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Abstract. It is known that a stochastic differential equation (SDE) induces two probabilistic
objects, namely a diffusion process and a stochastic flow. While the diffusion process is
determined by the infinitesimal mean and variance given by the coefficients of the SDE,
this is not the case for the stochastic flow induced by the SDE. In order to characterize the
stochastic flow uniquely the infinitesimal covariance given by the coefficients of the SDE is
needed in addition. The SDEs we consider here are obtained by a weak perturbation of a rigid
rotation by random fields which are white in time. In order to obtain information about the
stochastic flow induced by this kind of multiscale SDEs we use averaging for the infinitesimal
covariance. The main result here is an explicit determination of the coefficients of the averaged
SDE for the case that the diffusion coefficients of the initial SDE are polynomial. To do this
we develop a complex version of Cholesky decomposition algorithm.
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1. Introduction

The method of averaging is used to describe the behavior of a dynamical system driven
by a fast varying force, i.e. consider the d-dimensional dynamical system described by

Ẋε
t = b(Xε

t ,
t
ε), Xε

0 = x, (1)
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where b is a time-dependent vector field on Rd. Since Xε
t depends on the initial value x

we sometimes denote it by Xε,x
t . For ε → 0, the behavior of system is determined by the

time average of the force. More precisely, if

b̂(x) := lim
t→∞

1

t

∫ t

0
b(x, t)dt. (2)

is a well defined vector field and the convergence is uniform on compact sets of x, then
for any T ∈ (0,∞) the behavior of (1) in the interval [0, T ], as ε → 0, is described by

˙̂
Xt = b̂(X̂t), X̂0 = x. (3)

For an example of a rigorous statement of the averaging method see Theorem 4.3.6 in
[10]. An important example is the periodic case, where b(x, t) = b(x, t+T ) , x ∈ Rd, t ≥ 0,

for some T > 0. In this situation the limit in (2) is b̂(x) = 1
T

∫ T
0 b(x, t)dt.

Stochastic averaging is now an extension of this idea to stochastic differential equations
(SDEs) like

dXε
t = b(Xε

t ,
t
ε)dt+

n∑
r=1

σr(X
ε
t ,

t
ε)dW

(r)
t , Xε

0 = x, (4)

where {W (r)
·
∣∣ r = 1, . . . , n} is a familiy of independent standard Wiener processes.

The phrase ‘stochastic averaging’ is also used, even more frequently, for random dif-
ferential equations (RDEs). In the literature RDEs and SDEs are distinguished by the
characteristics of the noise being colored or white in time, resp. This implies that RDEs
and SDEs differ in the differentiablity properties of the solution paths t → Xε

t (ω) (see
chapter 2 of [3]).

Before studying the behavior of (4) it is necessary to specify what is modeled by (4);
a diffusion process or a stochastic flow.

Considering the SDE (4) as a description of a diffusion process means to study the
one-point motions of (4) the solutions

{
Xε,x

t

∣∣ t ≥ 0
}
, x ∈ Rd . Two quantities uniquely

determine the laws of the one-point motions, namely the infinitesimal mean and the
infinitesimal variance of (4). The infinitesimal mean of (4) is the drift vector field b(x, t

ε).
The infinitesimal variance for (4) is computed by the formula

α(x, t
ε) =

n∑
r=1

σr(x,
t
ε)σ

⊤
r (x,

t
ε),

where ‘⊤’ stands for transpose. After finding the averaged infinitesimal mean b̂ and the
averaged infinitesimal variance α̂ by a procedure similiar to (2), an SDE of the form

dX̂t = b̂(X̂t)dt+

n̂∑
r=1

σ̂(X̂t)dW
r
t , X̂0 = x, (5)

can be constructed to describe the limiting behavior of (4), as ε → 0, where the family
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of diffusion vector fields
{
σ̂r
∣∣ r = 1, . . . , n̂

}
satisfies

α̂(x) =

n̂∑
r=1

σ̂r(x)σ̂
⊤
r (x). (6)

As described in [7], one solution to (6) is to take n̂ = d and σr to be the rth column of

α̂
1

2 , r = 1, . . . , d.
The validity of using the simpler SDE (5) to approximate the laws of the one-point

motions of (4) in finite time intervals, has been studied by several authors, see [1] and
references there. Some other works show the use of the method in problems like the
approximation of the law of {χt := max{g(Xs)

∣∣ 0 ≤ s ≤ t}
∣∣ t ∈ [0, T ]}, where g is some

real valued function ([6]), the approximation of the stationary density or its marginals
([8] and [13]) and the study of Lyapunov stability of the deterministic fixed points ([13]).
Note that stationary densities and the leading Lyapunov exponent of a deterministic fixed
point for (4) depend only on the laws of the one-point motions. Therefore the above way
of stochastic averaging is expected to be a suitable method to study them and indeed,
this claim is proved in appendix of [4].

Considering the SDE (4) as a description of a stochastic flow, it means to study {Xε,·
· },

which is a stochastic process indexed by [0, T ] × Rd. The infinitesimal mean and the
infinitesimal covariance of (4) determine the law of its induced stochastic flow uniquely
([5]). The infinitesimal covariance is given by

A(x, y, t
ε) =

n∑
r=1

σr(x,
t
ε)σ

⊤
r (y,

t
ε).

Using stochastic averaging to describe the limiting behavior of the stochastic flow
induced by (4), as ε → 0, is needed to do averaging procedure on the infinitesimal
covariance. This approach is helpful in studying general stability problems i.e. stability
along non-deterministic solutions (see [4]). For general results on the theory of stochastic
flows and using stochastic averaging for them see [9]. Particular examples, which show
that the consideration of the infinitesimal covariance is necessary, can be found in [11]
and [4].

The SDEs we consider here are obtained by a weak perturbation of a rigid rotation
in Euclidean plane by random fields which are white in time. This situation is also
considered in [4] and it is a framework for the problem of ‘stochastic Hopf bifurcation’.
In order to obtain information about the stochastic flow induced by this kind of SDEs
we use stochastic averaging for the infinitesimal covariance. The main result here is
an explicit determination of the coefficients of the averaged SDE for the case that the
diffusion coefficients of the initial SDE are polynomial.

The paper is organized as follows. In Section 2 we discuss the problem of determination
of the averaged SDE, considering SDEs as stochastic flows, for weak perturbation of a
rigid rotation by white noises and possibly deterministic forces. It turns out that the
problem reduces to solving a system of bilinear functional equations. In Section 3 we
continue the problem with the additional assumption that the diffusion vector fields σr
are polynomials. Averaging of the infinitesimal covariance is described in Subsection 3.1.
In Subsection 3.1 first we see that the system of functional equations in the last of Section
2 is became algebraeic by the aditional assumption of this Section 3. Then we deal with
derivation of the averaged SDE, i.e. an SDE consistent with the averaged infinitesimal
covariance. The main step is developing a strategy for solving a class of system of bilinear
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equations. The main result is given in Subsection 3.3. The example in Section 4 shows
how to use the main result in the case that there are more than one driving Wiener
processes.

2. Statement of the problem

Consider the SDE(
dXt

dYt

)
=

(
0 1
−1 0

)(
Xt

Yt

)
dt+ ε

(
f0,1(Xt, Yt)
f0,2(Xt, Yt)

)
dt+

√
ε

n∑
r=1

(
fr,1(Xt, Yt)
fr,2(Xt, Yt)

)
dW

(r)
t , (7)

where fr,k : R2 → R are Lipschitz continuous functions (in the next section will be

assumed polynomials), r = 0, . . . , n, , k = 1, 2, {W (r)
t

∣∣ r = 1, . . . , n} is a family of
independent Wiener processes and ε is a small parameter.

The dynamics of

(
Xt

Yt

)
is a small perturbation of the rigid rotation. We define new

processes which describe the slow part of the motion:(
Xt

Yt

)
=

(
cos(t) sin(t)
− sin(t) cos(t)

)(
X̃t

Ỹt

)
The new variables, after the time rescaling t → εt, satisfy the non-autonomous SDE(

dX̃t

dỸt

)
=

(
f̃0,1(X̃t, Ỹt,

t
ε)

f̃0,2(X̃t, Ỹt,
t
ε)

)
dt+

n∑
r=1

(
f̃r,1(X̃t, Ỹt,

t
ε)

f̃r,2(X̃t, Ỹt,
t
ε)

)
dW

(r)
t , (8)

where, for r = 0, 1, . . . , n,(
f̃r,1(x, y, t)

f̃r,2(x, y, t)

)
=

(
cos(t) − sin(t)
sin(t) cos(t)

)(
fr,1(cos(t)x+ sin(t)y,− sin(t)x+ cos(t)y)
fr,2(cos(t)x+ sin(t)y,− sin(t)x+ cos(t)y)

)
,

Note that (8) is of the form (4) and therefore stochastic averaging becomes applicable
here. Since the coefficients of the SDE (8) are 2π-periodic functions in t

ε the limits like
(2) are obtained by averaging over [0, 2π]. The averaging method suggests that the SDE
in any finite time interval can be approximated by an SDE like

(
dX̂t

dŶt

)
=

(
f̂0,1(X̂t, Ŷt)

f̂0,2(X̂t, Ŷt)

)
dt+

n̂∑
r=1

(
f̂r,1(X̂t, Ŷt)

f̂r,2(X̂t, Ŷt)

)
dW

(r)
t , (9)

possibly with n̂ = ∞. In order to justify the averaging method one now would have to
investigate the limiting behavior of the stochastic flow generated by (8) as ε → 0. Here
we do not consider this problem, mainly since it is very technical and does not lead to
new insights. This problem has been dealt with, for instance, in [9] (Theorem 5.6.1) and

in [4]. We concentrate on the determination of n̂ and {f̂r}n̂r=0. Otherwords, among the
assumptions considered in [9] (Condition (C.7)k of Theorem 5.6.1) we concentrate on the
first one expressed there. This condition is stated in our problem as for all T ≥ 0 and
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x1, y1, x2, y2 ∈ R

n̂∑
r=1

f̂r(x1, y1)f̂
⊤
r (x2, y2) = lim

ε↓0

1

ε

∫ T+ε

T

n∑
r=1

f̃r(x1, y1,
t

ε2
)f̃⊤

r (x2, y2,
t

ε2
)dt. (10)

By the time periodicity of f̃rs the limit in the right hand side can be simplified and one
can consider the following relation, as in [4], instead of (10):

n̂∑
r=1

f̂r(x1, y1)f̂
⊤
r (x2, y2) =

1

2π

∫ 2π

0

n∑
r=1

f̃r(x1, y1, t)f̃
⊤
r (x2, y2, t)dt (11)

Now, there is no canonical way to construct n̂ and {f̂r}n̂r=1 satisfying (11). The problem
is of the following form:

Problem I: For the matrix function A : R2×R2 → R2×2, find n̂ ∈ N∪{∞} and a family

of vector fields {f̂r}n̂r=1 such that

n̂∑
r=1

f̂r(x1, y1)f̂
⊤
r (x2, y2) = A(x1, y1, x2, y2). (12)

A theoretical solution of Problem I (in a more general context) is discussed in [4], while
[2] suggests a more constructive way. Here we mainly deal with solving Problem I but
we want to treat this problem in a way that gives information about analytic relations
between parameters of the vector fields {fr

∣∣ r = 1, . . . , n} from (7) and {f̂r}n̂r=1 from (9).

In the deterministic case, i.e. determination of f̂0, such analytic relations can be found
by considering the equation in the complex plane (see Section 19.2A of [12]). Using this
idea, we rewrite (7) in the complex plane using

Xt =
Zt + Z̄t

2
, Yt =

Zt − Z̄t

2i
.

Then (8) and (9), resp., are equivalent to

dZ̃t = g̃0(Z̃t,
¯̃Zt,

t
ε)dt+

n∑
r=1

g̃r(Z̃t,
¯̃Zt,

t
ε)dW

(r)
t , (13)

and

dẐt = ĝ0(Ẑt,
¯̂
Zt)dt+

n∑
r=1

ĝr(Ẑt,
¯̂
Zt)dW

(r)
t , (14)

where

g̃r(z, z̄, t) := f̃r,1

(
z + z̄

2
,
z − z̄

2i
, t

)
+ if̃r,2

(
z + z̄

2
,
z − z̄

2i
, t

)
, r = 0, . . . , n
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and

ĝr(z, z̄) := f̂r,1

(
z + z̄

2
,
z − z̄

2i

)
+ if̃r,2

(
z + z̄

2
,
z − z̄

2i

)
, r = 0, . . . , n̂.

Then a reformulation of (11) gives

n̂∑
r=1

ĝr(z1, z̄1)ĝr(z2, z̄2) =
1

2π

∫ 2π

0

n∑
r=1

g̃r(z1, z̄1, t)g̃r(z2, z̄2, t)dt, (15)

and

n̂∑
r=1

ĝr(z1, z̄1)ĝr(z2, z̄2) =
1

2π

∫ 2π

0

n∑
r=1

g̃r(z1, z̄1, t)g̃r(z2, z̄2, t)dt. (16)

Recall that for complex valued stochastic processes
{
ξ
(1)
t

∣∣ t > 0
}
and

{
ξ
(2)
t

∣∣ t > 0
}
the

infinitesimal covariance is defined by

B(t, z1, z2) = lim
h↓0

1

h
E

 ξ
(1)
t+h − z1

ξ
(1)
t+h − z1

( ξ(2)t+h − z2 ξ
(2)
t+h − z2

) ∣∣∣ (ξ(1)t , ξ
(2)
t ) = (z1, z2)

,
provided that the limit exists.

Remark 1 The quantities appearing in the left hand sides or under the integrals in
(15) and (16) are related to the infinitesimal covariances of the associated processes. For

example consider
{
Ẑz1
t

∣∣ t ≥ 0
}
and

{
Ẑz2
t

∣∣ t ≥ 0
}

satisfying (14) with initial conditions

Ẑzk
0 = zk, k = 1, 2. Using the Itô formula, the infinitesimal covariance of these processes

is

B̂(t, z1, z2) = B̂(z1, z2) =
n̂∑

r=1

(
ĝr(z1, z̄1)ĝr(z2, z̄2) ĝr(z1, z̄1)ĝr(z2, z̄2)

ĝr(z1, z̄1)ĝr(z2, z̄2) ĝr(z1, z̄1)ĝr(z2, z̄2)

)
. (17)

From (15) and (16) we infer that

B̂(z1, z2) =
1

2π

n∑
r=1

∫ 2π

0

(
g̃r(z1, z̄1, t)g̃r(z2, z̄2, t) g̃r(z1, z̄1, t)g̃r(z2, z̄2, t)

g̃r(z1, z̄1, t) g̃r(z2, z̄2, t) g̃r(z1, z̄1, t)g̃r(z2, z̄2, t)

)
dt. (18)

Finally, comparing (17) and (18), it remains to solve the following problem for B = B̂
computed by (18).

Problem II: For the matrix function B : C×C → C2×2 find a family of complex valued
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functions {ĝr
∣∣ r ∈ K} with cardinality at most countable, such that

∑
r∈K

ĝr(z1, z̄1)ĝr(z2, z̄2) = B11(z1, z2),

∑
r∈K

ĝr(z1, z̄1)ĝr(z2, z̄2) = B12(z1, z2).
(19)

3. The averaged SDE for polynomial diffusion coefficients

In this section, assuming the vector fields fr, r = 1, . . . , n, in (7) to be polynomials, the
vector fields ĝr, r = 0, . . . , n̂, in (14) are explicitly constructed. In the first subsection

the infinitesimal covariance B̂ is computed explicitly and it is found that this matrix
function can be decomposed to simpler ones. In the second subsection a method for
solving Problem II is developed and implemented for the matrix functions from the
decomposition of the infinitesimal covariance. The results are given in Subsection 3.3.

3.1 Averaging of the infinitesimal covariance

The computation of f̂0, or equivalently ĝ0, has been solved already. We consider Problem
II. For simplicity let n = 1 and suppose that f1,j is a polynomial in x, y, j = 1, 2 and put
m = max{deg(f1,1), deg(f1,2)}. Therefore (7) takes the form

(
dXt

dYt

)
=

(
0 1
−1 0

)(
Xt

Yt

)
dt+ ε

(
f0,1(Xt, Yt)
f0,2(Xt, Yt)

)
dt+

√
ε


m∑
d=0

d∑
k=0

ad,kX
k
t Y

d−k
t

m∑
d=0

d∑
k=0

bd,kX
k
t Y

d−k
t

 dWt ,

(20)
Then Zt = Xt + iYt satisfy

dZt = iZtdt+ εg0(Zt, Z̄t)dt+
√
ε

m∑
d=0

d∑
k=0

αd,kZ
k
t Z̄

d−k
t dWt, (21)

where g0(z, z̄) := f0,1(
z+z̄
2 , z−z̄

2i ) + if0,2(
z+z̄
2 , z−z̄

2i ) and

αd,k =
1

2d

k∑
j1=0

d−k+j1∑
j2=j1

(ad,j2 + ibd,j2) i
d−j2(−1)k−j1

(
j2
j1

)(
d− j2
k − j1

)
. (22)

Since the SDE (21) is a perturbation of the rigid rotation around the origin, defining
a new process by Zt = eitZ̃t, we put the system in a form that we can apply stochastic
averaging. This gives an SDE of the form (13) with

g̃1(z, z̄, t) =

m∑
d=0

d∑
k=0

αd,kz
kzd−kei(2k−d−1)t (23)
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For convenience, we rearrange the indices in (23). Let Im := {(d, k)
∣∣ d =

0, 1, . . . ,m , k = 0, . . . , d} , δm := #Im. Then we have the one-to-one correspondence{
Im → {1, . . . , δm}

(d, k) → d(d+1)
2 + k + 1.

The function g̃1 can be written as

g̃1(z, z̄, t) =

δm∑
p=1

α̃p(t)ϕp(z),

where α̃p(t) := αd,ke
i(2k−d−1)t and ϕp(z) := zkzd−k, (d, k) ∈ Im is determined by d(d+1)

2 +
k + 1 = p, p = 1, . . . , δm.

Therefore the infinitesimal covariance of (13), the matrix function under the integral
in (18), is

B̃ (t, z1, z2) = ε

δm∑
p=1

δm∑
q=1

Mp,q(t)ϕp(z1)ϕq(z2) Np,q(t)ϕp(z1)ϕq(z2)

Np,q(t)ϕp(z1)ϕq(z2) Mp,q(t)ϕp(z1)ϕq(z2)

 (24)

where

Mp,q(t) := α̃p(t)α̃q(t) = e−((d1−d2)+2(k1−k2))itαd1,k1
αd2,k2

, (25)

and

Np,q(t) = α̃p(t)α̃q(t) = e−((d1+d2+2)+2(k1+k2))itαd1,k1
αd2,k2

, (26)

and (d1, k1) and (d2, k2) are determined by d1(d1+1)
2 +k1+1 = p and d2(d2+1)

2 +k2+1 = q,
p, q = 1, . . . , δm.

The computation of the averaged infinitesimal covariance is easy using formula (18),
since B is 2π-periodic in t. We use the following notations for averages of functions defined
in (25) and (26):

M̂p,q :=
1

2π

∫ 2π

0
Mp,q(t)dt =

αd1,k1
ᾱd2,k2

d1 − d2 = 2(k1 − k2)

0 otherwise
, (27)

N̂p,q :=
1

2π

∫ 2π

0
Np,q(t)dt =

αd1,k1
αd2,k2

d1 + d2 + 2 = 2(k1 + k2)

0 otherwise
. (28)

Then

B̂ (z1, z2) = ε

δm∑
p=1

δm∑
q=1

M̂p,qϕp(z1)ϕq(z2) N̂p,qϕp(z1)ϕq(z2)

N̂p,qϕp(z1)ϕq(z2) M̂p,qϕp(z1)ϕq(z2)

 (29)
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Consistent with the relations (27) and (28) we make a partition on Im by decomposing

Im =
m+1∪

s=−m+1
Im,s where

Im,s = {(d, k) ∈ I
∣∣ d− 2k + 1 = s}. (30)

Since Im and {1, . . . , δm} are in one-to-one correspondence, by partioning the first set,

we get a partition on the second one that is {1, . . . , δm} =
m+1∪

s=−m+1
Jm,s where

Jm,s :=

{
p ∈ {1, . . . , δm}

∣∣ ∃(d, k) ∈ Im,s :
d(d+ 1)

2
+ k + 1 = p

}
.

Note that any matrix under the summation sign in (29) is zero unless |d1 − 2k1 + 1| =
|d2 − 2k2 + 1| or equivalently p, q ∈ Jm,s or p ∈ Jm,s and q ∈ Jm,−s, for some s ∈
{−m+ 1, . . . ,m+ 1} . So we rewrite (29) as follows;

B̂ (z1, z2) =

m+1∑
s=0

B̂s (z1, z2) , (31)

where

B̂0 (z1, z2) =
∑

p,q∈Jm,0

M̂p,qϕp(z1)ϕq(z2) N̂p,qϕp(z1)ϕq(z2)

N̂p,qϕp(z1)ϕq(z2) M̂p,qϕp(z1)ϕq(z2)

, (32)

for s = 1, . . . ,m+ 1

B̂s (z1, z2) =
∑

p,q∈Jm,s

M̂p,qϕp(z1)ϕq(z2) 0

0 M̂p,qϕp(z1)ϕq(z2)



+
∑

p,q∈Jm,−s

M̂p,qϕp(z1)ϕq(z2) 0

0 M̂p,qϕp(z1)ϕq(z2)



+
∑

p∈Jm,s ,q∈Jm,−s

 0 N̂p,qϕp(z1)ϕq(z2)

N̂p,qϕp(z1)ϕq(z2) 0



+
∑

p∈Jm,−s,q∈Jm,s

 0 N̂p,qϕp(z1)ϕq(z2)

N̂p,qϕp(z1)ϕq(z2) 0

 .

Note that for s = m,m+ 1 Jm,−s = ∅.
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3.2 Solving problem II for B = B̂
We now describe how Problem II can be solved for B = B̂s, s = 1, . . . ,m − 1. Solving
it for B = B̂s, s = 0,m,m + 1, obeys a same strategy. Fix s ∈ {1, . . . ,m − 1}. By our
partitioning on I, the unknown functions must be of the form

ĝr(z, z̄) =
∑

p∈Jm,s∪Jm,−s

βp,rϕp(z) (33)

Equating the coefficients of same terms in both sides of equations in (19) we obtain the
following system of complex bilinear equations:

∑
r∈K

βp,rβ̄q,r = M̂p,q p, q ∈ Jm,s ∪ Jm,−s∑
r∈K

βp,rβq,r = N̂p,q p, q ∈ Jm,s ∪ Jm,−s
, (34)

where the set K remains to be determined.

Remark 2 To give a method to solve (34) it is compared with the Cholesky decomposition
which solves the system of equations

m∑
r=1

βp,rβq,r = ap,q p, q = 1, . . . ,m

for unknowns βp,r, p, r = 1, . . . ,m in real numbers with some further assumptions on
unknowns to ensure uniqueness of the solutions while the existence of the solution needs
symmetry and non-negative difinity of the matrix A := (apq)

n
p,q=1. We describe a similiar

method, which can be called ‘the complex Cholesky decomposition’. A presentation of the
Cholesky decomposition method can be found in the appendix B of [2].

To determine K, we select it such that the number of unknowns and equations are the
same though this does not imply existence and uniqueness of the solution. The number
of equations is 2δ2m and if we put K =

{
r ∈ Z

∣∣ |r| ∈ Jm,s ∪ Jm,−s

}
then

#
{
βp,r

∣∣ p ∈ Jm,s ∪ Jm,−s, r ∈ K
}
= 2δ2m.

The non-uniqueness in solving (34) has three sources:

(1) If p ̸= q then the equations associated to (p, q) and (q, p) coincide.
(2) The equations are quadratic in the unknown variables.
(3) The matrices M = (Mp,q) and N = (Np,q) may be degenerate.

To remove non-uniqueness we restrict the solution space by putting some conditions
on {βpr};

(a) ∀r ∈ K, p ∈ Jm,s ∪ Jm,−s : p < |r| ⇒ βpr = 0.
This removes the non-uniqueness source from (1).

(b) ∀p ∈ Jm,s ∪ Jm,−s : |βp,p| = |βp,−p|,
(b′) ∀p ∈ Jm,s ∪ Jm,−s : Arg(βp,p)−Arg(αp) ∈ [0, π) , Arg(βp,−p)−Arg(βp,p) ∈ [0, π).

These remove the non-uniqueness source from (2).
(c) ∀r ∈ K : βrr = 0 ⇒ ∀p ∈ Jm,s ∪ Jm,−s : βp,r = 0.

This removes the (possible) non-uniqueness source from (3).
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Condition (a) implies that (34) can be written as
∑

|r|≤min{p,q}
βp,rβ̄q,r = M̂p,q p, q ∈ Jm,s ∪ Jm,−s,∑

|r|≤min{p,q}
βp,rβq,r = N̂p,q p, q ∈ Jm,s ∪ Jm,−s.

(35)

Now let p∗ := min
{
p ∈ Jm,s ∪ Jm,−s

∣∣ αp ̸= 0
}
. Since αp = 0, for p ∈ Jm,s ∪ Jm,−s

with |p| < p∗, by (27) and (28), we have M̂p,q = N̂p,q = 0, for p, q ∈ Jm,s ∪ Jm,−s with
min{|p|, |q|} < p∗. Therefore letting

βp,r = 0, p < p∗, r ∈ K (36)

results that the equations in (34) with p, q < p∗ hold.
The equations in (34) with p = q = p∗, using (36), is{

βp∗,p∗ β̄p∗,p∗ + βp∗,−p∗ β̄p∗,−p∗ = M̂p∗,p∗ = αp∗ᾱp∗

βp∗,p∗βp∗,p∗ + βp∗,−p∗βp∗,−p∗ = N̂p∗,p∗ = 0
, (37)

There are a continuous family of solutions for (37), while the unique solution satisfying
(b) and (b′) is

βp∗,p∗ =

√
2

2
αp∗ , βp∗,−p∗ =

i
√
2

2
αp∗ . (38)

p∗ and q ∈ Jm,s ∪ Jm,−s with q > p∗ are either in a same class, Jm,s or Jm,−s, or
p∗ ∈ Jm,s and q ∈ Jm,−s. In the first case, after using (36) and (38) in (35), we have to
solve {

βq,p∗

√
2
2 ᾱp∗ + βq,−p∗

−i
√
2

2 ᾱp∗ = M̂q,p∗ = αqᾱp∗

βq,p∗

√
2
2 αp∗ + βq,−p∗

i
√
2

2 αp∗ = N̂q,p∗ = 0
, (39)

which gives the unique solution

βq,p∗ =

√
2

2
αq , βq,−p∗ =

i
√
2

2
αq. (40)

In the second case, after using (36) and (38) in (35), we have to solve{
βq,p∗

√
2
2 ᾱp∗ + βq,−p∗

−i
√
2

2 ᾱp∗ = M̂q,p∗ = 0

βq,p∗

√
2
2 αp∗ + βq,−p∗

i
√
2

2 αp∗ = N̂q,p∗ = αqαp∗
, (41)

which gives the unique solution

βq,p∗ =

√
2

2
αq , βq,−p∗ =

−i
√
2

2
αq. (42)

After substituting (36), (38), (40) and (42) in the equations in (35) with p, q > p∗, it is
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found that

βp,r = 0, p ∈ Jm,s ∪ Jm,−s, r ∈ K, |r| > p∗. (43)

The result of the calculations performed above is formulated in Lemma 3.1.

3.3 Results

Lemma 3.1 Problem II for B = B̂s, 1 ≤ s ≤ m − 1 is solved by the pair of complex
valued functions

ĝ2s(z, z̄) =

√
2

2

[m−s+1

2 ]∑
k=0

α2k+s−1,kz
kz̄k+s−1 +

√
2

2

[m+s+1

2 ]∑
k=1+s

α2k−s−1,kz
kz̄k−s−1,

and

ĝ2s+1(z, z̄) =
i
√
2

2

[m−s+1

2 ]∑
k=0

α2k+s−1,kz
kz̄k+s−1 − i

√
2

2

[m+s+1

2 ]∑
k=1+s

α2k−s−1,kz
kz̄k−s−1.

Proof. It can be checked directly, but we also have described the derivation of ĝr in
Subsection 3.2. Note that here we neglect the zero functions and unify the indices for all
s ∈ {0, . . . ,m + 1}. Therefore the index of gr is different from that used in Subsection
3.2. ■

Lemma 3.2 Problem II for B = B̂0 is solved by the complex valued function

ĝ1(z, z̄) =

[m+1

2 ]∑
k=1

α2k−1,kz
kz̄k−1.

Proof. This can be checked directly or found by a same procedure as performed in
Subsection 3.2. ■

Lemma 3.3 Problem II for B = B̂s, s = m,m + 1 is solved by the pair of complex
valued functions

ĝ2s(z, z̄) =

√
2

2

[m−s+1

2 ]∑
k=0

α2k+s−1,kz
kz̄k+s−1,

and

ĝ2s+1(z, z̄) =
i
√
2

2

[m−s+1

2 ]∑
k=0

α2k+s−1,kz
kz̄k+s−1.

Proof. This is a special case of Lemma 3.1. ■
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Theorem 3.4 The averaged SDE associated to the SDE (20) is

dẐt =

2m+3∑
s=1

ĝs

(
Ẑt,

¯̂
tZ
)
dW

(s)
t

where the functions ĝs are defined in Lemmas 3.2–3.3.

Proof. This is a consequence of Lemmas 3.2–3.3. ■

4. SDEs driven by several white noises

In the case where the SDE has several white noises, the derivation of the diffusion coef-
ficients of the averaged SDE can be done seperately for each diffusion coefficient. At the
end linearly dependent diffusion coefficients can be combined. As an example, consider
the SDE{

dUt = Vtdt,

dVt =
(
−Ut − ε2λVt −AU3

t

)
dt+ εσ1UtdW

(1)
t + εσ2VtdW

(2)
t + σ3U

2
t dW

(3)
t .

We do not study the existence of the stochastic flow for this SDE here. But we determine
an averaged SDE to describe the dynamics near zero. The new processes defined by
Ut = εXt and Vt = εYt satisfy{

dXt = Ytdt

dYt = −Xtdt− ε2
(
λYt +AX3

t

)
dt+ ε

(
σ1XtdW

(1)
t + σ2YtdW

(2)
t + σ3X

2
t dW

(3)
t

)
,

which is of the form (7). Then using (22) we rewrite the equation in the complex plane

dZt = −iZtdt+ ε2
(
λ

2
Z̄t −

λ

2
Zt −

Ai

8
Z̄t

3 − 3Ai

8
ZtZ̄t

2 − 3Ai

8
Z2
t Z̄t −

Ai

8
Z3
t

)
dt

+ε

(
iσ1
2

(
Zt + Z̄t

)
dW

(1)
t +

σ2
2

(
Zt − Z̄t

)
dW

(2)
t +

iσ3
4

(
Zt

2 + 2ZtZ̄t + Z̄2
t

)
dW

(3)
t

)
.

Then we use Theorem 3.4 seperately for each vector field (the drift and the three difusion
vector fields) to obtain the averaged SDE:

dẐt = −
(
λ

2
Ẑt +

3Ai

8
Ẑ2
t
¯̂
Zt

)
dt

+
iσ1
2

(
ẐtdW

(1,1)
t +

√
2

2
¯̂
ZtdW

(1,4)
t +

i
√
2

2
¯̂
ZtdW

(1,5)
t

)
+
iσ2
2

(
ẐtdW

(2,1)
t +

−
√
2

2
¯̂
ZtdW

(2,4)
t +

−i
√
2

2
¯̂
ZtdW

(2,5)
t

)
+
iσ3

√
2

8

((
2Ẑt

¯̂
Zt + Ẑ2

t

)
dW

(3,2)
t + i

(
2Ẑt

¯̂
Zt − Ẑ2

t

)
dW

(3,3)
t +

¯̂
Z2
t dW

(3,6)
t + i

¯̂
Z2
t dW

(3,7)
t

)
.
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By defining η :=
√

σ2
1 + σ2

2, W̃
(1)
t := σ1

η W
(1,1)
t + σ2

η W
(2,1)
t and W̃

(i)
t := σ1

η W
(1,i)
t + σ2

η W
(2,i)
t ,

i = 4, 5, the averaged SDE can be written as

dẐt = −
(
λ

2
Ẑt +

3Ai

8
Ẑ2
t
¯̂
Zt

)
dt

+
iη

2
ẐtdW̃

(1)
t +

iη
√
2

4
¯̂
ZtdW̃

(4)
t +

−η
√
2

4
¯̂
ZtdW̃

(5)
t

+
iσ3

√
2

8

((
2Ẑt

¯̂
Zt + Ẑ2

t

)
dW

(3,2)
t + i

(
2Ẑt

¯̂
Zt − Ẑ2

t

)
dW

(3,3)
t +

¯̂
Z2
t dW

(3,6)
t + i

¯̂
Z2
t dW

(3,7)
t

)
.
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