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Abstract. In this paper, we establish the existence and uniqueness result of the linear
Schrodinger equation with Marchaud fractional derivative in Colombeau generalized algebra.
The purpose of introducing Marchaud fractional derivative is regularizing it in Colombeau
sense.
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1. Introduction

Fractional calculus has been emerging as a very interesting tool for an increasing number
of scientific fields, namely, in the areas of electromagnetism, control engineering, and sig-
nal processing. Riemann-Liouville, Caputo, Griinwald-Letnikov, Hadamard, Marchaud,
Riesz are some of the known definitions. Various classes of fractional differential equations
have been investigated with the aid of the theory of Colombeau. Existence and uniqueness
some of equation was shown via regularized fractional derivative in Colombeau algebra
(cf. [6]).

This work concerns the study of existence and uniqueness to equation with Marchaud
fractional differentiation in extended Colombeau algebra. We consider Marchaud frac-
tional differentiation for indicating to existence and uniqueness Schrodinger equation
in extended Colombeau algebra. The reason for introducing fractional derivatives into
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algebra of generalized functions was the possibility of solving nonlinear problems with
singularities and derivatives of arbitrary real order in it. We use an algebra of generalized
functions which will be an extension of the Colombeau algebra in a sense of extension of
fractional derivatives. Colombeau algebras (usually denoted by the letter G) are differen-
tial (quotient) algebras with unit, and were introduced by J. F. Colombeau (cf.[1],[2],[3])
as a nonlinear extension of distribution theory to deal with nonlinearities and singularities
in PDE theory. These algebras contain the space of distributions D’ as a subspace with
an embedding realized through convolution with a suitable mollifier. Elements of these
algebras are classes of nets of smooth functions. The fractional calculus by application
of distributed order PDEs in Colombeau algebra was considered by [5].

The paper is organized as follows. After the introduction some basic preliminaries such
as notation and definitions of the used objects are given. Also the spaces of Colombeau
generalized functions are introduced. In addition, imbedding the Marchaud fractional
derivative into the extended Colombeau algebra of generalized functions is shown. Finally,
the existence-uniqueness result for a linear Schrédinger equation is proven.

2. Preliminaries

2.1 Colombeau algebra

First the definitions of some generalized function algebras of Colombeau type are men-
tioned which are as follows.

The elements of Colombeau algebras G are equivalence classes of regularizations, i.e.,
sequences of smooth functions satisfying asymptotic conditions in the regularization pa-
rameter e. Therefore, for any set X, the family of sequences (u¢)e € (0,1] of elements
of a set X will be denoted by X (0.1]; such sequences will also be called nets and simply
written as ..

Let © be an open subset of R%. The algebra of generalized functions on Q2 equals G(Q),
is defined G(Q2) = Ep(Q) /N (), where

Enr(9) = {(ue)e € (C=(Q) O VK cc Q,Va € N§

IN € Ns.t. sup,eg |0%ue(x)] = O(e™™), € — 0},
N(Q) = {(ue)e € (C Q)OI VK cc Q,Va € N}

Vs € Ns.t. sup,c [0%uc(z)] = O(e*), € — 0}

Element of &y(2) and N () are called moderate, negligible functions, respec-
tively. Families (r)e of complex numbers such as |re] = O(e"P) as € — 0 for some p > 0
are called moderate, in which |re[ = O(e?) for every ¢ > 0 are termed negligible. The
ring R of Colombeau generalized numbers is obtained by factoring moderate families of
complex numbers with respect to negligible families.

The definition of extended Colombeau algebras of generalized functions on open subset
of © is in a sense of extension of the entire derivatives to the fractional ones. Let £¢(2)
be an algebra of all sequences (u¢)co of real valued smooth functions u. € C°°(Q).
The definition of extended Colombeau algebra is based on the ratio of spatial variable
x. Moreover for a fractional derivative in the Marchaud sense is used. An interval
) = (—o00,00), and for PDEs the derivative (w.r.) to spatial variable x in the domain
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Q= ((0,7] x R) is considered. The Colombeau algebra generalized functions is the set
G1 () = E5f 1< () /NF< (), where

Enr,p~ () = {(uc)e € E9(Q)| Vo € Ry U {0}, 3N =0,
st | D% (@) (o) = O ) as € — 0},
Lo (€2) = {(ue)e € E(Q)[ Va e Ry U {0},Vs >0
s.t. | D% () | e o) = O(€) as € — 0}

Imbedding the fractional derivatives (w.r.) to the spatial variable is given by the
convolution of the Marchaud derivative with the delta sequence:

ifrac iV — [ba(ye)e>0] = [D¥(Ve * ¢e())e>0], where

oa) = 20(%), ola) € CF(R),0(2) > 0, [ 6(w)d

€

[ z*¢(z)dz = 0,Ya € N, |a] > 0.

3. Imbedding of the Marchaud fractional differentiation into
extended Colombeau algebra of generalized functions

Let fc(z) represents a Colombeau generalized function f(x) € G¢(R). The Marchaud
fractional derivative for 0 < v < 1 is defined by:

D f(x) = 1_ /fe t1+Ev — D,

We use the regularization for 0 < v < 1,

DV f(x) = 1_ / / (fe(x) = folx — )t 17 ¢ (t — h)dtdh.

The convolution form is given by:
~ y oo 1
D'Ye:c:/ () — folz — )t 77 % p(t)dt
Fole) = ey [ (ele) = e = )71 ol
We indicate that |D7f.(z) — D f.(z)| ~ 0.

sup D7 fe(w) — D7 fe(x)| = Fi ) S D7 fe(x) — D fe(w)]
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=T 7) ack /Ooo<fe<a:> — felw =) () — 5(B)] — 0,

as € —» 0. Since lim,__ |¢c(t) — 6(t)] — 0, then D7 f(x) = D7 f(x).

Using the fact that ¢.(¢f) has the compact support on [0,z], and define Vz,g,(t) =
fe(x) — fe(z —1t), where g, (t) has the compact support on [0, z], so by Hélder inequalities,
have the following calculations:

- vy & 1
sup | D" o(0)] < s | ()= Fela—t)e oty

S — h z) — fe(z — T
it | @ = sta =0y [ = e

Y o o0 L
i | = e 0) [ -t

g o x L
<t ) - ae =) s o) [0 ) dpar

pef0,z]
g o 1 [t L
S p(l_,y)/o (fe(2) —fe(iv—t))pzl[z%} ¢(p)6/tm(k:) Y dkdt

_ _ —1—y

< iy ) — e =) sup otp) [ 3 [* 7k

< sup(/.(x)J.(e—0) sup o) [ L ()t

D1 —7) ter p€[0,2] 0o €7

< sup(fe() — f.(z — 1)) sup H(p) > —

I'(1—7) ter pel0.2] €2 —y(1—7)

(O = (= )Y

= sup(fula) — Sz — 1)) sup Bp) 5 Oy I

D(1—7)er " ‘ peloa] € —y(1—7)""

1

—(1 =) (1—7) sup(fe(w) = fe(w = 1)) Cyge XTI
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< C%¢67NX7’Y+1.

since z < X, X > 0 and fc(x) is of the moderate class. Thus,

sup | DV fo(x)] < Chpe VX 0 <y < 1.
zeR

In order to prove moderateness for higher derivatives a similar calculation is applied.

3.1 Imbedding of the linear Schrodinger equation into extended
Colombeau algebra of generalized functions

We consider the existence and uniqueness result for a linear Schrodinger equation and
an equation driven by the fractional derivative of the delta distribution in the extended
algebra of generalized functions.

We consider the problem

1

gatu(t,af) = (A =V(x)u(t,z), u(0,2)=ug(z)=74dz), V(z)=20(x).
The following regularization for delta distribution will be used:

uoe(x) = |Ine|p(x.| Inel), Vi(z) =|lne/"¢(z.|Ine|), 0 <a,c<1,

where ¢(z) € CP(R™), ¢(z) =20, [¢(x)dr=1.
Fractional integral of the delta sequence [4]

a 1 ¢ a—1
T (t) = F(a)/ (t— 224 ()dz, t>0,acR,

where ¢(z) = |Ine|¢(z - | Ine|) has the following bounds in L'-norm:

C a >0,
I T¥¢e(t) lle < (1)
C(ln|lne)™  a<0, m>—a.

Proposition 3.1 Regularized equation to Schrodinger equation

SOt ) = (A~ V(@)uelr, ) )

has a unique solution in the space G5 ..([0,7") x R").
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Proof. The integral form to equation (2)
t
ue(t> l') = Sne(ta :L') * UOE(:‘U) + / / Sne(t — T, = y)‘/e(y)ue(Ta y)dydT
0 n
Denote by Spe(t,z) = S, (t, ) * ¢e(t), where S, = (4mt) = exp(i|z|?/4t). Then,

t
sup | Sne(t, )| < sgp\/o Sn(t = 7,y)¢e(T)d|
t —n
< Sgpyzl!(4ﬂ(t—-7?)2|!exp(ﬂ312/4(t—-T))H¢e(rﬂd7

¢
<C [ 1= Flloc(rlar
This is the fractional derivative of §-sequence and by (1) it follows,

C n <2,
Sup | Sne(t, )| <
v Cln|lne)™ n>=2m>2-—1.

In L°°-norm we have

[ue(t, )z < [[Snet; x — )l Lo [[uoe ()l L1+

t
/0 [Sne(t =752 = L Vel 2 [[ue(T, )| L~ d,

since ||Vi(-)||l~ < C|Ine[™=Y) and by (3) we obtain

C n <2,
Jue(t, )z < |In e|an—1
C(In|lne))™ n=2m>735-—1
(C n < 2,
+/ | e[| ue (7, -)|| L d.
O L C(ln|ne)™ n=2,m>g5-—1

By Gronwall inequality
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C n <2,
et Yo~ < I efon—t
C(ln|Ine|)™ n>2,m>g5—1
C n <2,
+exp(CT | In e[~ 1)),
C(In|lne))™ n=2m>g5-1

Thus,
ue(t, )|p~ < Ce™, 3N >0, 2 € R", t €[0,T], € < e.

For uniqueness suppose that Le(x,t) = uic(z,t) — uge(z,t) are two different solutions
which make difference for equation (2)

t
[Le(t; )llze < ||Sne(t71‘—')\|L°°\NOe(')|!L1+/0 [Sne(t=7, 2= )| L= IVeO)ll Lt | Le(7, )| L~ dr

t
+ /0 1Snelt — 7. — Y | Ne(r, o,

then
C n <2,
[Le(t, )L < €
C(In|lnel)™ nz=2m>35-1
t C n < 2, t
—1—/ |In e[ V|| Le(7, ) || L= dT —l—/ Ce’dr.
O L C(n|lne)™ nz2m>g5-—1 0
By Gronwall inequality
C n <2,
[Le(t, )llze < €*

C(In|lnel)™ nz=2,m>gz-—1
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C n <2,
+(exp CT | Ine[*c=D) +CTe".
C(ln|lne)™ n=2m>%—1
Then, we obtain

|Le(t, )| < Ce®, AN >0, z € R", t € [0,T7], € < €p.

Consider yth-derivative ,y € N,

t
Nuelt, x) = / O S, 2 —y)uoe () dy + / / O S (t—7, 2~ Ve (y)ue () dydr.
n O n

Hence,
C n=1v=0,
102 ue(t, )|l L= < [ Ine|*n =t
C(ln|Ine[)™ n=2,m>y+g5-—1
C n=1vy=0,
+ | In €| DY ||ue(t, -)|| L~ dr.

C(ln|Ine)™ nz2m>y+g-—1

Employ Gronwall inequality to obtain
C n=1y=0,

107 ue(t, )l Lo < [ In e[~
C(ln|Ine|)™ nz2m>y+g5-—1

102uc(t, )|z~ < Ce™™, AN >0, 2 € R, t € [0,T], € < €.
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Consider the uniqueness

NLe(t,x) = | 0YSne(t,x — y)uoe(y)dy+
Rn

t
/ O Sne(t — 7,1 — y)Vi(y) Le(r, y)dydr
0 R»

t
+/ /8ZSne(t —7,& — y)N(7, y)dydr.
0

Then,

107 Le(t, )|z < Ce®

t
+ | Ine|™ =D || Le(t, )| o +/ Ceddr.
0

It results that,

103 Le(t, )| 2 < ¢

C n=1y=0,
+exp(CT |Ine[*(c=D )4+ CTe".
C(ln|lne)™ n=2m>~y+4—1

By Gronwall inequality we obtain

|OYLe(t, )| < Ce®, AN >0, z € R", t € [0,T7], € < €p.

Take the Marchaud fractional derivative for 0 < v < 1,
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D} Spe(t—7,2—y)Ve(y)ue(r,y)dydr.

t
D7u€(t, l’) = D;Sne(ta x—y)u(]e(y)dy—I—/
R 0

Rn

IDVute(t, )| pe < D3 Sne(t, 2 = )£ |uoe ()|

t
+/0 D2 Sne(t = 7,2 = )= Ve ()|t [[ue(T, ) [ L~ dT.

| DY ue(t, )| e < I e[on—1 X1

t C n < 2,
+/ | In e[ D XY ||l (7, )| L d.
0

C(ln[lne)™ n>=2,m>75—1

The moderateness of u.(t, z)

C n <2,

| DYue(t, )|~ < [ Inefon—1 X1

C(n|lne))™ n=2m>7%5—1

C n <2,

+exp(CT |In €|~ D X7 N),

C(ln|lne)™ n=2m>%—1

DV ue(t, )|~ < Ce™™, 3N >0, z € R, t € [0,T], € < €.

For uniqueness suppose that L¢(x,t) = uie(z,t) — uze(z,t) be two different solutions
whose difference for equation (2)

b;Sne(t_Ta x_y)‘/e(y)LE (7-> y)dydT

t
DYL(t,x) = D;Sne(t,x—y)NOE(y)dy—i-/
R™ 0

R n
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t ~
+/ / D3Sne(t = 7,2 — y)Ne(T, y)dydr.
0 n

In L*°-norm we obtain

IDYLe(t, )|z < 1DFSne(t, 2—) | = [ Noe ()| 22

t
+/0 D3 Sne(t =72 =)L IVe()llLr | Le(7, ) [ L~ dT

t
4 / 1 DYSe(t — 7,2 — e [ Ne(r, )| e
0

It leads to,

C n <2,
DY Le(t, )|z~ < Ce®
Cln|lne)™ n=2m>7%5—1

t C n < 2,
+/ |ln6|”(c_1)\|L€(T, M ze=dr.
0

C(ln|lne)™ n=2m>7%5—1

By using the moderateness of L¢(t, z), it follows that

C n < 2,
IDYLe(t, )| < Ce®
Cln|lne)™ n=2,m>%—1
C n <2,
+exp(CT |In e[~ DeN )4 OTeb.

C(ln|lne)™ n=2,m>5 -1
Finally we conclude that,

|DYL(t, )|z~ < Ce®, AN >0, z € R", ¢t € [0,7], € < €.
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