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Abstract. In this paper we will prove that the simple group G2(q) where 2 < q ≡ 1(mod3)
is recognizable by the set of its order components, also other word we prove that if G is a
finite group with OC(G) = OC(G2(q)), then G is isomorphic to G2(q).
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1. Introduction

Let G be a finite group. We denote by π(n) the set of all prime divisors of n, where n is
a natural number. The prime graph of G is a graph Γ(G) with vertex set π(G), the set
of all prime divisors of |G|, and two distinct vertices p and q are adjacent by an edge if G
has an element of order pq. Let πi = πi(G), 1 ⩽ i ⩽ s(G), be the connected components
of Γ(G). For a group of even order we let 2 ∈ π1(G). Then |G| can be expressed as the
product of m1,m2, . . . ,ms(G), where mi’s are positive integers with π(mi) = πi. These
m′

is are called the order components of G. We write OC(G) = {m1,m2, . . . ,ms(G)} and
call it the set of order components of G.

Definition 1.1 Given a finite group G, denote by h(G) the number of non-isomorphism
classes of finite groups S such that OC(G) = OC(S) and this is called the h-function
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of G. A group G is called k-recognizable by its set of order components if h(G) = k.
Moreover, if h(G) = 1 we say that G is characterizable by order components. In this case
G is uniquely determined by the set of its order components.

Using [24] and [26] we list the order components for non-abelian finite simple groups
P in the Table 1., Table 2. and Table 3. This information is used to prove our main
theorem.

In a series of articles [3–5, 25] it is proved that the sporadic groups, and finite groups
PSL2(q),

3D4(q),
2Dn(3), where 9 ⩽ n = 2m + 1 not a prime, and 2Dp+1(q), where

5 < p ̸= 2m − 1, are characterized by order components. The recognizability of groups
Lp+1(2),

2Dp(3), where p ⩾ 5 is a prime number not of the form 2m + 1, 2Dn(2), where
n = 2m + 1 ⩾ 5, Dp+1(2), Dp+1(3) and Dp(q), where p ⩾ 5 is a prime number and
q = 2, 3 or 5, are proved by M.R. Darafsheh et. al. in [7–11]. Also characterizability of
the groups E6(q),

2E6(q),
2Dn(q), where n = 2m, PSL(p, q), PSU(p, q), PSL(p+ 1, q),

PSU(p + 1, q), PSL(3, q) where q is an odd prime power, PSL(3, q) for q = 2n and
PSU(3, q) for q > 5 by their order components is proved in a series of articles by B.
Khosravi et. al. [12–14, 16–20, 22, 23]. In addition, r-recognizability of Bn(q) and Cn(q),
where n = 2m ⩾ 4, are proved in [21].

The following open problem contains all remaining cases related to that all simple
non-abelian groups, as P , with s(P ) = 2 are characterizable by order components.

Open problem [15]. Are the groups F4(q)(q odd), G2(q)(2 < q ≡ ±1(mod3)) and Cp(2)
characterizable by their order components?

In this paper we consider the simple group G2(q), where 2 < q ≡ 1(mod3), and prove
that this group is characterizable by order components.

By [24] the prime graph of the group G2(q), where 2 < q ≡ 1(mod3), has two
componentsm1 = q6(q3+1)(q2−1)(q−1) = q6(q+1)2(q−1)2(q2+q+1) andm2 = q2−q+1.

Main Theorem. Let G be a finite group such that OC(G) = OC(G2(q)),where 2 < q ≡
1(mod3), then G ∼= G2(q).

2. Preliminaries

Definition 2.1 A group G is called a 2-Frobenius group, if there exists a normal series
1 ⊴H ⊴K ⊴ G of G, such that K and G/H are Frobenius groups with kernels H and
K/H respectively.

The following lemmas are taken from [1] and [2].

Lemma 2.2

(a) Let G be a Frobenius group of even order where H and K are Frobenius com-
plement and Frobenius kernel of G, respectively. Then s(G) = 2 and the prime
graph components of G are π(H) and π(K).

(b) Let G be a 2-Frobenius group of even order. Then s(G) = 2 and G has a normal
series 1 ⊴ H ⊴ K ⊴ G, such that |K/H| = m2, |H||G/K| = m1 and |G/K| |
(|K/H| − 1) and H is a nilpotent π1-group.
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Lemma 2.3 Let G be a finite group with s(G) ⩾ 2. If H ⊴G is a πi-group, then

(

s(G)∏
j=1,j ̸=i

mj) | (|H| − 1).

The structure of finite groups with non-connected prime graph is described in the
following Lemma:

Lemma 2.4 Let G be a finite group with s(G) ⩾ 2. Then one of the following holds:

(a) G is a Frobenius or a 2-Frobenius group;
(b) G has a normal series 1 ⊴ H ⊴ K ⊴ G, such that H and G/K are π1-groups

and K/H is a non-abelian simple group, where π1 is the prime graph component
containing 2, H is a nilpotent group, and |G/K| | |Out(K/H)|. Moreover, any
odd order components of G is also an odd order components of K/H.

The following Lemma of Zsigmondy is used to prove the main theorem.

Lemma 2.5 [27] Let n and a be integers greater than 1. There there exists a prime
divisor p of an − 1 such that p dose not divide ai − 1 for all i, 1 ⩽ i < n, except in the
following cases:

(a) n = 2, a = 2k − 1, where k ⩾ 2,
(b) n = 6, a = 2.

The prime p in the above lemma is called a Zsigmondy prime for an − 1.

3. Proof of the main theorem

To prove the theorem we will use Lemma 2.4. But first we will prove the following
Lemmas.

Lemma 3.1 Let M = G2(q) where 2 < q ≡ 1(mod3) and set D(q) = q2 − q + 1,

(a) If p ∈ π(M), then |Sp| ⩽ q6, where Sp ∈ Sylp(M);
(b) If p ∈ π1(M), pα | |M | and pα−1 ≡ 0(modD(q)), then pα = q6 or pα = 27, where

q = 4.

Proof. We have

(a) |G2(q)| = q6(q + 1)2(q − 1)2(q2 − q + 1)(q2 + q + 1) (1).
An easy calculation shows that

(q + 1, q − 1) = (2, q − 1) (q − 1, q2 + q + 1) = (3, q − 1)
(q − 1, q2 − q + 1) = 1 (q + 1, q2 − q + 1) = (3, q + 1)
(q + 1, q2 + q + 1) = 1 (q2 + q + 1, q2 − q + 1) = 1 (2)

Where (., .) denotes the greatest common divisor of two numbers. If pα | |M |,
then regarding (1) and (2) we obtain pα | q6, 22.3(q+1)2, 22.3(q− 1)2, q2 + q+1
or q2 − q + 1. Then (a) follows immediately.

(b) If pα−1 ≡ 0(modD(q)), then we have pα > D(q), since q ⩾ 4, we obtain pα > 13.
Consider the following cases:
(1) If pα | 32(q2 + q + 1), then pα | 33 or pα | q2 + q + 1. If pα | 33, then

we have pα = 27 and q = 4. If pα | q2 + q + 1, then pα = q2+q+1
t . Also,

we have pα − 1 = r.D(q), where r ∈ N , then D(q) = q2+q+1−t
tr . But since
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q2+q+1
2 < D(q) = q2+q+1−t

t < q2+q+1
tr , then tr ⩽ 2 and

(tr − 1)q2 − (tr + 1)q + (tr + t− 1) = 0.

From this equation we deduce q | (tr+t−1), therefore 4 ⩽ q ⩽ tr+t−1 ⩽ 3,
which is impossible.

(2) If pα | 22.3.(q ± 1)2, then pα | 4(q ± 1)2 or pα | 3.(q ± 1)2. Since the proof of
these two cases are similar we only deal with one of them.
If pα | 4(q + 1)2, then tpα = 4(q + 1)2, i.e., pα = 4(q + 1)2/t, where t is a
natural number. Also, we have pα−1 = r.D(q), where r is a natural number,

then D(q) = 4(q+1)2−t
tr . But since 4(q+1)2

8 < D(q) = 4(q+1)2−t
tr < 4(q+1)2

tr , then
tr ⩽ 8 and (tr − 4)q2 − (tr + 8)q + (tr + t− 4) = 0. From this equation we
deduce q | (tr + t− 4). Now using tr = 1, 2, ..., 8 we get contradictions.

(3) If pα | q6, then we deduce

pα − 1 ⩽ (q6 − 1) = (q3 + 1)(q3 − 1) ⇒ q3 + 1 ⩽ pα − 1 = r(q2 − q + 1)

⇒ (q + 1)(q2 − q + 1) ⩽ r(q2 − q + 1) ⇒ r ⩾ q + 1.

From this we deduce that
pα − 1 = r(q2 − q + 1) ⩾ (q + 1)(q2 − q + 1) = q3 + 1 ⇒ pα ⩾ q3 + 2 > q3.

Therefore, pα > q3, now we have pα = q3.pm, m ⩾ 1. Then

r.D(q) = pα − 1 = pm.q3 − 1 = pm.q3 + pm − pm − 1

= pm(q + 1)D(q)− (pm + 1),

which implies that pm + 1 ≡ 0(modD(q)), then pm = q3 and pα = q6.
■

Lemma 3.2 Let G be a finite group such that OC(G) = OC(G2(q)), where 2 < q ≡
1(mod3), then G is neither a Frobenius nor 2-Frobenius group.

Proof. If G is a Frobenius group, then G = HK with Frobenius complement H and
Frobenius kernel K. By Lemma 2.2 we have OC(G) = {|H|, |K|}. Since |H| | (|K| − 1),
so |H| < |K|, therefore |K| = m1 and |H| = m2. There is a prime number p such that
pα | 4(q + 1)2. If Sp = S is a p-Sylow subgroup of K, then by nilpotency of K we have
S ⊴G, and by Lemma 2.3, m2 | (|S| − 1), hence |S| ≡ 1(modD(q)), then by Lemma 3.1,
pα = q6 or 27 and q = 4, which is impossible since |S| ⩽ 4(q + 1)2 < q6 or if |S| = 27 ,
then 27 ∤ 4.52.

If G be a 2-Frobenius group, then there is a normal series 1 ⊴ H ⊴ K ⊴ G, for G
such that H is a nilpotent π1-group, |K/H| = m2 and |G/K| | (|K/H| − 1), hence
|G/K| | q(q − 1). We have |K/H| = q2 − q + 1 < 4(q + 1)2, thus there is a prime p such
that p | 4(q+1)2 and p | |H|. If S = Sp ∈ Sylp(H), then by nilpotency ofH we have S⊴K
and |K| = (q2−q+1)|H|, so by Lemma 2.3, m2 | (|S|−1), hence |S| ≡ 1(modD(q)), then
by Lemma 3.1, |S| = q6 or 27 and q = 4, which is impossible since |S| ⩽ 4(q + 1)2 < q6

or if |S| = 27 , then 27 ∤ 4.52. ■

Now we continue the proof of our main theorem. By Lemma 2.4, there is a normal
series 1⊴H ⊴K ⊴G for G such that K/H is a non-abelian simple group, H and G/K
are π1-group and H is a nilpotent group. Moreover |G/K| | |Out(K/H)| and odd order
components of G is one of the odd order components of K/H and s(K/H) ⩾ 2.
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Since P = K/H is a non-abelian simple group with disconnected prime graph, by the
classification of finite simple groups we have one of the possibilities in Tables 1, 2 and 3
for P .

Case(1): P ∼=2 A3(2),
2F4(2)

′, A2(2), A2(4),
2A5(2), E7(2), E7(3),

2E6(2) or one of the
26 Sporadic groups listed in Tables 1, 2 and 3.

The odd order component of G is equal to m2 = q2 − q + 1 and must be equal to
one of the odd order components of the groups listed above. By inspecting Tables
1, 2 and 3, the largest odd order component of the above groups is 1093. Therefore
q2 + q + 1 ⩽ 1093, from which we obtain q ⩽ 31. Hence the possibilities for q are:
q = 4, 7, 13, 16, 19, 25, 31 (note that q ≡ 1(mod3)). If q = 7, 13, 16, 19, 25, 31, then we
have m2 = 43, 157, 241, 343, 601, 931, respectively. But any group in Tables 1, 2 and 3
do not have these odd components. Therefore, we deduce q = 4. If q = 4, then m2 = 13
corresponds to P ∼= Fi22 or Suz, but for both cases we have 7, 11 | |P | and 7, 11 ∤ |G|,
hence |P | ∤ |G|. Therefore the above possibilities are ruled out.

Case(2): P ∼= An, where n = p, p+1, p+2, one of n or n− 2 is prime, and n = p, p− 2
are both prime where p ⩾ 6 is a prime number.

By Tables 1 and 2, the odd order components of An are p and p−2, hence q2−q+1 = p
or p − 2. If q2 − q + 1 = p, then p − 2 = q2 − q − 1, hence q2 − q − 1 | |G|, which is
impossible. If q2−q+1 = p−2, hence p = q2−q+3, therefore we deduce q2−q+3 | |G|,
which is impossible.

Case(3): P ∼= E6(q
′). By Table 1, we have q′6+q′3+1

(3,q′−1) = q2 − q+1, now if (3, q′ − 1) = 3,

then
q′6+q′3+1

3 = q2 − q + 1 ⇒ q′9 − 1 ≡ 0(modD(q)) ⇒ q′9 ≡ 1(modD(q)).
Hence, by Lemma 3.1, we have q′9 = q6, therefore q′36 = q24 > q6. Then P has a
Sylow subgroup with order great than q6, which is impossible by Lemma 3.1. But if
(3, q′ − 1) = 1, then q′6 + q′3 + 1 = q2 − q + 1, therefore q′3(q′3 + 1) = q(q − 1), hence
q = q′3, this implies q(q − 1) = q′3(q′3 − 1) < q′3(q′3 + 1) a contradiction.

Case(4): P ∼= G2(q
′), 2 < q′ ≡ ±1(mod3). By Table 1, if ϵ = −1, then

q′2 + q′ + 1 = q2 − q + 1, hence q′(q′ + 1) = q(q − 1). Since q ̸= q′, therefore
q′ = q − 1 = 3k, is a contradiction. If ϵ = 1 we have q′2 − q′ + 1 = q2 − q + 1 which
implies q = q′. Therefore P ∼= G2(q), since |P | | |G| and |P | = |G2(q)| = |G|, hence
P ∼= G. From this we deduce that G ∼= G2(q).

Case(5): P ∼= Bp(3). By Table 1, we have q2 − q + 1 = 3p−1
2 , then 3p ≡ 1(modD(q)),

therefore, by lemma 3.1, we have 3p = q6, therefore q ≡ 0(mod3), a contradiction,
or 3p = 27 and q = 4, hence p = 3. Therefore we have P ∼= B3(3), but we have
|B3(3)| > |G2(4)|, a contradiction.

Case(6): P ∼= Cp(q
′), q′ = 2, 3. If q′ = 3 then by Table 1, we have 3p−1

2 = q2 − q+1, so
3p ≡ 1(modD(q)). Therefore, by Lemma 3.1, we have 3p = q6, therefore q ≡ 0(mod3), a
contradiction, or 3p = 27 and q = 4, hence p = 3. Therefore we have P ∼= C3(3), but we
have |C3(3)| > |G2(4)|, a contradiction..

If q′ = 2, then by Table 1, we have 2p − 1 = q2 − q + 1, so 2p ≡ 1(modD(q)).
Therefore, by Lemma 3.1, we have 2p = q6, therefore q ≡ 0(mod2), i.e., 2 | q. Also we
have 2p − 1 = q2 − q + 1, then q(q − 1) = 2(2p−1 − 1), therefore we deduce 4 ∤ q. Since
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2 | q and 4 ∤ q, then q = 2 a contradiction. (we have q ⩾ 4)

Case(7): P ∼= Dp(q
′), p ⩾ 5, q′ = 2, 3, 5. By Table 1, we have q2 − q + 1 = q′p−1

q−1 ,

therefore q′p ≡ 1(modD(q)). Then, by Lemma 3.1, we have q′p = q6. Since p ⩾ 5 then
p(p − 1) ⩾ 20. From this we deduce that q′p(p−1) > q6, which is impossible, by Lemma
3.1.(Since p > 3 ⇒ q′p ̸= 27)

Case(8): P ∼= Dp+1(q
′), q′ = 2, 3. By Table 1, if q′ = 2, then we have q2−q+1 = 2p−1,

therefore, 2p ≡ 1(modD(q)). Then, by Lemma 3.1, we have 2p = q6, hence q ≡ 0(mod2).
Also, q2 − q+1 = 2p − 1, then q(q− 1) = 2(2p−1 − 1), therefore 4 ∤ q, which imply q = 2,
a contradiction. If q′ = 3, then we have q2 − q + 1 = 3p−1

2 , therefore 3p ≡ 1(modD(q)).
Then, by Lemma 3.1, we have 3p = q6, hence q ≡ 0(mod3), a contradiction, or 3p = 27
and q = 4, hence p = 3. Therefore we have P ∼= D4(3), but we have |D4(3)| > |G2(4)|, a
contradiction..

Case(9): P ∼= F4(q
′). By Tables 1 and 2, the odd order components of F4(q

′) are
q′4 − q′2 + 1 and q′4 + 1. If q′4 − q′2 + 1 = q2 − q + 1, then q′2(q′2 − 1) = q(q − 1), hence
q = q′2, therefore we deduce q′24 = q12 > q6, which is impossible, by Lemma 3.1.
If q2 − q + 1 = q′4 + 1, then q(q − 1) = q′4, that is impossible.

Case(10): P ∼= 2G2(q
′), q′ = 32m+1 > 3. By Table 2, we have q2−q+1 = q′±

√
3q′+1 =

32m+1±
√
32(m+1)+1, hence q(q− 1) = 3m+1(3m± 1), therefore q = 3m+1 or q = 3m± 1.

If q = 3m+1, then q ≡ 0(mod3), a contradiction.
If q = 3m ± 1, then from q = 3m + 1 we deduce q(q − 1) = 3m(3m + 1), then

3m(3m + 1) = 3m+1(3m + 1), therefore 3m+1 = 3m, which is impossible and from
q = 3m−1 we deduce q(q−1) = (3m−1)(3m−2), then (3m−2)(3m−1) = 3m+1(3m−1),
therefore 3m − 2 = 3m+1, which is impossible.

Case(11): P ∼= E8(q
′). By Table 3, the odd order components of E8(q

′) are q′8−q′4+1,
q′10±q′5+1
q′2±q′+1 and q′10+1

q′2+1 .

If q2 − q + 1 = q′8 − q′4 + 1, then q(q − 1) = q′4(q′4 − 1). From this we deduce q = q′4,
then q′120 = q30 > q6, which is impossible by Lemma 3.1.

If q2 − q + 1 = q′10+q′5+1
q′2+q′+1 , then q′15 ≡ 1(modD(q)). Hence, by Lemma 3.1, q′15 = q6,

then q′120 = q48 > q6, which is impossible by Lemma 3.1.

If q2 − q + 1 = q′10−q′5+1
q′2−q′+1 then q′30 ≡ 1(modD(q)). Hence, by Lemma 3.1, q′30 = q6,

then q′120 = q24 > q6, which is impossible by Lemma 3.1.

If q2 − q + 1 = q′10+1
q′2+1 , then q′20 ≡ 1(modD(q)). Hence, by Lemma 3.1, q′20 = q6, then

q′120 = q36 > q6, which is impossible by Lemma 3.1.

Case(12): P ∼= 2E6(q
′), q > 2. By Table 1, we have q′6−q′3+1

(3,q′+1) = q2 − q + 1. Now if

(3, q′ + 1) = 1, we have q′6 − q′3 + 1 = q2 − q + 1, then q′3(q′3 − 1) = q(q − 1), therefore
q′3 = q. From this we deduce q′36 = q12 > q6, which is impossible by Lemma 3.1.

If (3, q′ + 1) = 3, then q′6−q′3+1
3 = q2 − q+ 1. From this we deduce q′18 ≡ 1(modD(q)),

then by Lemma 3.1, we have q′18 = q6, this implies q′36 = q12 > q6, which is impossible
by Lemma 3.1.

Case(13): P ∼= 2Dn(2), n = 2m + 1 ⩾ 5. By Table 1, q2 − q + 1 = 2n−1 + 1, then
q(q − 1) = 2n−1, a contradiction.
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Case(14): P ∼= Ap(q
′), where (q′ − 1) | (p + 1). By Table 1, q2 − q + 1 = q′p−1

q′−1 , then

q′p ≡ 1(modD(q)), therefore, by Lemma 3.1, we have q′p = q6, hence q′p(p+1)/2 > q6,
which is impossible by Lemma 3.1, or q′p = 27 and q = 4, hence p = 3 and q′ = 3.
Therefore we have P ∼= A3(3), but we have 36 | |A3(3)| and 36 ∤ |G2(4)|, a contradiction.

Case(15): P ∼= 2Dp(3), where 5 ⩽ p. By Tables 1 and 2, the odd order components

of 2Dp(3) are 3p+1
4 and 3p−1+1

2 . If q2 − q + 1 = 3p+1
4 , then 32p ≡ 1(modD(q)), so, by

Lemma 3.1, 32p = q6, therefore q ≡ 0(mod3), a contradiction or 32p = 27 and q = 4,

therefore 2p = 3 is impossible. If q2 − q + 1 = 3p−1+1
2 , then 32p−2 ≡ 1(modD(q)), so, by

Lemma 3.1, 32p−2 = q6, therefore q ≡ 0(mod3), a contradiction or 32p−2 = 27 and q = 4,
therefore 2p− 2 = 3, hence 2p = 5 is impossible.

Case(16): P ∼= 2Dn(3), where 5 ⩽ p ̸= 2m + 1. By Table 1, q2 − q + 1 = 3n−1+1
2 ,

we deduce 32n−2 ≡ 1(modD(q)). Then, by Lemma 3.1, we have 32n−2 = q6, therefore
q ≡ 0(mod3), a contradiction or or 32n−2 = 27 and q = 4, therefore 2n − 2 = 3, hence
2n = 5 is impossible.

Case(17): P ∼= 2B2(q
′), where q′ = 22m+1 > 2. By Table 3, the odd order components

of 2B2(q
′) are q′ − 1, q′ −

√
2q′ + 1 and q′ +

√
2q′ + 1. If q2 − q+ 1 = q′ − 1 then we have

q′ ≡ 1(modD(q)). Hence, by Lemma 3.1, q′ = q6, then we deduce q′2 = q12 > q6, which
is impossible by Lemma 3.1

If q2 − q + 1 = q′ ±
√
2q′ + 1, then, q(q − 1) = 2m+1(2m ± 1). There-

fore, 2m+1 | q or 2m+1 | (q − 1). If 2m+1 | q, then q = 2m+1, hence
q(q − 1) = 2m+1(2m+1 − 1) > 2m+1(2m − 1), a contradiction. If 2m+1 | (q − 1),
then q − 1 = 2m+1 = 3k, which is impossible.

Case(18): P ∼= 2F4(q
′), where q′ = 22m+1 > 2. By Table 2, the odd order components

of 2F4(q
′) are q′ ±

√
2q′3 + q′ ±

√
2q′ + 1. Then q2 − q + 1 = q′ ±

√
2q′3 + q′ ±

√
2q′ + 1,

hence q(q − 1) = 2m+1(23m+1 ± 22m+1 + 2m ± 1). From this equation we de-
duce 2m+1 | q or 2m+1 | (q − 1). If 2m+1 | q, then q = 2m+1, which implies
2m+1(2m+1 − 1) = 2m+1(23m+1 ± 22m+1 +2m ± 1), which is impossible. Similar to above
case we can deduce 2m+1 | (q − 1), which is impossible.

Case(19): P ∼= Ap−1(q
′), (p, q′) ̸= (3, 2), (3, 4). By Table 1, q2 − q + 1 = q′p−1

(p,q′−1)(q′−1) .

Then q′p ≡ 1(modD(q)), therefore, by Lemma 3.1, we deduce q′p = q6. Since p ⩾ 5, then

q′
p(p−1)

2 > q6, which is impossible by Lemma 3.1.

Case(20): P ∼= A1(q
′), where q′ is a power of 2. By Table 2, the odd order components

of A1(q
′) are q′ + 1 and q′ − 1. If q2 − q + 1 = q′ + 1, we deduce q(q − 1) = q′, which is

impossible. If q2− q+1 = q′− 1, then we deduce q′ ≡ 1(modD(q)), therefore, by Lemma
3.1, we have q′ = q6. If q′ = q6, then q2−q+1 = q′−1 = q6−1 = (q3−1)(q+1)(q2−q+1),
from this we deduce (q + 1)(q3 − 1) = 1, which is impossible, since q ⩾ 4.

Case(21): P ∼= 2Ap(q
′), where (q′ + 1) | (p + 1) and (p, q′) ̸= (3, 3), (5, 2). By Table 1,

the odd order components of 2Ap(q
′) is q′p+1

q′+1 . For both cases we have q′2p ≡ 1(modD(q)),

therefore by Lemma 3.1, we deduce q′2p = q6, hence q′p = q3. Since (q′ + 1) | (p + 1)
and q′ ⩾ 4, since if q′ = 3, then we have q ≡ 0(mod3). Hence p > 5, and q′p(p+1)/2 > q6,
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which is impossible by Lemma 3.1, or q′2p = 27 and q = 4, hence 2p = 3 and q′ = 3, is
impossible, since 4 = (q′ + 1) | (p+ 1), therefore p ⩾ 3 and 2p ⩾ 6.

Case(22): P ∼= 2Dn(q
′), n = 2m ⩾ 4. By Table 1, the odd order component of 2Dn(q

′)

is q′n+1
(2,q+1) . If (2, q+1) = 1, then we have q2−q+1 = q′n+1, hence q(q−1) = q′n, which is

impossible. If (2, q + 1) = 2, then we have q′2n ≡ 1(modD(q)), therefore, by Lemma 3.1,
q′2n = q6, hence q′n = q3. If n > 4, then we have n− 1 > 3, therefore qn(n−1) > q6, which
is impossible by Lemma 3.1. Now if n = 4, then P ∼= 2D4(q

′), hence we have q′4 = q3.
By Table 1, we have

|P | = q′12(q′2 − 1)(q′4 − 1)(q′6 − 1)(q′4 + 1)/2 = q6(q3 − 1)(q2 − q + 1)(q′2 − 1)(q′2 −
1)(q′4 + q′2 + 1) = q6(q − 1)(q2 + q + 1)(q2 − q + 1)(q′4 − 2q′2 + 1)(q′4 + q′2 + 1) =
q6(q − 1)(q2 + q + 1)(q2 − q + 1)(q3 − 2q′2 + 1)(q3 + q′2 + 1) > q6(q − 1)(q2 +
q + 1)(q2 − q + 1)(q3 − 2q′2 + 1)(q3 + 1) = q6(q − 1)(q + 1)(q2 + q + 1)(q2 − q +
1)2(q3 − 2q′2 + 1) > q6(q − 1)2(q + 1)(q2 + q + 1)(q2 − q + 1)(q3 − 2q′2 + 1) > |G|
((q2 − q + 1) > (q − 1), (q3 − 2q′2 + 1) = (q3 − 2q

√
q + 1) = (q(q2 − 2

√
q) + 1) > (q + 1))

a contradiction, or q′2n = 27 and q = 4, hence 2n = 3 is impossible.

Case(23): P ∼= Cn(q
′),n = 2m ⩾ 4 or P ∼= Bn(q

′), n = 2m ⩾ 4, q′ odd.

In the above cases the odd order component is q′n+1
2 and q2 − q + 1 = q′n+1

2 , therefore,

by Lemma 3.1, q′2n = q6, this implies q′n = q3, then we have q′n
2

= q3n ⩾ q12 > q6,
which is impossible by Lemma 3.1 or q′2n = 27 and q = 4, hence 2n = 3 is impossible.

Case(24): P ∼= 2Dp+1(2), where n ⩾ 2 and p = 2n − 1. By Table 2, the odd order
components of 2Dp+1(2) are 2

p+1 and 2p+1+1. If q2−q+1 = 2p+1, then q(q−1) = 2p,
which is impossible. If q2 − q + 1 = 2p+1 + 1, then q(q − 1) = 2p+1, which is impossible.

Case(25): P ∼= C2(q
′), q′ is odd. By Table 1, the odd order component of C2(q

′) is
q′2+1

2 . If q2 − q + 1 = q′2+1
2 , then q′2 = 2q2 − 2q + 1. From this we deduce |C2(q

′)| =
q′4(q′2 − 1)2(q′2 + 1)/2 = 4q2(q − 1)2(q2 − q + 1)(2q2 − 2q + 1)2. Since |P | | |G|, hence
(2q2 − 2q + 1) | q6(q − 1)2(q + 1)2(q2 + q + 1). Since

(2q2 − 2q + 1, q + 1) = (5, q − 1)
(2q2 − 2q + 1, q2 + q + 1) = 1
(2q2 − 2q + 1, q − 1) = 1 (3)

then we have (2q2 − 2q + 1) | 52, this is not correct unless q = 4. If q = 4, then we
have |C2(4)| = 27.32.52.17 and |G| = 212.33.52.7.13. Since |C2(4)| | |G|, but 17 ∤ |G|, a
contradiction.

Case(26): P ∼= 3D4(q
′).By Table 1, we have q2 − q + 1 = q′4 − q′2 + 1, then q(q − 1) =

q′2(q′2 − 1), therefore q = q′2. From this we deduce that
|3D4(q

′)| = q′12(q′6−1)(q′2−1)(q′4+q′2+1)(q′4−q′2+1) = q6(q3−1)(q−1)(q2+q+1)
(q2 − q + 1) = q6(q − 1)2(q2 + q + 1)2(q2 − q + 1)

Since |3D4(q
′)| | |G|, then we have (q2 + q + 1)2 | |G|. An easy calculation shows that

(q + 1, q2 + q + 1) = 1
(q − 1, q2 + q + 1) = (3, q − 1)
(q2 + q + 1, q2 − q + 1) = 1 (4)

Therefore (q2 + q + 1)2 | |G| = q6(q − 1)2(q + 1)2(q2 + q + 1)(q2 − q + 1) is impossible.

Case(27): P ∼= A1(q
′), q′ is not a power of 2. By Table 2, the odd order components

of A1(q
′) are q′ and (q′ + 1)/2 or (q′ − 1)/2. If q2 − q + 1 = q′, then |A1(q

′)| = q′(q′ +
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1)(q′ − 1)/2 = (q2 − q + 1)(q2 − q + 2)q(q − 1)/2. Since |P | | |G|, we deduce (q2−q+2)
2 |

q6(q − 1)2(q + 1)2(q2 − q + 1). An easy calculation shows that;
(q2 − q + 2, q − 1) = (2, q − 1)
(q2 − q + 2, q + 1) = (4, q + 1)
(q2 − q + 2, q2 + q + 1) = (7, q2 + 5) (5)

Therefore (q2 − q + 2)/2 | 26.7, this implies (q2 − q + 2)/2 = 24.7, then for this equation
we have q = 11, which is impossible(q = 3k + 1). Also we have (q2 − q + 2)/2 | 26. From
this we deduce q2 − q + 2 = 25, then q(q − 1) = 6.5, therefore we have q = 6, which is
impossible because q = 3k + 1.

If 4 | q′ + 1, then q2 − q + 1 = q′ − 1/2, hence q′ = 2q2 − 2q + 3. From this we
deduce |A1(q

′)| = 2(q2 − q + 1)(q2 − q + 2)(2q2 − 2q + 3). Since |P | | |G|, so we have
(q2− q+2) | q6(q− 1)2(q+1)2(q2+ q+1). By (4) we have (q2− q+2) | 26.7, this implies
(q2+q+2) = 25.7, then for this equation we have q = 11, which is impossible(q = 3k+1).
Also we have (q2 − q+ 2) | 26. From this we deduce q2 − q+ 2 = 25, then q(q+ 1) = 6.5,
therefore we have q = 6, which is impossible because q = 3k + 1.

If 4 | q′ − 1, then q2 − q + 1 = q′ + 1/2, hence q′ = 2q2 − 2q + 1. From this
we deduce |A1(q

′)| = 2q(q − 1)(q2 − q + 1)(2q2 − 2q + 1). Since |P | | |G|, so
(2q2− 2q+1) | q6(q− 1)2(q+1)2(q2+ q+1). Therefore, by (3) we have 2q2− 2q+1 | 52,
then 2q2 − 2q + 1 = 5, this implies 2q(q − 1) = 4, then q = 2, a contradiction
or 2q2 − 2q + 1 = 25, this implies 2q(q − 1) = 24, then q = 4 and q′ = 25.
Therefore P ∼= A1(25). By [6], we have |Out(P )| = 4 and by Lemma 2.4, we have
|G/K| | |Out(P )|. Now we set |G/K| = t and obtain t = 1, 2 or 4, and t|H||P | = |G|,
then t|H|(23.3.52.13) = 212.33.52.7.13. Hence |H| = 29.32.7/t, where t = 1, 2 or 4. Now
let S ∈ Syl7(H), then |S| = 7. Since H is nilpotent, therefore S ⊴G and by Lemma 2.3
it follows that m2 | |S| − 1, i.e., 13 | 7− 1 which is impossible.

Case(28): P ∼= 2Ap−1(q
′). By Table 1, q2 − q + 1 = q′p+1

(q′+1)(p,q′+1) . Then q′2p ≡
1(modD(q)), therefore by Lemma 3.1, we deduce q′2p = q6, hence q′p = q3. Now
if p > 5 , we have qp(p−1)/2 > q6, which is impossible by Lemma 3.1. If p = 5,

by Table 1, q2 − q + 1 = q′5+1
(q′+1)(5,q′+1) and q′5 = q3. Now if (5, q′ + 1) = 1, then

we have q2 − q + 1 = (q3 + 1)/(q + 1) = (q′5 + 1)/(q′ + 1) = (q3 + 1)/(q′ + 1),
then we deduce q = q′, which is impossible. Therefore, (5, q′ + 1) = 5, then we have

q2−q+1 = (q3+1)/(q+1) = q′5+1
5(q′+1) =

q3+1
5(q′+1) , then we have (q+1) = 5(q′+1) = 5q′+5,

hence q = 5q′ + 4, which is impossible(q is power of a prime number). If p = 3, then, by

Table 1, we have q2− q+1 = (q′3+1)
(q′+1)(3,q′+1) . Therefore, by Lemma 3.1, q′6 ≡ 1(modD(q)),

then q′6 = q6. From this we deduce that q = q′, then q2 − q + 1 = (q3 + 1)/(q + 1) =
(q′3+1)

(q′+1)(3,q′+1) = (q3+1)
(q+1)(3,q+1) , then (q + 1)(3, q + 1) = (q + 1). Therefore (3, q + 1) = 1

and |2A2(q)| = q3(q + 1)(q2 − 1)(q3 + 1)/(q + 1) = q3(q + 1)2(q − 1)(q2 − q + 1). By [6],
we have |Out(P )| = f , such that q2 = rf , where r is a prime number. By Lemma
2.4, we have |G/K| | |Out(P )|. Now we set |G/K| = t and obtain t|H||P | = |G|, then
t|H| = q3(q − 1)(q2 + q + 1) and t | f . Since q = 3k + 1 we have q − 1 = 3k. If t = 1,
then |H| = q3(q − 1)(q2 + q + 1). We have (q − 1, q2 + q + 1) = 3, therefore if we set
S ∈ Syl3(H), then |S| = 3(q− 1)3. Since H is nilpotent, therefore S ⊴G and by Lemma
2.3 it follows that m2 | |S| − 1, i.e., q2 − q + 1 | 3(q − 1)3 − 1 which is impossible.
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Table 1.: The order components of finite simple groups P with s(P ) = 2
P Restrictions on P m1 m2

An 6 < n = p, p+ 1, p+ 2 n!/2p p
one of n, n− 2
is not a prime

Ap−1(q) (p, q) ̸= (3, 2), (3, 4) q
p(p−1)

2

∏p−1
i=1 (q

i − 1) qp−1
(q−1)(p,q−1)

Ap(q) (q − 1) | (p+ 1) q
p(p+1)

2 (qp+1 − 1)
∏p−1

i=2 (q
i − 1) qp−1

q−1
2Ap−1(q) q

p(p−1)

2

∏p−1
i=1 (q

i − (−1)i) qp+1
(q+1)(p,q+1)

2Ap(q) (q + 1) | (p+ 1) q
p(p+1)

2 (qp+1 − 1)
∏p−1

i=2 (q
i − 1) qp+1

q+1

(p, q) ̸= (3, 3), (5, 2)
2A3(2) 26.34 5

Bn(q) n = 2m ⩾ 4, q odd qn
2

(qn − 1)
∏n−1

i=1 (q
2i − 1) qn+1

2

Bp(3) 3p
2

(3p + 1)
∏p−1

i=1 (3
2i − 1) 3p−1

2

Cn(q) n = 2m ⩾ 2, q odd qn
2

(qn − 1)
∏n−1

i=1 (q
2i − 1) qn+1

(2,q−1)

Cp(q) q = 2, 3 qp
2

(qp + 1)
∏p−1

i=1 (q
2i − 1) qp−1

(2,q−1)

Dp(q) p ⩾ 5, q = 2, 3, 5 qp(p−1)
∏p−1

i=1 (q
2i − 1) qp−1

q−1

Dp+1(q) q = 2, 3 1
(2,q−1)q

p(p+1)(qp + 1) qp−1
(2,q−1)

(qp+1 − 1)
∏p−1

i=1 (q
2i − 1)

2Dn(q) n = 2m ⩾ 4 qn(n−1)
∏n−1

i=1 (q
2i − 1) qn+1

(2,q+1)
2Dn(2) n = 2m + 1 ⩾ 5 2n(n−1)(2n + 1)(2n−1 − 1) 2n−1 + 1∏n−2

i=1 (2
2i − 1)

2Dp(3) 5 ⩽ p ̸= 2m + 1 3p(p−1)
∏p−1

i=1 (3
2i − 1) 3p+1

4
2Dn(3) 9 ⩽ 2m + 1 ̸= p 1

23
n(n−1)(3n + 1)(3n−1 − 1) 3n−1+1

2∏n−2
i=1 (3

2i − 1)
G2(q) 2 < q ≡ ϵ(mod3), ϵ = ±1 q6(q3 − ϵ)(q2 − 1)(q + ϵ) q2 − ϵq + 1
3D4(q) q12(q6 − 1)(q2 − 1)(q4 + q2 + 1) q4 − q2 + 1
F4(q) q odd q24(q8 − 1)(q6 − 1)2(q4 − 1) q4 − q2 + 1
2F4(2)

′ 211.33.52 13

E6(q) q36(q12 − 1)(q8 − 1)(q6 − 1) q6+q3+1
(3,q−1)

(q5 − 1)(q3 − 1)(q2 − 1)
2E6(q) q > 2 q36(q12 − 1)(q8 − 1)(q6 − 1) q6−q3+1

(3,q+1)

(q5 + 1)(q3 + 1)(q2 − 1)
M12 26.33.5 11
J2 27.33.52 7
Ru 214.33.53.7.13 29
He 210.33.52.73 17
McL 27.36.53.7 11
Co1 221.39.54.72.11.13 23
Co3 210.37.53.7.11 23
Fi22 217.39.52.7.11 13
HN 214.36.56.7.11 19
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Table 2.: The order components of finite simple groups P withs(P ) = 3
P Restrictions on P m1 m2 m3

An n > 6, n = p, n!
2n(n−2) p p− 2

p− 2 are primes

A1(q) 4 | (q + 1) q + 1 q q−1
2

A1(q) 4 | (q − 1) q − 1 q q+1
2

A1(q) 2 | q q q + 1 q − 1
A2(2) 8 3 7
2A5(2) 215.36.5 7 11
2Dp(3) 5 ⩽ p = 2m + 1 2.3p(p−1)(3p−1 − 1) 3p−1+1

2
3p+1
4∏p−2

i=1 (3
2i − 1)

2Dp+1(2) n ⩾ 2, p = 2n − 1 2p(p+1)(2p − 1) 2p + 1 2p+1 + 1∏p−1
i=1 (2

2i − 1)
G2(q) q ≡ 0(mod3) q6(q2 − 1)3 q2 − q + 1 q2 + q + 1
2G2(q) q = 32m+1 > 3 q3(q2 − 1) q −

√
3q + 1 q +

√
3q + 1

F4(q) q even q24(q6 − 1)2(q4 − 1)2 q4 + 1 q4 − q2 + 1
2F4(q) q = 22m+1 > 2 q12(q4 − 1)q3 + 1) q2 −

√
2q3+ q2 +

√
2q3+

q −
√
2q + 1 q +

√
2q + 1

E7(2) 236.311.52.73.11.13 73 127
17.19.31.43

E7(3) 223.363.52.73.112.132 757 1093
19.37.41.61.73.547

M11 24.32 5 11
M23 27.32.5.7 11 23
M24 210.33.5.7 11 23
J3 27.35.5 17 19
HiS 29.32.53 7 11
Suz 213.37.52.7 11 13
Co2 218.36.53.7 11 23
Fi23 218.313.52.7.11.13 17 23
F3 215.310.53.72.13 19 31
F2 224.313.56.72. 31 47

11.13.17.19.23
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Table 3.: The order components of finite simple groups P with s(P ) > 3
P Restrictions m1 m2 m3 m4 m5 m6

on P
A2(4) 26 3 5 7
2B2(q) q = 22m+1 > 2 q2 q − 1 q −

√
2q q +

√
2q

+1 +1
2E6(2) 236.39.52.72.11 13 17 19

E8(q) q ≡ 2, 3 q120(q20 − 1)(q18 − 1) q10−q5+1
q2−q+1

q10+q5+1
q2+q+1 q8 − q4

(mod5) (q14 − 1)(q12 − 1) +1
(q10 − 1)(q8 − 1)

(q4 + 1)(q4 + q2 + 1)
M22 27.32 5 7 11
J1 23.3.5 7 11 19
O′N 29.34.5.73 11 19 31
LyS 28.37.56.7.11 31 37 67
Fi′24 221.316.52.73.11.13 17 23 29
F1 246.320.59.76.112.133 41 59 71

17.19.23.29.31.47

E8(q) q ≡ 0, 1, 4 q120(q18 − 1)(q14 − 1) q10−q5+1
q2−q+1

q10+q5+1
q2+q+1 q8 − q4 q10+1

q2+1

(mod5) (q12 − 1)2(q10 − 1)2 +1
(q8 − 1)2(q4 + q2 + 1)

J4 221.33.5.7.113 23 29 31 37 43
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