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Abstract. In this paper we will prove that the simple group G2(q) where 2 < ¢ = 1(mod3)
is recognizable by the set of its order components, also other word we prove that if G is a
finite group with OC(G) = OC(G2(q)), then G is isomorphic to G2(q).
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1. Introduction

Let G be a finite group. We denote by 7(n) the set of all prime divisors of n, where n is
a natural number. The prime graph of G is a graph I'(G) with vertex set m(G), the set
of all prime divisors of |G|, and two distinct vertices p and ¢ are adjacent by an edge if G
has an element of order pq. Let m; = m;(G), 1 < i < s(G), be the connected components
of I'(G). For a group of even order we let 2 € m1(G). Then |G| can be expressed as the
product of my,mo,...,mycq), where m;’s are positive integers with w(m;) = ;. These
mjs are called the order components of G. We write OC(G) = {m1,ma, ..., myq} and
call it the set of order components of G.

Definition 1.1 Given a finite group G, denote by A(G) the number of non-isomorphism
classes of finite groups S such that OC(G) = OC(S) and this is called the h-function
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of G. A group G is called k-recognizable by its set of order components if h(G) = k.
Moreover, if h(G) = 1 we say that G is characterizable by order components. In this case
G is uniquely determined by the set of its order components.

Using [24] and [26] we list the order components for non-abelian finite simple groups
P in the Table 1., Table 2. and Table 3. This information is used to prove our main
theorem.

In a series of articles [3-5, 25] it is proved that the sporadic groups, and finite groups
PSLy(q), 3D4(q), 2Dyn(3), where 9 < n = 2™ + 1 not a prime, and 2D, 1(q), where
5 < p # 2™ — 1, are characterized by order components. The recognizability of groups
Ly+1(2), 2D, (3), where p > 5 is a prime number not of the form 2™ + 1, 2D,,(2), where
n=2"+12>5, Dy1(2), Dpy1(3) and Dy(q), where p > 5 is a prime number and
q = 2,3 or 5, are proved by M.R. Darafsheh et. al. in [7-11]. Also characterizability of
the groups Eg(q), 2Es(q), *Dn(q), where n = 2™, PSL(p,q), PSU(p,q), PSL(p+1,q),
PSU(p + 1,q), PSL(3,q) where ¢ is an odd prime power, PSL(3,q) for ¢ = 2" and
PSU(3,q) for ¢ > 5 by their order components is proved in a series of articles by B.
Khosravi et. al. [12-14, 16-20, 22, 23]. In addition, r-recognizability of B, (q) and C(q),
where n = 2™ > 4, are proved in [21].

The following open problem contains all remaining cases related to that all simple
non-abelian groups, as P, with s(P) = 2 are characterizable by order components.

Open problem [15]. Are the groups Fy(q)(q odd), G2(¢)(2 < ¢ = £1(mod3)) and C,(2)
characterizable by their order components?

In this paper we consider the simple group Ga(q), where 2 < ¢ = 1(mod3), and prove
that this group is characterizable by order components.

By [24] the prime graph of the group Ga(q), where 2 < ¢ = 1(mod3), has two
components m1 = ¢%(¢*+1)(¢*~1)(g—1) = ¢°(¢+1)*(¢—1)*(¢*+¢+1) and my = ¢*~q+1.

Main Theorem. Let G be a finite group such that OC(G) = OC(G2(q)),where 2 < ¢ =
1(mod3), then G = Ga(q).

2. Preliminaries

Definition 2.1 A group G is called a 2-Frobenius group, if there exists a normal series
1< H <K <G of G, such that K and G/H are Frobenius groups with kernels H and
K/H respectively.

The following lemmas are taken from [1] and [2].

Lemma 2.2

(a) Let G be a Frobenius group of even order where H and K are Frobenius com-
plement and Frobenius kernel of G, respectively. Then s(G) = 2 and the prime
graph components of G are 7(H) and 7(K).

(b) Let G be a 2-Frobenius group of even order. Then s(G) = 2 and G has a normal
series 1 < H <4 K <G, such that |K/H| = ma, |H||G/K| = m; and |G/K]| |
(|[K/H|—1) and H is a nilpotent m-group.
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Lemma 2.3 Let G be a finite group with s(G) > 2. If H <G is a m-group, then

s(Q)
( II my) 1 (HI=1).

=L

The structure of finite groups with non-connected prime graph is described in the
following Lemma:

Lemma 2.4 Let G be a finite group with s(G) > 2. Then one of the following holds:

(a) G is a Frobenius or a 2-Frobenius group;

(b) G has a normal series 1 < H I K < G, such that H and G/K are m-groups
and K/H is a non-abelian simple group, where 7; is the prime graph component
containing 2, H is a nilpotent group, and |G/K| | |Out(K/H)|. Moreover, any
odd order components of G is also an odd order components of K/H.

The following Lemma of Zsigmondy is used to prove the main theorem.

Lemma 2.5 [27] Let n and a be integers greater than 1. There there exists a prime
divisor p of a™ — 1 such that p dose not divide a* — 1 for all 4, 1 < i < n, except in the
following cases:

(a) n=2,a=2F—1, where k > 2,
(b) n=6,a=2.

The prime p in the above lemma is called a Zsigmondy prime for a” — 1.

3. Proof of the main theorem

To prove the theorem we will use Lemma 2.4. But first we will prove the following
Lemmas.

Lemma 3.1 Let M = G(q) where 2 < ¢ = 1(mod3) and set D(q) = ¢*> —q+ 1,

(a) If p € (M), then |S,| < ¢%, where S, € Syl,(M);
(b) Ifp € 7 (M), p* | |M| and p® —1 = 0(modD(q)), then p® = ¢® or p® = 27, where

q=4.
Proof. We have
(a) 1G2(q)] = ¢®(g+1)*(¢—1D*(¢* —q+ 1)(* +q+1) (1).
An easy calculation shows that
(¢+1,¢-1)=(2,g—1) (-1, +q+1)=3,q-1)
(-1, —q+1)=1 (g+1,¢*—q+1)=(3,q+1)
(¢+1,¢*+q+1)=1 (@P+q+1,¢—q+1)=1 (2)

Where (.,.) denotes the greatest common divisor of two numbers. If p* | | M|,
then regarding (1) and (2) we obtain p® | ¢%, 22.3(¢+1)2, 22.3(¢ — 1), ¢> +q+1
or ¢> — g+ 1. Then (a) follows immediately.
(b) If p*—1 = 0(modD(q)), then we have p® > D(q), since ¢ > 4, we obtain p* > 13.
Consider the following cases:
(1) If p* | 3%(¢®> + ¢ + 1), then p® | 3% or p* | ¢®> + ¢+ 1. If p® | 33, then
we have p® = 27 and ¢ = 4. If p* | ¢> + ¢ + 1, then p® = q2+t7q+1. Also,
we have p® — 1 = r.D(q), where r € N, then D(q) = CHatl=t Byt since

tr
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2 2 _ >
THatl < D(g) = THEH < I then ¢r < 2 and

(tr —1)¢* — (tr + 1)g + (tr +t —1) = 0.

From this equation we deduce ¢ | (tr+t—1), therefore 4 < ¢ < tr+t—1< 3,
which is impossible.

(2) If p* | 22.3.(¢ & 1)?, then p® | 4(q = 1)? or p® | 3.(¢ £ 1)2. Since the proof of
these two cases are similar we only deal with one of them.
If p* | 4(q + 1)2, then tp® = 4(q + 1)?, ie., p* = 4(q + 1)?/t, where t is a
natural number. Also, we have p® —1 = r.D(q), where r is a natural number,

then D(q) = 4(q+t71)2_t. But since 4(617-51)2 < D(q) = 4(q+;)2_t < 4(q;1)2, then
tr < 8 and (tr — 4)¢% — (tr + 8)q + (tr +t — 4) = 0. From this equation we
deduce ¢ | (tr +t —4). Now using tr = 1,2, ...,8 we get contradictions.

(3) If p® | ¢, then we deduce

po‘—lé(q6—1):(q3+1)(q3—1)=>q3—|—1 <pa—1:r(q2—q+1)
S @+ —qg+1)<r(®—qg+1)=>r>q+1.

From this we deduce that
PP=1=r(@—q+1)> @+ )@ —qg+ )= +1=p* > +2> ¢
Therefore, p® > ¢2, now we have p® = ¢3.p™, m > 1. Then

r.D(q)=p* —1=p".¢* —1=p"@+p" —p" —1
=p"(¢+1)D(q) — (p™ + 1),

which implies that p™ + 1 = 0(modD(q)), then p™ = ¢® and p® = ¢b.

Lemma 3.2 Let G be a finite group such that OC(G) = OC(G2(q)), where 2 < ¢ =
1(mod3), then G is neither a Frobenius nor 2-Frobenius group.

Proof. If G is a Frobenius group, then G = HK with Frobenius complement H and
Frobenius kernel K. By Lemma 2.2 we have OC(G) = {|H|, |K|}. Since |H| | (/K| — 1),
so |H| < |K|, therefore |K| = m; and |H| = ma. There is a prime number p such that
p* | 4(g+1)2 If S, = S is a p-Sylow subgroup of K, then by nilpotency of K we have
S <@, and by Lemma 2.3, ma | (|S| — 1), hence |S| = 1(modD(q)), then by Lemma 3.1,
p* = ¢% or 27 and ¢ = 4, which is impossible since |S| < 4(¢ +1)? < ¢° or if | S| = 27 ,
then 27 { 4.52.

If G be a 2-Frobenius group, then there is a normal series 1 < H < K <G, for G
such that H is a nilpotent mj-group, |K/H| = mg and |G/K| | (|JK/H| — 1), hence
|G/K| | q(qg—1). We have |K/H| = ¢*> — ¢+ 1 < 4(q + 1)?, thus there is a prime p such
that p | 4(¢+1)? and p | |[H|. If S = S, € Syl,(H), then by nilpotency of H we have S<IK
and |K| = (¢ —q+1)|H|, so by Lemma 2.3, ma | (|S|—1), hence |S| = 1(modD(q)), then
by Lemma 3.1, |S| = ¢® or 27 and ¢ = 4, which is impossible since |S| < 4(q + 1)% < ¢°
or if | S| = 27, then 27 { 4.5%. ]

Now we continue the proof of our main theorem. By Lemma 2.4, there is a normal
series 1 < H < K <G for G such that K/H is a non-abelian simple group, H and G/K
are mi-group and H is a nilpotent group. Moreover |G/K| | |Out(K/H)| and odd order
components of G is one of the odd order components of K/H and s(K/H) > 2.
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Since P = K/H is a non-abelian simple group with disconnected prime graph, by the
classification of finite simple groups we have one of the possibilities in Tables 1, 2 and 3
for P.

Case(1): P 222 A3(2), 2F4(2)', A2(2), A2(4), 245(2), E7(2), E7(3), 2E6(2) or one of the
26 Sporadic groups listed in Tables 1, 2 and 3.

The odd order component of G is equal to my = ¢> — ¢ + 1 and must be equal to
one of the odd order components of the groups listed above. By inspecting Tables
1, 2 and 3, the largest odd order component of the above groups is 1093. Therefore
¢> + ¢+ 1 < 1093, from which we obtain ¢ < 31. Hence the possibilities for ¢ are:
q = 4,7,13,16,19,25,31 (note that ¢ = 1(mod3)). If ¢ = 7,13,16,19, 25,31, then we
have mo = 43,157,241, 343,601, 931, respectively. But any group in Tables 1, 2 and 3
do not have these odd components. Therefore, we deduce ¢ = 4. If ¢ = 4, then mo = 13
corresponds to P = Flige or Suz, but for both cases we have 7,11 | |P| and 7,11 { |G|,
hence |P| 1 |G|. Therefore the above possibilities are ruled out.

Case(2): P = A, where n = p,p+1,p+2, one of n or n— 2 is prime, and n = p,p — 2
are both prime where p > 6 is a prime number.

By Tables 1 and 2, the odd order components of A4,, are p and p—2, hence ¢>—qg+1=p
orp—2.1f¢g> —q+1=p, thenp—2=¢> —q—1, hence ¢> — ¢ — 1 | |G|, which is
impossible. If ¢> — ¢+ 1 = p—2, hence p = ¢*> — ¢+ 3, therefore we deduce ¢*> —¢+3 | |G|,
which is impossible.

Case(3): P = FEg(q'). By Table 1, we have % =¢*—q+1,nowif (3,4 — 1) =3,
then
% =¢>—q+1=¢°—-1=0(modD(q)) = ¢"° = 1(modD(q)).
Hence, by Lemma 3.1, we have ¢° = ¢5, therefore ¢3¢ = ¢?* > ¢5. Then P has a
Sylow subgroup with order great than ¢% which is impossible by Lemma 3.1. But if
(3, —1) =1, then ¢ + ¢® + 1 = ¢ — ¢ + 1, therefore ¢"3(¢/* + 1) = ¢(q — 1), hence
q = ¢, this implies ¢(q¢ — 1) = ¢"3(¢”> — 1) < ¢"*(¢"® + 1) a contradiction.

Case(4): P = Ga(¢), 2 < ¢ = =1(mod3). By Table 1, if ¢ = —1, then
¢ +q¢ +1 = ¢>—q+1, hence ¢(¢ +1) = q(q¢ — 1). Since ¢ # ¢, therefore
¢ = q—1 = 3k, is a contradiction. If ¢ = 1 we have ¢> — ¢ +1 = ¢> — ¢ + 1 which
implies ¢ = ¢'. Therefore P = Gs(q), since |P| | |G| and |P| = |G2(q)| = |G|, hence
P = G. From this we deduce that G = G1(q).

Case(5): P = B,(3). By Table 1, we have ¢*> — ¢ + 1 = 2*>1, then 3? = 1(modD(q)),
therefore, by lemma 3.1, we have 37 = ¢% therefore ¢ = 0(mod3), a contradiction,
or 3 = 27 and g = 4, hence p = 3. Therefore we have P = Bjs(3), but we have
|B3(3)] > |G2(4)|, a contradiction.

Case(6): P = Cp(¢'),q = 2,3.1If ¢ = 3 then by Table 1, we have 31)—2_1 =¢*—q+1,s0
3P = 1(modD(q)). Therefore, by Lemma 3.1, we have 3P = ¢°, therefore ¢ = 0(mod3), a
contradiction, or 37 = 27 and ¢ = 4, hence p = 3. Therefore we have P = (C3(3), but we
have |C5(3)| > |G2(4)|, a contradiction..

If ¢ = 2, then by Table 1, we have 2> — 1 = ¢> — ¢ + 1, so 2? = 1(modD(q)).
Therefore, by Lemma 3.1, we have 2P = ¢°, therefore ¢ = 0(mod2), i.e., 2 | q. Also we
have 2 — 1 = ¢®> — ¢ + 1, then g(¢ — 1) = 2(2P~1 — 1), therefore we deduce 4 1 q. Since
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2| g and 4 1 ¢, then ¢ = 2 a contradiction. (we have ¢ > 4)

Case(7): P = D,(¢'),p = 5,4 = 2,3,5. By Table 1, we have ¢> — ¢+ 1 = %,
therefore ¢ = 1(modD(q)). Then, by Lemma 3.1, we have ¢'” = ¢%. Since p > 5 then
p(p — 1) > 20. From this we deduce that ¢?®P=Y > ¢ which is impossible, by Lemma

3.1.(Since p > 3 = ¢'P # 27)

Case(8): P~ Dy11(¢'), ¢ = 2,3. By Table 1, if ¢ = 2, then we have ¢> —q+1 = 2P -1,
therefore, 2P = 1(modD(q)). Then, by Lemma 3.1, we have 2P = ¢% hence ¢ = 0(mod2).
Also, ¢> —q+1=2P — 1, then q(q — 1) = 2(2P~! — 1), therefore 4 { ¢, which imply ¢ = 2,
a contradiction. If ¢ = 3, then we have ¢> — ¢+ 1 = 3,,72_17 therefore 37 = 1(modD(q)).
Then, by Lemma 3.1, we have 3?7 = ¢% hence ¢ = 0(mod3), a contradiction, or 37 = 27
and ¢ = 4, hence p = 3. Therefore we have P = D4(3), but we have |Dy(3)| > |G2(4)], a

contradiction..

Case(9): P = Fy(q'). By Tables 1 and 2, the odd order components of Fy(q') are
¢d*—q¢?+1land ¢* +1.If ¢* —¢?+1=¢> —q+1, then ¢*>(¢> — 1) = q(¢ — 1), hence
q = ¢'?, therefore we deduce ¢’** = ¢'2 > ¢5, which is impossible, by Lemma, 3.1.

If 2 —q+1=¢*+1, then ¢(q — 1) = ¢’4, that is impossible.

Case(10): P =2 2G5(q'), ¢’ = 3*™*! > 3. By Table 2, we have ¢> —q+1 = ¢’ £/3¢ +1 =
32m+l 4 /32(m+1) 1 1, hence q(q— 1) = 3™T1(3™ £ 1), therefore ¢ = 3™ or ¢ = 3™ £ 1.

If ¢ = 3™*L then ¢ = 0(mod3), a contradiction.

If ¢ = 3™+ 1, then from ¢ = 3™ + 1 we deduce g(¢ — 1) = 3™(3™ + 1), then
3m(3™ 4 1) = 3mTY3™ + 1), therefore 3™ = 3™ which is impossible and from
q = 3™ —1 we deduce q(g—1) = (3™ —1)(3™ —2), then (3™ —2)(3™ —1) = 3m*T1(3™ 1),
therefore 3™ — 2 = 3™*1  which is impossible.

Case(11): P = Fg(q'). By Table 3, the odd order components of Eg(q') are ¢® — ¢ +1,
q/lﬂzl:qlf)_;'_l nd q/10+1
q/2:l:q/+1 a’ q/2+1 .
Ifg>? —q+1=¢q®—¢*+1, then q(¢ — 1) = ¢*(¢"* — 1). From this we deduce ¢ = ¢'4,
then ¢''?0 = ¢3° > ¢5, which is impossible by Lemma 3.1.

Ifg?—q+1= %, then ¢''® = 1(modD(q)). Hence, by Lemma 3.1, ¢'*® = ¢5,
/120

then ¢ = ¢*® > ¢%, which is impossible by Lemma 3.1.

Ifg?—q+1= % then ¢° = 1(modD(q)). Hence, by Lemma 3.1, ¢/30 = ¢5,
then ¢/1?0 = ¢®* > ¢%, which is impossible by Lemma 3.1.

Ifg?—qg+1= %, then ¢"*° = 1(modD(q)). Hence, by Lemma 3.1, ¢"*° = ¢%, then
¢ = ¢36 > ¢O, which is impossible by Lemma 3.1.

Case(12): P 2 2Ey(q), ¢ > 2. By Table 1, we have 45=7=5b = g2 — ¢ + 1. Now if
(3, +1) =1, we have ¢/ — ¢* +1=¢* — ¢+ 1, then ¢"*(¢”> — 1) = q(¢ — 1), therefore
¢ = q. From this we deduce ¢3¢ = ¢'? > ¢5, which is impossible by Lemma 3.1.

If (3,¢'+1) =3, then ‘TL&;H = ¢® — ¢+ 1. From this we deduce ¢'*® = 1(modD(q)),
then by Lemma 3.1, we have ¢/'® = ¢5, this implies ¢’*® = ¢'2 > ¢5, which is impossible
by Lemma 3.1.

Case(13): P =2 2D, (2), n = 2™ +1 > 5 By Table 1, ¢> — ¢+ 1 = 27! + 1, then
q(g — 1) =271 a contradiction.
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Case(14): P = A,(¢'), where (¢ —1) | (p+1). By Table 1, ¢* — ¢+ 1 = ‘2/ =, then
¢ = 1(modD(q)), therefore, by Lemma 3.1, we have ¢” = ¢%, hence ¢P®+1)/2 > 46,
which is impossible by Lemma 3.1, or ¢ = 27 and ¢ = 4, hence p = 3 and ¢ = 3.
Therefore we have P 2 A3(3), but we have 3° | |A3(3)| and 3° 1 |G2(4)|, a contradiction.

Case(15): P = 2D,(3), where 5 < p. By Tables 1 and 2, the odd order components
of 2D, (3) are 2 and & 72+1 If > — g+ 1 = 2t then 3% = 1(modD(q)), so, by
Lemma 3.1, 3%” = ¢%, therefore ¢ = 0(mod3), a contradlctlon or 3% = 27 and ¢q = 4,
therefore 2p = 3 is impossible. If ¢> —q + 1 = 2+1, then 3?P=2 = 1(modD(q)), so, by
Lemma 3.1, 32P~2 = ¢°, therefore ¢ = 0(mod3), a contradiction or 32P~2 = 27 and ¢ = 4,
therefore 2p — 2 = 3, hence 2p = 5 is impossible.

Case(16): P = 2D, (3), where 5 < p # 2™ + 1. By Table 1, ¢*> — g + 1 = ¥+
we deduce 32"~2 = 1(modD(q)). Then by Lemma 3.1, we have 322 = b, therefore
q = 0(mod3), a contradiction or or 32”_2 = 27 and q = 4, therefore 2n — 2 = 3, hence
2n = 5 is impossible.

Case(17): P = 2By(q), where ¢’ = 22™*1 > 2. By Table 3, the odd order components
of 2By(¢') are ¢ — 1, ¢ —/2¢ +1 and ¢ ++/2¢ + 1. If ¢> — ¢+ 1 = ¢’ — 1 then we have
¢ = 1(modD(q)). Hence, by Lemma 3.1, ¢’ = ¢%, then we deduce ¢”> = ¢'? > ¢% which
is impossible by Lemma 3.1

If ¢ —-q+1 = ¢ + 2¢ + 1, then, q(¢ — 1) = 2m(2™ £ 1). There-
fore, 2™t | ¢ or 2mtL | (¢ — 1). If 2m*! | ¢, then ¢ = 2™l hence

qlg — 1) = 2m+iem+l _ 1) > omFl(9m _ 1) a contradiction. If 2™+l | (¢ — 1),
then ¢ — 1 = 2™+ = 3k, which is impossible.

Case(18): P = 2Fy(q'), where ¢’ = 22™+1 > 2. By Table 2, the odd order components
of 2Fy(¢') are ¢ £ /2¢3 +¢ £v2¢ +1. Then ¢> —q+1=¢ +/2¢ +¢ £v2¢ +1,
hence q(q — 1) = 2mFi(23m+l 4 92m+l 4 9m 4 1) From this equation we de-
duce 2"+ | g or 2L | (¢ — 1). If 2mH | ¢, then ¢ = 2™*! which implies
gmHl(gmtl _ 1) = gm+1(93mHl 4 92mAl 4 9m 4 1) which is impossible. Similar to above
case we can deduce 2"t | (¢ — 1), which is impossible.

Case(19): P = A, 1(q), (p,¢') # (3,2),(3,4). By Table 1, ¢> — ¢+ 1 = m

Then ¢'? = 1(modD(q)), therefore, by Lemma 3.1, we deduce ¢'? = ¢°. Since p > 5, then

ypp—1)

¢z > ¢5 which is impossible by Lemma 3.1.

Case(20): P = A1(q'), where ¢’ is a power of 2. By Table 2, the odd order components
of Ai(¢') are ¢ +1and ¢/ —1.If ¢> — ¢+ 1 = ¢ + 1, we deduce ¢(q — 1) = ¢/, which is
impossible. If ¢ —q¢+1 = ¢’ — 1, then we deduce ¢’ = 1(modD(q)), therefore, by Lemma
3.1, wehaveq = ¢0. If ¢ = ¢% then > —q+1=¢ -1 =¢-1= (>~ 1)(g+1)(¢>—q+1),
from this we deduce (¢ + 1)(¢® — 1) = 1, which is impossible, since q > 4.

Case(21): P = 2A,(q'), where (¢/ +1) | (p—l— 1) and (p,q') # (3,3),(5,2). By Table 1,

the odd order components of 2A,(¢’) is q,+1 For both cases we have q’zp = 1(modD(q)),

therefore by Lemma 3.1, we deduce ¢’*” = ¢% hence ¢’» = ¢3. Since (¢ +1) | (p + 1)
and ¢ > 4, since if ¢ = 3, then we have ¢ = 0(mod3). Hence p > 5, and ¢?®+1/2 > 46
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which is impossible by Lemma 3.1, or ¢/?” = 27 and ¢ = 4, hence 2p = 3 and ¢’ = 3, is
impossible, since 4 = (¢’ + 1) | (p + 1), therefore p > 3 and 2p > 6.

Case(22) P=2D,(¢),n=2">4. By Table 1, the odd order component of 2D,,(q’)
(2 q+1) If (2,¢g+1) = 1, then we have ¢> —q+1 = ¢ +1, hence q(g—1) = ¢'™, which is
impossible. If (2,¢ + 1) = 2, then we have ¢"*® = 1(modD(q)), therefore, by Lemma 3.1,
¢?" = ¢5, hence ¢ = ¢3. If n > 4, then we have n — 1 > 3, therefore ¢"("~1) > ¢6, which

is impossible by Lemma 3.1. Now if n = 4, then P 2 2Dy(q’), hence we have ¢"* = ¢>.
By Table 1, we have

18

1P| = ¢"(¢* = 1)(¢* = D)([¢° - (" +1)/2 = ¢*(¢* — 1)(¢® —q+ 1)(¢* — 1)(¢?
D(@*+¢*+1) = ¢%(g—1)(* +q+1)(¢* — g+ 1)(¢* —2¢* + 1)(Q’4 + ¢+ 1)
b= +aq+ 1)@ —qg+ D@ -2+ 1)@+ d*+1) > ¢%@g— 1)

2(¢° —2¢% +1) > ¢°(a = 1)@+ 1)(¢® +a+ 1)(¢* —q+ D(@ - 2¢” +1) > G
¢ —q+1)>(¢—-1),(¢* = 2¢" +1) = (¢* = 2¢\/7 +1) = (a(¢® = 2,/0) +1) > (¢ + 1))
a contradiction, or ¢>® = 27 and ¢ = 4, hence 2n = 3 is impossible.

12
q
g+ 1 — g+ 1)@ —2¢% + 1)(¢* +1) = ¢°(q - 1)(q + (¢ + g+ 1)(¢* -
1
(

Case(23): P2 Ch(¢)yn=2">40r P> B,(¢), n=2" >4, ¢ odd.

In the above cases the odd order component is ‘1”127“ and > —g+1=14 +1
2n

— ¢5, this implies ¢ = ¢, then we have ¢ = ¢*" > ¢'2 > (%,
2n — 27 and q = 4, hence 2n = 3 is impossible.

by Lemma 3.1, ¢
which is impossible by Lemma 3.1 or ¢

Case(24): P = 2D, 11(2), where n > 2 and p = 2" — 1. By Table 2, the odd order
components of 2Dp,11(2) are 2P +1 and 2°PT1 1. If ¢? —q+1 = 2P+ 1, then g(¢— 1) = 2P,
which is impossible. If ¢> — ¢ + 1 = 2P*! + 1, then ¢(q — 1) = 2P*!, which is impossible.

Case(25) P = Cy(q¢'), ¢ is odd. By Table 1, the odd order component of C(q’) is
CHL 2 g4 1= ‘IIZTH, then ¢”2 = 2¢> — 2¢ + 1. From this we deduce |Ca(¢')| =
ME( 2 —1)%(¢?+1)/2 = 4¢*(q — 1)*(¢* — ¢ + 1)(2¢* — 2¢ + 1). Since |P| | |G], hence
(2¢> —2¢+1) [ ¢°(¢ — 1)*(¢ +1)*(¢* + ¢ + 1). Since

(2> —2¢+1,q+1)=(5,¢—1)

(2¢> —2¢+1,¢>+q+1)=1

(2¢> —2¢+1,q—-1)=1 (3)
then we have (2¢®> — 2¢ + 1) | 52, this is not correct unless ¢ = 4. If ¢ = 4, then we
have |Cy(4)| = 27.32.52.17 and |G| = 2!2.33.52.7.13. Since |C5(4)| | |G|, but 17 { |G|, a

contradiction.

Case(26): P =2 3Dy(q¢').By Table 1, we have ¢> —q+1=¢* —¢?>+1, then g(¢ — 1) =
q?(q"? — 1), therefore ¢ = ¢’?. From this we deduce that
"Da(d)| = ¢ (¢° = 1)(¢” ~ (g +¢?+1)(¢" —q?+1) = ¢*(¢* - 1)(a—1)(¢° +q+1)
(@ —q+1)=¢(¢- 1) +q+1)*(¢*—q+1)
Since [2D4(¢")| | |G], then we have (¢* + ¢+ 1)? | |G|. An easy calculation shows that
(g+1,¢+q+1)=1
(-1, +q+1)=(3,9-1)
(®+q+1,¢°—qg+1)=1 (4)
Therefore (¢> +q+ 1) | |G| = ¢%(¢ — 1)?>(g + 1)%(¢®> + ¢ + 1)(¢*> — q¢ + 1) is impossible.

Case(27): P = A1(¢'), ¢’ is not a power of 2. By Table 2, the odd order components
of A1(¢') are ¢ and (¢’ +1)/2 or (¢ —1)/2. If ¢> — ¢+ 1 = ¢, then |A1(¢)| = ¢ (¢ +
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"—1)/2 = (¢®> — ¢+ 1)(¢* — ¢+ 2)q(qg — 1)/2. Since |P| | |G|, we deduce M |
—1)%(g +1)%(¢*> — ¢+ 1). An easy calculation shows that;

(*—q+2,q-1)=(2,g-1)

(¢* —q+2,q+1)=(4,¢+1)

(> —q+2,¢+q+1)=(7,¢°+5) (5)

Therefore (g2 — g+ 2)/2 | 26.7, this implies (¢* — ¢ + 2)/2 = 2%.7, then for this equation
we have ¢ = 11, which is impossible(q = 3k + 1). Also we have (¢ — ¢ +2)/2 | 25. From
this we deduce ¢®> — ¢ +2 = 2°, then q(q — 1) = 6.5, therefore we have ¢ = 6, which is
impossible because ¢ = 3k + 1.

If 4| ¢ +1, then ¢ — g+ 1 = ¢ — 1/2, hence ¢ = 2¢*> — 2¢ + 3. From this we
deduce |A41(¢)| = 2(¢®> — q + 1)(¢®> — q + 2)(2¢®> — 2q + 3). Since |P| | |G|, so we have
(> —q+2) | ¢®(q—1)%(¢+1)*(¢> +q+1). By (4) we have (¢> — ¢+ 2) | 26.7, this implies
(q>+q+2) = 25.7, then for this equation we have ¢ = 11, which is impossible(q = 3k +1).
Also we have (¢? — ¢ +2) | 25. From this we deduce ¢ — ¢ +2 = 2°, then q(¢ +1) = 6.5,
therefore we have ¢ = 6, which is impossible because ¢ = 3k + 1.

If 4 | ¢ —1, then ¢> — ¢+ 1 = ¢ + 1/2, hence ¢ = 2¢> — 2¢ + 1. From this
we deduce |A1(¢))] = 2q(¢ — 1)(¢> — ¢ + 1)(2¢*> — 2¢ + 1). Since |P| | |G|, so
(2¢% —=2¢+1) | ¢°(q—1)%(g+1)%(¢> + ¢+ 1). Therefore, by (3) we have 2¢*> —2¢+1 | 52,
then 2¢> — 2¢ + 1 = 5, this implies 2¢(q¢ — 1) = 4, then ¢ = 2, a contradiction
or 2¢> — 2¢ + 1 = 25, this implies 2¢g(q — 1) = 24, then ¢ = 4 and ¢ = 25.
Therefore P = A;(25). By [6], we have |Out(P)| = 4 and by Lemma 2.4, we have
|G/K| | |Out(P)|. Now we set |G/K| =t and obtain t = 1, 2 or 4, and t|H||P| = |G|,
then ¢|H|(23.3.52.13) = 2'2.33.52.7.13. Hence |H| = 2°.32.7/t, where t = 1, 2 or 4. Now
let S € Syl7(H), then |S| = 7. Since H is nilpotent, therefore S <G and by Lemma 2.3
it follows that mas | |S| — 1, i.e., 13 | 7 — 1 which is impossible.

Case(28): P = 24, 1(¢). By Table 1, ¢* — ¢+ 1 = %. Then ¢% =

1(modD(q)), therefore by Lemma 3.1, we deduce ¢’ = ¢° hence ¢? = ¢3. Now
if p > 5, we have ¢?®1/2 > 46 which is impossible by Lemma 3.1. If p = 5,

by Table 1, ¢> —q +1 = (11“5-111;5(7;(11’-#1) and ¢° = ¢3. Now if (5,¢' + 1) = 1, then

we have ¢* —q+ 1 = (¢ +1)/(a+1) = (" + D/(d +1) = (¢ + /(¢ + 1),
then we deduce ¢ = ¢/, which is impossible. Therefore, (5,¢' + 1) = 5, then we have

P —q+1=(3+1)/(¢g+1) = 5‘%::1) = 5?;:11), then we have (¢+1) =5(¢'+1) = 5¢'+5,
hence q = 5¢' + 4, which is impossible(q is power of a prime number). If p = 3, then, by
Table 1, we have ¢> —qg+1 = %. Therefore, by Lemma 3.1, ¢’ = 1(modD(q)),
then ¢’ = ¢5. From this we deduce that ¢ = ¢/, then ¢> —q¢+1 = (¢ +1)/(¢+ 1) =

/3+1 3+1
(q,ig)(&;H) = (q+(f)(3,q)+1)’ then (¢ +1)(3,¢ + 1) = (¢ + 1). Therefore (3,q +1) =1

and [*A3(q)] = ¢*(¢ + 1)(¢* = D)(¢® + 1)/(g+ 1) = ¢*(g +1)*(¢ — 1)(¢* — ¢ + 1). By [6],
we have |Out(P)| = f, such that ¢> = r/, where r is a prime number. By Lemma
2.4, we have |G/K| | |Out(P)|. Now we set |G/K| =t and obtain t|H||P| = |G|, then
tlH| = ¢*(¢—1)(¢* + g+ 1) and ¢ | f. Since ¢ = 3k + 1 we have ¢ — 1 = 3k. If t = 1,
then |H| = ¢*(q — 1)(¢*> + ¢ +1). We have (¢ — 1,¢*> + q + 1) = 3, therefore if we set
S € Syls(H), then |S| = 3(¢ — 1)3. Since H is nilpotent, therefore S <G and by Lemma
2.3 it follows that mg | |S| — 1, i.e., ¢ — ¢+ 1| 3(¢ — 1)3 — 1 which is impossible.
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Table 1.: The order components of finite simple groups P with s(P) = 2

P Restrictions on P mi mo
Ay 6<n=pp+1p+2 n!/2p p
one of n, n — 2
is not a prime
p(p 1) P_
P(P+ ) - P _
Ap(a) (=D [+ I 1> I (a' — 1)
p(p 1) i P41
?Ap_1(q) : +1) I1:- ( - (1)) m
2A,(q) (g+1) [ (p+1) ¢ (@ - DI - ) s
(p, @) # (3,3),(5,2)
ZA3(2) 20 31 5
Bu(q) n=2">4 qodd " (q" )H”_l( " 1) —
By(3) 33+ ) (3% - 1) .
Cn(q) n=2">2 qodd ¢ ("~ DI (@ - 1) ey
Cp(q) ¢=2,3 ¢ (¢ + DT (¢* - 1) =5
Dy(q) p>5,4=2735 qm’ DT 1( * 1) ]
Dy11(q) g=2,3 - 1)q”(p“)(qp +1) ol
(" = DI (¢* = 1) —
2Dn(Q) n=2">4 qn(nil) Hz 1 (q22 - 1) (g,q—i-i_-l)
2Dp(2 n=2"4+1>5 on(n=1(n 4 1)(2n—1 — 1) 2141
127 (2% - 1)
2D, (3) B<p#£2"+1 DI (3% 1) H
2Dn(3) 9 < om 4 1 ?é P %3n(n71) (3n 4 1)(3n71 - 1) 3"*21-1-1
[[-23% -1
Ga(q) | 2<g=e(mod3),e=+1 ¢°(¢° —)(¢® - 1)(g+¢) ¢ —eq+1
’Dy(q) -1 -D@+¢+1) [ ¢ -’ +1
Fu(q) q odd A -D@ -1 =) [ —¢+]1
2Fy(2) 211 33,52 13
Es(q) 4% (¢ - )( —1)(¢° - 1) e
(¢° —1)(¢* - 1)(¢* - 1) —
2Es(q) q>2 g% (¢"? - )( 1)§q6 1) SEr=)
(¢ +1)(¢* +1)(¢* - 1)
My 26335 11
Ja 27.33.5° 7
Ru 214.3353.7.13 29
He 210 33 52 73 17
McL 2736537 11
Cop 22T 395172 11.13 23
Cos 210 3753 7.11 23
Figo 217 39 52.7.11 13
HN 214 36 56 7.11 19
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Table 2.: The order components of finite simple groups P withs(P) = 3

P Restrictions on P mi mo ms
A n>6,n=np, WLQ) P p—2
p — 2 are primes
Ai(g) 41(¢+1) q+1 q =
Ai(q) 4](¢—1) g—1 q .
Ai(q) 2]q q q+1 qg—1
Ay (2) 8 3 7
ZA5(2) 21536 5 7 11
2Dp(3) | 5<p=2"+1 | 230 D3t 1) a4l sl
[o7(3% - 1)
2Dp1(2) [ n=2,p=2"-1 or(1)(op — 1) 2P + 1 2P+l 1
[/ (2% -1
Ga(q) q = 0(mod3) (¢ —1)3 ¢ —q+1 @ +q+1
*Gy(q) | ¢=3""1>3 ¢°(¢* — 1) g—3¢+1 ] qg+3q+1
Fy(q) q even *(¢® —1)%(¢" —1)° ¢ +1 ¢ — ¢ +1
?Fy(q) q=2"""1>2 A -D@PF+1) | = V2P + | @+ V2054
q—v2q+1 | g++2¢+1
F+(2) 236 31T 52 73 11.13 73 127
17.19.31.43
E7(3) 223.3%3.52.73.112.13? 757 1093
19.37.41.61.73.547
M1 2132 5 11
Mos 27325.7 11 23
Moy 21033 5.7 11 23
J3 27.3°5 17 19
HiS 293253 7 11
Suz 213 3752 7 11 13
Coy 218 36 53 7 11 23
Fias 218 313 52 7.11.13 17 23
Fy 21 310 53 72 13 19 31
Fy 221 313 56 72, 31 47

11.13.17.19.23
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Table 3.: The order components of finite simple groups P with s(P) > 3

P Restrictions mi mo ms un ms me
on P
As(4) 20 3 5 7
“Ba(q) | q=2"""1>2 ¢ q—1 | q¢—+v2q | q++v2q
+1 +1
2Es(2) 236,39 52,7211 13 17 19
Es(q) ¢=2.3 7'2°(¢® — 1)(¢'® — 1) q;‘;:gjzl q;‘;ig::l ¢ — ¢
(mod>b) (¢ —1)(¢*2 1) +1
(¢ —1)(¢® — 1)
(¢* +D(¢* +¢° +1)
Moo 27.32 5 7 11
Ji 23.3.5 7 11 19
O'N 29.325.73 11 19 31
LyS 28.37.55.7.11 31 37 67
Fify, 221 316 5273 11.13 17 23 29
F 246 320 59 76 112,133 41 59 71
17.19.23.29.31.47
Es(q) ¢=0,1,4 (1120((118 - 1)((114 -1) q;:gsﬂl q;(;igsﬂl ¢ —q* 2120:11
(modb) (g2 — 1)%(¢'% — 1)? +1
(*-1%(¢" +¢+1)
Jy 221 33.5.7.113 23 29 31 37 | 43
References
[1] G.Y. Chen, A new characterization of sporadic simple groups, Algebra Collog. 3, No. 1, 49-58(1996).

2]
(3]

[4]
(5]

[10]

G. Y. Chen, On Frobenius and 2-Frobenius group, Jornal of Southwest China Normal University, 20(5),
485-487(1995).(in Chinese)

G. Y. Chen, A new characterization of PSLy(q), Southeast Asian Bull. Math., 22(3), 257-263(1998).

G. Y. Chen, Characterization of 3Dy4(q), Southeast Asian Bull. Math., 25, 389-401(2001).

G. Y. Chen and H.Shi, 2D, (3)(9 < n = 2™ + 1 not a prim) can be characterized by its order components, J.
Appl. Math. Comput., 19(1-2), 353-362(2005).

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon
Press, Oxford 1985.

M.R.Darafsheh and A.Mahmiani, A quantitative characterization of the linear groups Lp1(2), Kumamoto
J. Math., 20, 33-50(2007).

M.R.Darafsheh, Characterizability of the group 2Dp(3) by its order components, where p > 5 is a prime
number not of the form 2™ + 1, Acta Math. Sin., (Engl. Ser) 24(7), 1117-1126(2008).

M.R.Darafsheh and A.Mahmiani, A characterization of the group 2D, (2), where n = 2™ + 1 > 5, J. Appl.
Math. Comput., 31(1-2), 447-457(2009).

M.R.Darafsheh, Characterization of the groups Dp11(2) and Dp41(3) using order components, J. Korean
Math. Soc., 47(2), 311-329(2010).

M.R.Darafsheh and M. Khademi, Characterization of the groups Dy(g) by order components, where p > 5 is
a prime and ¢ = 2,3 or 5, (manuscript).

A. Iranmanesh, S.H. Alavi and B. Khosravi, A characterization of PSL(3,q), where ¢ is an odd prime power,
J. Pure Appl. Algebra, 170(2-3), 243-254(2002).

A. Tranmanesh, S.H. Alavi and B. Khosravi, A characterization of PSL(3, q) for ¢ = 2", Acta Math. Sin.(Engl.
Ser.), 18(3), 463-472(2002).

A. Iranmanesh, B. Khosravi and S.H. Alavi, A characterization of PSU(3,q) for ¢ > 5, South Asian Bull.
Math., 26(2), 33-44(2002).

M. Khademi, Characterizability of finite simple groups by their order components: a summary of resoults,
International Journal of Algebra, vol. 4, no.9, 413-420(2010).

Behrooz Khosravi and Bahnam Khosravi, A characterization of Eg(q), Algebras, Groups and Geometries, 19,
225-243(2002).




P. Nosratpour / J. Linear. Topological. Algebra. 04(01) (2015) 11-23. 23

Behrooz Khosravi and Bahnam Khosravi, A characterization of 2 Eg(q), Kumamoto J. Math., 16, 1-11(2003).
A. Khosravi and B. Khosravi, A characterization of 2D,,(q), where n = 2™, Int. J. Math., Game theory and
algebra, 13, 253-265(2003).

A. Khosravi and B. Khosravi, A new characterization of PSL(p,q), Comm. Alg., 32, 2325-2339(2004).
Bahman Khosravi, Behnam Khosravi and Behrooz Khosravi, A new characterization of PSU(p,q), Acta
Math. Hungar., 107(3), 235-252(2005).

A. Khosravi and B. Khosravi, r-recognizability of By (q) and Cr(q), where n = 2™ > 4, Journal of pure and
applied alg.,199, 149-165(2005).

Behrooz Khosravi, Bahman Khosravi and Behnam Khosravi, Characterizability of PSL(p+ 1, q) by its order
components, Houston Journal of Mathematics, 32(3), 683-700(2006).

A. Khosravi and B. Khosravi, Characterizability of PSU(p + 1, q) by its order components, Rocky mountain
J. Math., 36(5), 1555-1575(2006).

A.S.Kondratev, On prime graph components of finite simple groups, Mat. Sb. 180, No. 6, 787-797, (1989).
H. Shi and G.Y. Chen, 2D,11(2)(5 < p # 2™ — 1) can be characterized by its order components, Kumamoto
J. Math., 18, 1-8(2005).

J.S.Williams, Prime graph components of finite groups, J. Alg. 69, No.2,487-513(1981).

K.Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys.3, no. 1, 265-284 (1892).



