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Abstract. In this paper, we propose the least-squares method for computing the positive
solution of a m × n fully fuzzy linear system (FFLS) of equations, where m > n, based on
Kaffman’s arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider
all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the
fuzzy number vector solution of the non-square FFLS of equations by using pseudoinverse.
If 1-cuts vector is non-negative, we solve constrained least squares problem for computing
left and right spreads. Then, in the special case, we consider 0 is belong to the support of
some elements of coefficient matrix and solve three overdetermined linear systems and if the
solutions of these systems held in non-negative fuzzy solutions then we compute the solution
of the non-square FFLS of equations. Else, we solve constrained least squares problem for
obtaining an approximated non-negative fuzzy solution. Finally, we illustrate the efficiency
of the proposed method by solving some numerical examples.
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1. Introduction

In different areas of science and engineering, there are several linear equation systems.
Because of complexity of real world systems, imprecision are often unsolved. In describing
uncertain data fuzzy systems are a natural ways. Fuzzy concept was first introduced by
Zadeh [24, 25]. So we must solve linear systems with parameters which all or some of
them are fuzzy. We have several numerical methods for solving fuzzy linear systems
including Jacobi, Gauss-Seidel, Adomian decomposition method and Successive Over
Relaxation (SOR) iterative method [1–4]. Cheng’s ranking function introduced in [7].
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Then Kumar in [19] obtained exact solution of fully fuzzy linear system by solving a
linear programming. In [15], approximated solutions are obtained using Cheng’s ranking
function and constrained least squares problem. Recently, Ezzati et. al. in [26] obtained
nonnegative solution of FFLS of equations in general form by using ranking function.
In this paper, first, we obtain equivalent system including three determined crisp linear
systems to given non-square FFLS. Then, by an theorem, we present sufficient conditions
for the existence and uniqueness of nonnegative least-squares solution of the given FFLS.
Also, we obtain positive fuzzy solution of FFLS using pseudoinverse and constrained least
square problem.
This paper is organized as follows:
In Section 2, the basic concepts are brought which are used throughout the paper. In
Section 3, the main Section of the paper, a new approach based constrained least square
problem for solving FFLS, is suggested. The proposed idea is illustrated by solving some
numerical examples in the Section 4. Finally conclusion is drawn in Section 5.

2. Preliminaries

In this section, we give some basic definitions of fuzzy numbers.

Definition 2.1 A fuzzy number is a fuzzy set µÃ : R −→ I = [0, 1] which satisfies:

1. µÃ is upper semi continuous.
2. µÃ(x) = 0outside some interval [c, d].
3. There are real numbers a, b : c ≤ a ≤ b ≤ d for which

a. µÃ(x) is monotonic increasing on [c, a],
b. µÃ(x) is monotonic decreasing on [b, d],
c. µÃ(x) = 1, a ⩽ x ⩽ b.

The set of all fuzzy numbers (as given by Definition (2.1)) is denoted by F (ℜ)1. An
alternative definition or parametric form of a fuzzy number which yields the same F (ℜ)1
is given by Kaleva [16].

Definition 2.2 A fuzzy number Ã is LR−type if there exit L (for left) and R (for right)
and scalars α > 0 , β > 0 with

µÃ(x) =

{
L(a−x

α ), x ⩽ α,

R(x−a
β ), x ⩾ a

(1)

where L andR are strictly decreasing functions defined on [0, 1] and satisfy the conditions:

L(0) = R(0) = 1,

L(1) = R(1) = 0,

0 < L(x) < 1, 0 < R(x) < 1, x ̸= 0, 1.

(2)

The mean value of Ã, m, is a real number, and α, β are called the left and right
spreads, respectively. Ã is denoted by (m,α, β)LR.

Definition 2.3 M̃ = (m,α, β)LR is a triangular fuzzy number if L = R = max(0, 1−x).

We denote the set of triangular fuzzy numbers by F (ℜ)1T .
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In this paper, we use ranking function R(x̃) =
√

x20 + y20 introduced by Cheng [7] which
is based on centroid point where for any triangular fuzzy number x̃ = (m,α, β), x0 and
y0 are as follows:

x0 = m+ 1
3(β − α),

y0 =
1
3

(
6m+(β−α)
4m+(β−α)

)
.

Remark 2.1 According to Eq. (1) and Definition (2.3), throughout the paper, we assume
that all the fuzzy numbers are triangular in the form (m− α,m,m+ β).

Arithmetic operations between two triangular fuzzy numbers, defined on universal set
of real numbers R, are reviewed [18].

Theorem 2.4 [17], Let M̃ = (a, b, c) and Ñ = (x, y, z) are two arbitrary triangular
fuzzy numbers and λ > 0 is a real number. Then

(1) M̃ ⊕ Ñ = (a+ x, b+ y, c+ z),
(2) −M̃ = (−c,−b,−a),
(3) M̃ ⊖ Ñ = (a− z, b− y, c− x),
(4) Let M̃ = (a, b, c) be any triangular fuzzy number and Ñ = (x, y, z) be a non-negative

triangular fuzzy number, then

M̃ ⊗ Ñ =


(ax, by, cz), a ⩾ 0,

(az, by, cz), a < 0, c ⩾ 0,

(az, by, cx), c < 0.

Definition 2.5 A matrix Ã = [ãij ]
n
i,j=1 is called a fuzzy matrix if for all i and j,

ãij ∈ F (ℜ)1T . Ã will be positive (negative) and denoted by Ã > 0 (Ã < 0) if for all i

and j, ãij > 0 (ãij < 0). Clearly, Ñ = (a, b, c) is positive (negative), if and only if a > 0
(c < 0). Non-negative and non-positive fuzzy matrices will be defined similarly.

Definition 2.6 A vector X̃ = (x̃1, . . . , x̃n)
T , denoted by X̃ ∈ F (ℜ)nT , is called a fuzzy

numbers vector, where x̃i ∈ F (ℜ)1T , i = 1, . . . , n.

Definition 2.7 [22], Consider an m× n system of linear equations given by

Ax = b (A ∈ Mmn, b ∈ RM ) (3)

If m > n , the system is called overdetermined. An overdetermined system typically has
no solution, i.e, typically, there is no x ∈ Rn such that

Ax = b, or b−Ax = 0.

when there is no exact solution, we can form the residual

r(x) = b−Ax, (x ∈ Rn)
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and seek a vector x ∈ Rn for which

∥ r(x) ∥=∥ b−Ax ∥

is a minimum.

Definition 2.8 [22], A vector x is minimizes ∥ r(x) ∥2 is called a least-squares solution
to the system (3). The least-squares solution x which has the minimum 2-norm is called
the minimum norm least-squares solution, i.e, if z is any other least-squares solution to
the system Ax = b, then we must have

∥ x ∥2⩽∥ z ∥2 .

It can be shown that the minimum norm least-squares solution to the system (3) is given
by

x = A†b

where A† is the pseudoinverse of A.

Definition 2.9 [22], Let A is any real m×n matrix. The pseudoinverse of A is an n×m
matrix X satisfying the following More-Penrose conditions:
AXA = A
XAX = X
(AX)T = AX
(XA)T = XA

Theorem 2.10 [22], Let A be any real m× n matrix. Then:
The pseudoinverse of A is unique.
The pseudoinverse of the pseoduinverse of A is A, i.e, (A†)† = A.
The pseudoinverse of AT is the transpose of the pseudoinverse of A ,i.e, (AT )† = (A†)T .

Theorem 2.11 [22], Consider the linear system

Ax = b (4)

where A is a real m× n matrix, where m ⩾ n, and b ∈ Rn. Then
The linear system (4) has infinitely many least-squares solutions if and only if A is
rank-deficient.
The linear system (4) has a unique least-squares solutions x if and only if A has full rank.
When A has full rank, the unique least-squares solution to the system (4) is given by

x = A†b = (ATA)−1AT b. (5)
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3. Solutions of non-square, m × n, FFLS

Definition 3.1 The m× n linear system


(ã11 ⊗ x̃1)⊕ (ã12 ⊗ x̃2)⊕ · · · ⊕ (ã1n ⊗ x̃n) = b̃1
(ã21 ⊗ x̃1)⊕ (ã22 ⊗ x̃2)⊕ · · · ⊕ (ã2n ⊗ x̃n) = b̃2

...

(ãm1 ⊗ x̃1)⊕ (ãm2 ⊗ x̃2)⊕ · · · ⊕ (ãmn ⊗ x̃n) = b̃m,

(6)

or in its matrix form,

Ã⊗ x̃ = b̃, (7)

where m > n is called a FFLS of equations, where the coefficient matrix Ã = [ãij ] is a

m×n fuzzy matrix and b̃ = [b̃1, . . . , b̃m]T is a fuzzy number vector and the fuzzy number
vector x̃ is the unknown to be found.

Definition 3.2 We call x̃ ∈ F (ℜ)nT a solution of Ã⊗ x̃ = b̃ with respect to the ranking
function R if and only if we have,

{
By = b2,

R(ãTi x̃) = R(b̃i), i = 1, . . . , n

where the crisp linear system By = b2 is the 1−cut or mean value of system Ã ⊗ x̃ = b̃
and ãTi is the i−th row of A.

Notation 3.3 Set

ãij = (aij , bij , cij), b̃i = (di1, di2, di3), x̃i = (xi, yi, zi),

A =
(
aij
)
m×n

, B =
(
bij
)
m×n

, C =
(
cij
)
m×n

,

d1 =
(
di1
)
m×1

, d2 =
(
di2
)
m×1

, d3 =
(
di3
)
m×1

.

Notation 3.4 We break up the matrix A into two m×n matrices such that their additions

is A. Let A
+

=

(
a

+

ij

)
m×n

and A
−
=

(
a

−

ij

)
m×n

, where

a
+

ij =

{
aij aij ⩾ 0

0 aij < 0
, a

−

ij =

{
0 aij ⩾ 0

aij aij < 0
.

Then A
+

+A
−
= A. We also break up the matrix C into two m× n matrices, similarly.
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Let C
+

=

(
c
+

ij

)
, and C

−
=

(
c
−

ij

)
be m× n matrices, where

c
+

ij =

{
cij cij ⩾ 0

0 cij < 0
, c

−

ij =

{
0 cij ⩾ 0

cij cij < 0
.

Theorem 3.5 The system (7) with the multiplication defined in Theorem 2.4 is equiv-
alent to 

(
A+ A−

C− C+

)(
x
z

)
=

(
d1
d3

)
,

By = d2,

(8)

where x̃j = (xj , yj , zj), j = 1, . . . , n, are nonnegative and x = (x1, . . . , xn)
T , y =

(y1, . . . , yn)
T , z = (z1, . . . , zn)

T .

Proof. Using the multiplication defined in Theorem 2.4, we have

(Ã⊗ x̃)i =
∑n

j=1(ãij ⊗ x̃j)

=
∑n

j=1(aij , bij , cij)⊗ (xj , yj , zj)

=
∑

j,aij⩾0(aijxj , bijyj , cijzj) +
∑

j,aij<0,cij⩾0(aijzj , bijyj , cijzj)

+
∑

j,cij<0(aijzj , bijyj , cijxj)

=
(∑

j,aij⩾0 aijxj +
∑

j,aij<0 aijzj ,
∑n

j=1 bijyj ,
∑

j,cij⩾0 cijzj +
∑

j,cij<0 cijxj
)
■

Proposition 3.6 Suppose that the matrices M =

(
A+ A−

C− C+

)
and B have full rank and

x = (x1, x2, ..., xn)
T , y = (y1, y2, ..., yn)

T and z = (z1, z2, ..., zn)
T be the solution of (3.8).

Then (x̃1, . . . , x̃n)
T given by x̃j = (xj , yj , zj), j = 1, . . . , n, is a nonnegative unique fuzzy

least-squares solution of (7) if it satisfies 0 ⩽ xi ⩽ yi ⩽ zi, i = 1, . . . , n.

Proof. Using Theorem 3.5, the proof is clear. ■

According to Theorem 3.5, we know that the system (7), Ã⊗ x̃ = b̃, is equivalent to

(A+x+A−z,By,C−x+ C+z) = b̃ = (d1, d2, d3). (9)

Clearly, we have:

x = (A+)†(d1 −A−z). (10)

By substituting above equation in C−x+ C+z = d3, we conclude that

(C+−C−(A+)†A−)z = d3−C−(A+)†d1 =⇒ z = (C+−C−(A+)†A−)†(d3−C−(A+)†d1).
(11)

So, we proved the following theorem:



R. Ezzati et al. / J. Linear. Topological. Algebra. 03(01) (2014) 23-33. 29

Theorem 3.7 The system (7) with the multiplication defined in Theorem 2.4 is equiv-
alent to A+x = d1 −A−(C+ − C−(A+)†A−)†(d3 − C−(A+)†d1),

(C+ − C−(A+)†A−)z = d3 − C−(A+)†d1
By = d2,

(12)

where x̃j = (xj , yj , zj), j = 1, . . . , n, are nonnegative and x = (x1, . . . , xn)
T , y =

(y1, . . . , yn)
T , z = (z1, . . . , zn)

T . □
Now, we present sufficient conditions for the existence and uniqueness of nonnegative

least-squares solution of (7) as follows:

Theorem 3.8 Suppose that the matrices A+, C+ − C−(A+)†A− and B have full rank
and x = (x1, x2, ..., xn)

T , y = (y1, y2, ..., yn)
T and z = (z1, z2, ..., zn)

T be the solution of
(3.12) or (3.8). Then (x̃1, . . . , x̃n)

T given by x̃j = (xj , yj , zj), j = 1, . . . , n, is a nonnegative
unique fuzzy least-squares solution of (7) if it satisfies 0 ⩽ xi ⩽ yi ⩽ zi, i = 1, 2, ..., n,
where

y = (B+)†d2,

z = (C+ − C−(A+)†A−)†(d3 − C−(A+)†d1),

x = (A+)†(d1 −A−z).

Proof. Using Theorems 2.11 and 3.7, the proof is clear. ■

To solve (7), we first solve system By = d2. Clearly, we obtain y = B†d2. Now, if
the solution vector y is negative, the system hasn’t the positive fuzzy solution, else, (y
is non negative) for obtaining left and right spreads, we solve the following constrained
least-squares problem:

min
∑n

i=1(R((A+x+A−z)i ,
∑n

j=1 bijyj , (C−x+ C+z)i)−R(b̃i))
2

s.t. xi ⩾ 0, i = 1, . . . , n,

yi − xi ⩾ 0, i = 1, . . . , n,

zi − yi ⩾ 0, i = 1, . . . , n.

(13)

or

min
∑n

i=1{R((A+x)i ,
∑n

j=1 bijyj , ((C+ − C−(A+)†A−)z)i)−R(Γi)}2

s.t. xi ⩾ 0, i = 1, . . . , n,

yi − xi ⩾ 0, i = 1, . . . , n,

zi − yi ⩾ 0, i = 1, . . . , n,
(14)

where Γi = (((d1−A−(C+−C−(A+)†A−)†(d3−C−(A+)†d1))i, (d2)i, (d3−C−(A+)†d1))i)
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Remark 3.1 Let for all i and j, 0 ∈ supp(ãij), i.e., for all i and j, aij < 0 and cij ⩾ 0.
Let A, B and C have full rank. Using Theorem (2.4), the system (7) is transformed to
the following form:

 n∑
j=1

aijzj ,

n∑
j=1

bijyj ,

n∑
j=1

cijzj

 = (di1, di2, di3), i = 1, . . . , n. (15)

Also, we can rewrite (15) in the matrix form as:

(Az,By,Cz) = (d1, d2, d3). (16)

(z, y, z) = (A†d1, B
†d2, C

†d3). (17)

It is clear that, the least-squares solution ,y, is unique, but there are two vectors for z,
i.e., z1 = A†d1 and z2 = C†d3. In order to find the fuzzy number vector solution, we have
the following cases:

(I) Let one of the two vectors z1 or z2 satisfy in the conditions 0 ⩽ y ⩽ z1 or 0 ⩽ y ⩽
z2, respectively. For example, without the loss generality, suppose z1 satisfies in the
condition 0 ⩽ y ⩽ z1, so we set x = y, and therefore we obtain (y, y, z1) as a positive
fuzzy number vector solution of (7).

(II) Let both of the two vector z1 and z2 satisfy in the conditions 0 ⩽ y ⩽ z1 and 0 ⩽
y ⩽ z2, respectively. In this case, we set x = y. So, two positive fuzzy number vectors
S̃1 = (y, y, z1) and S̃2 = (y, y, z2) are solutions of (7). To choose a solution for (7) from

{S̃1, S̃2}, we will use a distance function to measure the closeness of the vectors ÃS̃1

and ÃS̃2 to b̃. To this end, we use the Ming et. al. [19] metric proposed for triangular
fuzzy numbers. If x̃ = (x, αx, βx) and ỹ = (y, αy, βy) are two triangular fuzzy numbers,
then Ming et al. [19] introduced the distance function,

D2
2(x̃, ỹ) =

1

2

(
4(x− y)2 + (αy − αx)

2 + (βy − βx)
2
)
+(x−y)(βy+αy−βx−αx), (18)

and for two LR fuzzy vectors x̃ = (x̃1, . . . , x̃n) and ỹ = (ỹ1, . . . , ỹn) defined the distance
between x̃ and ỹ to be,

D2
n(x̃, ỹ) =

n∑
i=1

D2
2(x̃i, ỹi). (19)

Using (19), we obtain Dn(ÃS̃1, b̃) and Dn(ÃS̃2, b̃) and choose the nearest solution to

b̃.
(III) Let vectors y or z1 and z2 don’t hold in condition y ⩾ 0 or y ⩽ z1 and y ⩽ z2,

respectively. In this case, we solve the constrained least squares problem (13) to obtain
the approximation of positive fuzzy number vector solution of (7).
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4. Numerical examples

Example 4.1 Consider the following system:



(−2, 1, 3)⊗ (x1, y1, z1)⊕ (2, 3, 4)⊗ (x2, y2, z2) ⊕(1, 1, 2)⊗ (x3, y3, z3)

= (7, 8, 9)

(3, 4, 5)⊗ (x1, y1, z1)⊕ (−1, 0, 1)⊗ (x2, y2, z2) ⊕(1, 1, 1)⊗ (x3, y3, z3)

= (13, 14, 15)

(3, 4, 7)⊗ (x1, y1, z1)⊕ (−3,−2,−1)⊗ (x2, y2, z2) ⊕(−4, 0, 1)⊗ (x3, y3, z3)

= (9, 10, 11)

(1, 2, 5)⊗ (x1, y1, z1)⊕ (3, 4, 6)⊗ (x2, y2, z2) ⊕(−1, 1, 2)⊗ (x3, y3, z3)

= (5, 12, 12)

(20)

Using constrained least-squares problem (13), we have


(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

 =


(2.96, 3, 4.23)

(1, 1, 2)

(1.88, 2, 2)



as a positive fuzzy number vector solution of (20).

Example 4.2 Consider the following system:



(2, 3, 6)⊗ (x1, y1, z1)⊕ (−1, 0, 1)⊗ (x2, y2, z2) ⊕(−10,−5,−1)⊗ (x3, y3, z3)

= (10, 13, 15)

(5, 8, 10)⊗ (x1, y1, z1)⊕ (1, 3, 11)⊗ (x2, y2, z2) ⊕(6, 8, 12)⊗ (x3, y3, z3)

= (60, 65, 76)

(−2, 1, 3)⊗ (x1, y1, z1)⊕ (−4,−3,−1)⊗ (x2, y2, z2) ⊕(7, 9, 10)⊗ (x3, y3, z3)

= (0, 6, 10)

(6, 8, 10)⊗ (x1, y1, z1)⊕ (5, 9, 15)⊗ (x2, y2, z2) ⊕(−3, 0, 3)⊗ (x3, y3, z3)

= (65, 75, 77)

(21)

Using constrained least-squares problem (13), we have


(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

 =


(0, 6, 6)

(3, 3, 4/39)

(1, 1, 1/64)


as a positive fuzzy number vector solution of (21).
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Example 4.3 Consider the following system:

(3, 4, 6)⊗ (x1, y1, z1)⊕ (7, 9, 10)⊗ (x2, y2, z2) ⊕(−1, 3, 6)⊗ (x3, y3, z3)

= (43, 101, 178)

(−3, 0, 3)⊗ (x1, y1, z1)⊕ (1, 2, 3)⊗ (x2, y2, z2) ⊕(6, 9, 10)⊗ (x3, y3, z3)

= (2, 43, 111)

(−10, 0, 10)⊗ (x1, y1, z1)⊕ (1, 3, 6)⊗ (x2, y2, z2) ⊕(−10,−7,−1)⊗ (x3, y3, z3)

= (−35, 3, 124)

(3, 6, 9)⊗ (x1, y1, z1)⊕ (8, 9, 11)⊗ (x2, y2, z2) ⊕(5, 6, 8)⊗ (x3, y3, z3)

= (54, 120, 221)

(22)

Using (9), we have 
(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

 =


(3, 5, 7)

(5, 8, 10)

(1, 3, 6)


as a positive fuzzy number vector solution of (22).

Example 4.4 Consider the following system:

(1, 2, 4)⊗ (x1, y1, z1)⊕ (3, 4, 7)⊗ (x2, y2, z2) ⊕(7, 9, 10)⊗ (x3, y3, z3)

= (24, 49, 95)

(2, 5, 6)⊗ (x1, y1, z1)⊕ (0, 1, 3)⊗ (x2, y2, z2) ⊕(3, 4, 6)⊗ (x3, y3, z3)

= (8, 31, 69)

(4, 5, 7)⊗ (x1, y1, z1)⊕ (−1, 0, 2)⊗ (x2, y2, z2) ⊕(2, 4, 8)⊗ (x3, y3, z3)

= (5, 27, 77)

(−2,−1, 0)⊗ (x1, y1, z1)⊕ (1, 3, 4)⊗ (x2, y2, z2) ⊕(5, 6, 9)⊗ (x3, y3, z3)

= (11, 27, 56)

(23)

Using (9), we have 
(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

 =


(1, 3, 5)

(3, 4, 5)

(2, 3, 4)


as a positive fuzzy number vector solution of (23).

5. Conclusion

In this paper, we found the positive fuzzy number vector solution for the non-square
fully fuzzy linear system of equations by considering multiplication of fuzzy numbers that
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introduced by Kaffman in [18]. First, we considered all elements of coefficient matrix are
non-negative or non-positive. We solved a non-square system to obtain 1-cut of the fuzzy
number vector solution of the non-square fully fuzzy linear system of equations and if
obtained solutions are non-negative then by solving constrained least squares problem
left and right spreads are computed. Otherwise, i.e. if obtained solutions are non-positive,
there is not any positive fuzzy solution for the non-square fully fuzzy linear system of
equations. In the second case, we considered 0 is belong to the support of some elements
of coefficient matrix. According to multiplication of fuzzy numbers that introduced by
Kaffman in [18], the system (15) is obtained that lead to create three determined systems
and if the solutions of these systems hold in non-negative fuzzy solutions so, the solution
of the non-square FFLS of equations is computed. Else, by solving constrained least
squares problem, we obtained an approximated non-negative fuzzy solution. We showed
the capability and efficiency of our proposed method by solving some numerical examples.
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