{A})$, we have

$$T_u M_h f = T_u(hf) = uE(hf) + hfE(u) - E(u)E(hf)$$
$$= h \left(uEf + fEu - uEf \right) = hT_u f = M_h T_u f.$$

Therefor $\mathcal{L}^{\infty}(\mathcal{A}) \subseteq \mathcal{R}''$.

3. Some results of Lambert multipliers on L^2 spaces

In this section we bring some facts and definitions, which will be used later.

Definition 3.1 Let $T_u: L^2(\Sigma) \longrightarrow L^2(\Sigma)$. Define

$$W := \left\{ u \in L^0(\Sigma) : T_u \text{ is bounded on } L^2(\Sigma) \right\}.$$

We already know one important property of function in W, namely, $E(|u|^2)$ is bounded. However, Since

 $|E(u)|^2 \leqslant E|u|^2,$

we see that $u \in W$ implies that E(u) is bounded. Therefore, if a function is both \mathcal{A} -measurable and in W, then it must be bounded. Our next Lemma states that the converse also holds.

Lemma 3.2 $W \cap L^0(\mathcal{A}) = L^\infty(\mathcal{A}).$

Proof. Let $s \in L^{\infty}(\mathcal{A})$. Since s is \mathcal{A} -measurable, then $T_s f = sf$ for $f \in L^2(\Sigma)$. Also, we know $L^2(\mathcal{A}) \subset L^2(\Sigma)$, thus we get

$$\|T_s f\|_2^2 = \int_X |T_s f|^2 d\mu = \int_X |sf|^2 d\mu \le \|s\|_\infty^2 \int_X |f|^2 d\mu = \|s\|_\infty^2 \|f\|_\infty^2$$

so that $T_s f \in L^2(\sigma)$ for all f. Hence, $W \cap L^0(\mathcal{A})$. The converse we proved in the remarks leading up to the Lemma.

Theorem 3.3 T_u is normal if and only if $u \in L^{\infty}(\mathcal{A})$.

Proof. Assume T_u is normal. Then, for any $f \in L^2(\Sigma)$,

$$T_u T_u^* f = T_u^* T_u f$$

Now, we have

$$T_u^* T_u f = E(u) E(\bar{u}f) \tag{1}$$

and

$$T_u^* T_u f = E(f) E(|u|^2) + E(u) E(\bar{u}f) - E(\bar{u}) E(u) E(f).$$
(2)

Therefore we conclude from [1] and [2]

$$E(u)E(|u|^2) = E(f)|E(u)|^2.$$

The last equation holds for every L^2 function, so in particular it must hold for any strictly positive \mathcal{A} - measurable L^2 function s:

$$E(s)E(|u|^2) = E(s)|E(u)|^2,$$

then by letting E(s) = s we have

$$sE(|u|^2) = s|E(u)|^2.$$

Since s > 0, this gives

$$|E(u)|^2 = E(|u|^2).$$

However, we saw that this is equivalent to u being \mathcal{A} - measurable. By [3.2], $u \in L^{\infty}(\mathcal{A})$.

Conversely, now suppose, that $u \in L^{\infty}(\mathcal{A})$. Then, for $f \in L^{2}(\Sigma)$, $T_{u}f = uf$ and $T_{u}^{*}f = \bar{u}f$. Therefore,

$$T_u T_u^* f = T_u(\bar{u}f) = u(\bar{u}f) = |u|^2 f$$

and

$$T_u^*T_uf = T_u^*(uf) = \bar{u}(uf) = |u|^2 f.$$

Hence, $T_u T_u^* = T_u^* T_u$. Thus, T_u is normal.

Theorem 3.4 T_u is self-adjoint if and only if $u \in L^{\infty}(\mathcal{A})$ is real-valued.

Proof. Assume T_u is self-adjoint. Then, T_u is normal and by Theorem [3.3] $u \in L^{\infty}(\mathcal{A})$. Therefore, we must only show that u is real-valued. Let $f \in L^2(\Sigma)$. Then, $T_u^* f = T_u f$ can be written as

$$E(\bar{u}f) + E(\bar{u})(f - E(f)) = uE(f) + fE(u) - E(u)E(f).$$

Since u is \mathcal{A} - measurable, $\bar{u}f = uf$ which implies $(u - \bar{u})f = 0$. This last equality holds for any L^2 function. In particular, it holds for strictly positive $s \in L^2(\mathcal{A})$. Therefore, $u = \bar{u}$.

Conversely, suppose $u \in L^{\infty}(\mathcal{A})$ is real-valued. For $f \in L^{2}(\Sigma)$,

$$T_u^*f = uf = T_uf.$$

Hence, T_u is self-adjoint.

References

- C. Burnap, I. L. B. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Operator Theory 53, No. 2 (2005), 381-397.
- [2] J. T. Campbell, M. Embry-Wardrop, R. J. Fleming, and S. K. Narayan, Normal and quasinormal weighted composition operators, Glasgow Math. J. 33, No. 3 (1991), 275-279.
- [3] J. D. Herron, Weighted conditional expectation operators on L^p -spaces, UNC Charlotte Doctoral Dissertation.
- M. R. Jabbarzadeh and S. Khalil Sarbaz, Lambert multipliers between L^p-spaces, Czech. Math. J. 60 (135), No. 1 (2010), 31-43.
- [5] A. Lambert, Hyponormal composition operators, Bull. London Math. Soc. 18, No. 4 (1986), 395-400.
- [6] A. Lambert and T. G. Lucas, Nagatas principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J. 40, No. 2 (2000), 327-337.