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The method of fundamental solutions for transient heat conduction
in functionally graded materials: some special cases
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Abstract. In this paper, the Method of Fundamental Solutions (MFS) is extended to solve
some special cases of the problem of transient heat conduction in functionally graded mate-
rials. First, the problem is transformed to a heat equation with constant coefficients using
a suitable new transformation and then the MFS together with the Tikhonov regularization
method is used to solve the resulting equation.
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1. Introduction

Heat conduction in many different kinds of materials, such as structured materials, func-
tionally graded materials (FGMs), etc, appears in numerous applications in engineering
and science. It is therefore important to have efficient procedures for calculating the heat
flow in conducting FGMs. Due to its importance, there are many different approaches. In
[32] an efficient and simple higher order shear and normal deformation theory is presented
for FGM plates. A reporton finding of an optimal layout of FGMs towards indentation
resistance can be found in [29]. Also a stochastic perturbation-based finite element for
buckling statistics of FGMs with uncertain material properties in thermal environments
is investigated in [28]. Mainly, analytical methods have been proposed based on different
expansion techniques and an early work in this direction is [30]; for some more recent
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results see [1, 4, 5, 8, 11, 14, 24, 31]. However, in more complex situations it becomes
too cumbersome to try to express the solution analytically. Instead numerical approxima-
tions based, for example, on finite-difference, boundary element or finite element methods
[22, 27] are utilized. In this study, we shall employ the so-called method of fundamental
solutions (MFS) to approximate the temperature field in FGMs.

The MFS, first introduced by Kupradze and Aleksidze [20] approximates the solution of
the problem by linear combinations of fundamental solutions of the governing differential
operator. Therefore, it is an inherently meshless, integration-free technique for solving
partial differential equations, so it has been used extensively for solving various types of
partial differential equations. For instance, the solution for potential problems by Mathon
and Johnston [23], the exterior Dirichlet problem in acoustics by Kress and Mohsen [18],
the biharmonic problems by Karageorghis and Fairweather [17]. More recently, the MFS
has been successfully applied to approximate the solutions of non-homogenous problems
[2]. The details can be found in [7, 10]. Also in [25] the MFS is used to obtain approx-
imate solutions of the inverse space-dependent heat source problem. In a recent work
[15], as suggested by Kupradze [19], the authors proposed and investigated a MFS for
transient heat conduction where the sources are placed outside the solution domain. In
[16] the above mentioned work has been extended to the case of heat conduction in one-
dimensional layered materials.

In this study, we extend the MFS for some special cases of heat conduction in one-
dimensional FGMs, where the thermal diffusivity is a function of space-variable. The
mathematical formulation is given in section 2. In section 3, the problem is transformed
to a heat equation with constant coefficients using a new transformation . Also the initial
and boundary conditions are expressed in terms of new variables. In section 4, consider-
ing the geometry of the new domain, the MFS is efficiently utilized to solve the resulting
equations. In section 5, the Tikhonov regularization method is introduced for solving the
ill-conditioned system of equations obtained in section 4. Finally, we perform numerical
investigations of the proposed MFS in section 6. Three different examples are presented
in which different boundary conditions are chosen. These examples show that accurate
numerical approximations can be obtained with relatively few degrees of freedom.

2. Formulation of the problem

Under certain assumptions, such as that the conducting material is sufficiently large
in two of its dimensions as compared to the third, it is reasonable to consider a one-
dimensional model in the spatial direction. We assume that there is no heat generation
within the material and therefore, we wish to find the temperature field u that satisfies
the homogeneous one-dimensional heat equation, i.e.,

∂u

∂t
(x, t)− α(x)

∂2u

∂x2
(x, t) = 0, (x, t) ∈ (L0, L1)× (0, T ), (1)

and the initial condition

u(x, 0) = ϕ0(x), x ∈ (L0, L1). (2)

Here, α(x) > 0 is the thermal diffusivity and k(x) > 0 is the thermal conductivity which
are related through α(x) = k(x)/C(x), where C(x) is the heat capacity. Moreover, at the
boundaries {L0} × (0, T ) and {L1} × (0, T ), either of the following boundary conditions
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are specified:
Boundary temperature:

u(Ln, t) = gn(t), n = 0, 1, (3)

Heat flux:

k(Ln)
∂u

∂x
(Ln, t) = qn(t), n = 0, 1, (4)

Convection:

h(Ln)u(Ln, t) + k(Ln)
∂u

∂x
(Ln, t) = ξn(t), n = 0, 1, (5)

where h(x) is the heat transfer coefficient.

3. Transformation of the problem

In this section, we introduce a new transformation to simplify the problem. Using the
following change of variables:{

z(x, t) = −1
c ln |cx+ d|+ ct,

w(z, t) = u(x(z, t), t),
(6)

we can transform the equation

ut − (cx+ d)2uxx = 0, (7)

into

wt − wzz = 0. (8)

Moreover, the initial and boundary conditions (2), (3), (4) and (5) transform to the
following conditions, respectively:

w(z, 0) = ϕ0(
exp(−cz)− d

c
), z ∈ (−1

c
ln |cL1 + d|,−1

c
ln |cL0 + d|), (9)

w(−1

c
ln |cLn + d|+ ct, t) = gn(t), n = 0, 1, (10)

−k(Ln)

cLn + d

∂w

∂z
(−1

c
ln |cLn + d|+ ct, t) = qn(t), n = 0, 1, (11)

h(Ln)w(−
1

c
ln |cLn + d|+ ct, t)− k(Ln)

cLn + d

∂w

∂z
(−1

c
ln |cLn + d|+ ct, t)



120 M. Nili Ahmadabadi et al. / J. Linear. Topological. Algebra. 02(02) (2013) 117-127.

Figure 1. Geometry of the transformed domain and location of sources and collocation nodes.

= ξn(t), n = 0, 1. (12)

Note that the rectangular region (L0, L1)× (0, T ) in xt plane maps into a parallelogram
region in zt plane (see Fig. 1.).

In the resulting equation, the unknown function w(z, t) can be obtained by the method
of fundamental solutions. Finally, we can obtain u(x, t) by transforming back into the
original variables.

4. The method of fundamental solutions

The fundamental solution to the one-dimensional heat equation (8) is given by

G(z, t; y, τ) =
H(t− τ)√
4π(t− τ)

e−(z−y)2/(4(t−τ)), (13)

whereH is the Heaviside function which is introduced to emphasize that the fundamental
solution is zero for t ⩽ τ . It is straightforward to verify that, as a function of z and t,
G(z, t; y, τ) satisfies (8) for any (z, t) ̸= (y, τ). We shall approximate the solution to the
heat equation (8) by a linear combination of fundamental solutions of the form

w(z, t) =

M∑
j=1

cjG(z, t; yj , τj). (14)

Here, the source points (yj , τj), for j = 1, ...,M , are located outside the solution domain
in the following way:

(yj , τj) =

{
(−1

c ln |cL1 + d|+ cτj − δ, τj), j = 1, ..., 2M1,
(−1

c ln |cL0 + d|+ cτj + δ, τj−2M1
), j = 2M1 + 1, ..., 4M1,

(15)

where M = 4M1 and τj = (2j − 1 − 2M1)T/2M1 for j = 1, ..., 2M1, see Fig. 1. This
selection of source points is motivated from [16]. We now discuss how to determine
the coefficients cj . We shall collocate the initial and boundary conditions at certain
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collocation points. Put ti = Ti/pt for i = 0, ..., pt and xi = (L0+(L1−L0)i/(1+ px)) for
i = 1, ..., px and zi = −1

c ln |cxi+d| for i = 1, ..., px. In the case of the Dirichlet boundary
condition (10), we collocate (9) and (10) as follows:

w(zi, 0) = ϕ0(
exp(−czi)− d

c
), i = 1, ..., px, (16)

w(−1

c
ln |cLn + d|+ cti, ti) = gn(ti), i = 0, ..., pt, n = 0, 1. (17)

Eq. (17) can easily be adjusted to the other two boundary conditions (11) or (12). In
total, the Eqs. (16) and (17) form a system of 2pt + 2 + px equations in M unknowns.
In order to obtain a unique solution we take M1 = pt in (15) and px = 2pt − 2. We can
write (16) and (17) in a matrix form

Ac = h (18)

with the obvious notation. We point out that although the direct problem (1)-(3) is well-
posed, the resulting MFS matrix A is ill-conditioned, see [3, 26]. Therefore, a straight-
forward inversion of the system of Eqs. (18) can produce unstable results. In order to
stabilize the solution, we use Tikhonov’s regularization method described in the next
section for solving (18).

5. Tikhonov’s regularization method

Most standard numerical methods cannot achieve good accuracy in solving the matrix
equation (18) due to the bad condition number of the matrix A. In fact, the condition
number of matrix A increases dramatically with respect to the total number of collocation
points. Several regularization methods have been developed for solving these kinds of ill-
conditioned problems [13]. In our computation we adapt the Tikhonov regularization
[6] to solve the matrix equation (18). The Tikhonov regularized solution for Eq. (18) is
defined as the solution of the following least squares problem:

min
c

{||Ac− h̃||2 + α2||c||2}, (19)

where ||.|| denotes the Euclidean norm and α is called the regularization parameter.
We use the generalized cross-validation (GCV) criterion to choose the regularization
parameter α. The GCV criterion is a very popular and successful method for choosing the
regularization parameter [13]. The GCV method determines the optimal regularization
parameter by minimizing the following GCV function:

G(α) =
||Ac̃− h̃||2

(trace(IM −AAI))2
, (20)

where AI = (AtrA + α2I)−1Atr is a matrix which produces the regularized solution c̃α
when multiplied with the righthand side h̃, i.e., c̃α = AI h̃. In our computation, we used
the Matlab code developed by Hansen [12] for solving the discrete ill-conditioned system
of equations (18).
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6. Numerical experiments

In this section, we apply the MFS with Tikhonov regularization outlined in previous sec-
tions to heat conduction in composite materials. We choose different boundary conditions
in the various examples presented. To test the accuracy of the approximate solution, we
use the root mean square error (RMS) and the relative root mean square error (RES)
defined as

RMS(u) =

√√√√ 1

Nt

Nt∑
i=1

(u(xi, ti)− u∗(xi, ti))2, (21)

RES(u) =

√∑Nt

i=1(u(xi, ti)− u∗(xi, ti))2√∑Nt

i=1 u(xi, ti)
2

, (22)

where Nt is the total number of test points distributed in the domain [L0, L1] × [0, T ].
Unless otherwise specified, we take Nt = 212. u(xi, ti) and u∗(xi, ti) are, respectively,
the exact and approximate values at these points.

Example 1. We shall construct approximations with Dirichlet boundary conditions,
i.e., we consider (1)-(3), where the data are generated from the analytical temperature
field

u(x, t) = ln |x+ 5|+ x− t, (23)

with the thermal diffusivity α(x) = (x + 5)2. Here we consider the domain [L0, L1] ×
[0, T ] = [0, 1] × [0, .5]. RMS(u), RES(u) and Cond(A) for various values of δ have been
shown in table 1 taking pt = 12. RMS(u), RES(u) and Cond(A) for various values of pt
have been shown in table 2 taking δ = .7 . The accuracy of the numerical solution with
respect to the parameter δ with pt = 12 has been shown in Fig. 2.

Table 1. RMS(u), RES(u), Cond(A) for various values of δ, T = .5 , pt = 12 for
Example 1.

Table 1

δ RMS(u) RES(u) Cond(A)
0.1 6.4887E − 02 3.2378E − 02 1.4530E + 18
0.2 1.7628E − 02 8.7966E − 03 2.7170E + 18
0.3 1.1593E − 02 5.7852E − 03 2.5270E + 18
0.4 4.4758E − 03 2.2334E − 03 1.9700E + 18
0.5 2.1074E − 02 1.0515E − 02 4.5030E + 18
0.6 1.7659E − 03 8.8118E − 03 3.3308E + 19
0.7 7.1400E − 04 3.5628E − 04 5.5755E + 19
0.8 1.7589E − 04 8.7768E − 05 7.0282E + 19

Table 2. RMS(u), RES(u), Cond(A) for various values of pt, T = .5 , δ = .7 for
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Figure 2. The accuracy of the numerical solution for Example 1 with pt = 12, T = .5 with respect to the
parameter δ.

Example 1.

Table 2

Pt RMS(u) RES(u) Cond(A)
10 1.7378E − 01 8.6718E − 02 4.6360E + 18
12 1.7659E − 03 8.8118E − 04 3.3308E + 19
14 1.2923E − 03 5.9499E − 04 1.8032E + 19
16 6.5184E − 04 3.2526E − 04 5.2106E + 19

Tables 1 and 2 together with Fig. 2 show that the MFS is an accurate and reliable nu-
merical technique for the solution of the problem of transient heat conduction in FGMs
with Dirichlet boundary conditions. Also they show that:
1- Errors are generally decreasing with respect to both increasing δ and increasing num-
ber of source points.
2- The condition number generally increases with both increasing δ and increasing num-
ber of source points.

Example 2. We shall construct approximations with fluent boundary conditions, i.e.,
we consider (1)-(2) and (4) where the data are generated from the analytical temperature
field

u(x, t) = x2e2t, (24)

with the thermal diffusivity α(x) = x2 and thermal conductivity k(x) = sin(x). Here we
consider the domain [L0, L1]× [0, T ] = [2, 3]× [0, .5]. RMS(u), RES(u) and Cond(A) for
various values of δ have been shown in table 3 taking pt = 12. RMS(u), RES(u) and
Cond(A) for various values of pt have been shown in table 4 taking δ = .8 . The accuracy
of the numerical solution with respect to the parameter δ with pt = 12 has been shown
in Fig. 3.

Table 3. RMS(u), RES(u), Cond(A) for various values of δ, T = .5 , pt = 12 for
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Figure 3. The accuracy of the numerical solution for Example 2 with pt = 12, T = .5 with respect to the
parameter δ.

Example 2.

Table 3

δ RMS(u) RES(u) Cond(A)
0.70 4.39060E − 02 3.6267E − 03 1.0160E + 19
0.75 1.71210E − 02 1.4142E − 03 1.5560E + 19
0.80 3.91050E − 02 3.2341E − 03 2.4710E + 20
0.85 2.81950E − 02 2.3284E − 03 6.3940E + 20
0.90 3.24500E − 03 2.6807E − 04 3.8930E + 20
0.95 1.01014E − 02 8.3762E − 04 9.5650E + 20
1.00 1.13930E − 02 1.1512E − 03 2.2687E + 21

Table 4. RMS(u), RES(u), Cond(A) for various values of pt, T = .5 , δ = .8 for
Example 2.

Table 4

Pt RMS(u) RES(u) Cond(A)
06 5.3868E − 01 4.4490E − 02 1.32600E + 11
12 3.5404E − 02 2.9241E − 03 7.87000E + 18
14 1.6869E − 02 1.3934E − 03 8.92200E + 19
16 4.5440E − 03 3.7539E − 04 3.02823E + 20

Tables 3 and 4 together with Fig. 3 show that the MFS is an accurate and reliable nu-
merical technique for the solution of the problem of transient heat conduction in FGMs
with fluent boundary conditions. Also they show that:
1- Errors are decreasing with respect to increasing number of source points.
2- Errors are generally decreasing with respect to increasing δ but the behaviour is ir-
regular.
3- The condition number generally increases with both increasing δ and increasing num-
ber of source points.

Example 3. We shall construct approximations with convective boundary conditions,
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i.e., we consider (1)-(2) and (5) where the data are generated from the analytical tem-
perature field

u(x, t) =
e8t

x+ .5
, (25)

with the thermal diffusivity α(x) = (2x + 1)2, thermal coductivity k(x) = x and heat
transfer coefficient h(x) = x3. Here we consider the domain [L0, L1]×[0, T ] = [2, 3]×[0, .5].
RMS(u), RES(u) and Cond(A) for various values of δ have been shown in table 5 taking
pt = 12. RMS(u), RES(u) and Cond(A) for various values of pt have been shown in table
6 taking δ = .75 . The accuracy of the numerical solution with respect to the parameter
δ with pt = 12 has been shown in Fig. 4.

Table 5. RMS(u), RES(u), Cond(A) for various values of δ, T = .5 , pt = 12 for
Example 3.

Table 5

δ RMS(u) RES(u) Cond(A)
0.65 5.3758E − 02 7.5750E − 03 4.8240E + 20
0.70 2.9440E − 02 4.1494E − 03 2.5560E + 20
0.75 1.6608E − 02 2.3401E − 03 2.6840E + 21
0.80 1.3731E − 02 1.9347E − 03 1.7820E + 22
0.85 1.3440E − 02 1.8947E − 03 3.9732E + 22
0.90 3.4460E − 02 4.8558E − 03 3.9479E + 22

Table 6. RMS(u), RES(u), Cond(A) for various values of pt, T = .5, δ = .75 for
Example 3.

Table 6

Pt RMS(u) RES(u) Cond(A)
10 8.3078E − 03 5.8959E − 02 1.3970E + 20
12 2.3402E − 03 1.6608E − 02 2.6840E + 21
14 1.6933E − 03 1.2017E − 02 4.3440E + 21
16 1.8814E − 03 1.3351E − 02 1.3069E + 22

Tables 5 and 6 together with Fig. 4 show that the MFS is an accurate and reliable
numerical technique for the solution of the problem of transient heat conduction in FGMs
with convective boundary conditions. Also they show that:
1- Errors are generally decreasing with respect to increasing number of source points.
2- The behaviour of errors with respect to δ is completely irregular.
3- The condition number generally increases with increasing δ.
4- The condition number increases with increasing number of source points.
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Figure 4. The accuracy of the numerical solution for Example 3 with pt = 12, T = .5 with respect to the
parameter δ.

7. Conclusions

In this paper, we have extended the MFS to solve some special cases of the problem of
transient heat conduction in FGMs based on the Tikhonov regularization method with
the GCV criterion. We successfully changed the equation to an equation with constant
coefficients using a new transformation, and then applied the MFS technique to the
resulting heat equation. Numerical results show that the MFS is an accurate and reliable
numerical technique for the solution of the problem of transient heat conduction in FGMs.
Also they show that the behaviour of errors with respect to δ is more irregular than the
case of constant coefficient heat equation. Generally, errors are decreasing with respect
to increasing number of source points.

There are several potential extensions of the present method. Firstly, the proposed
scheme may be adapted to include wider classes of functions for α(x). Secondly, this
method may be extended to higher dimensional problems.
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