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Abstract. The notion of compression has received enormous attention in recent years be-
cause of its necessity in terms of the computational cost and other applicable features. But
many times the notion expansion appears to be quite useful. Tight frames are quite useful in
signal reconstruction, signal and image de-noising, compressed sensing because of the avail-
ability of a simple, explicit reconstruction formula. So in this paper, we discuss the extension
of a basis by including some very sparse (at most two nonzero components) vectors so that
the new frame becomes a tight frame. We do the basis extension in finite dimensional Hilbert
spaces (both real and complex) to construct tight frames. We formulate constructive algo-
rithms to do the aforementioned task. The algorithms guarantee us to produce tight frames
with very less computational cost, and the new tight frames compensate for multiple era-
sures. The algorithms also do not disturb the vectors in the given basis. We also present one
application of the aforementioned concept.
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1. Introduction

Frames are more flexible substitutes for bases as they allow redundancy. The notion
of frames was initiated by Duffin and Schaeffer [13] in 1952 while studying nonharmonic
Fourier series. With the emergence of the wavelet era Daubechies, Grossmann and Meyer
[12] reintroduced and developed the theory of frames in 1986. The flexible structure of
frames drew the attention of many engineers, mathematicians and physicists because of
its wide application in various well known fields like signal processing [18], coding and
communications [23], image processing [5], sampling [15, 16], numerical analysis, filter
theory [3]. Recently, it is emerged as an important tool in compressive sensing, quantum
information processing, data analysis, coding theory and in several other areas.
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Tight frames are widely applicable because of the availability of a simple and explicit
reconstruction formula. Special types of tight frames are applied to solve problems in
communications [21–24]. A physical interpretation of tight frames has been given in
Casazza et al. [6]. Gobel et al. [20] constructed tight frames for the space of real valued
functions defined on a graph of finite set of points, and they applied them for denoising
a function f with given noisy observations. Cotfas and Gazeau [9] applied the notion of
tight frames in crystal and quasi-crystal physics. They described Honeycomb lattice and
diamond structure in terms of tight frames. Construction of equiangular tight frames
have been discussed in [1, 2, 19]. Construction of k-angle tight frames have been studied
by Datta and Oldroyd [10]. For some recent work on tight frames and their applications
one may refer [8, 11, 14].

Feng et al. [17] addressed the problem of constructing finite tight frames with pre-
scribed norm for each vector in the frame. They have employed the Householder trans-
formations for this purpose. The computation of eigenvalues required for this method is
itself a tedious job and the computational cost is very high for large matrices. Casazza
and Leon [7] discussed the construction of tight frames with a given positive, self adjoint,
invertible operator, and with a given set of lengths of frame vectors to be constructed.
In this case also the conditions are too restrictive, and the computation of eigenvalues
requires a large amount of computation. Cahill et al. [4] established a method of con-
structing finite frames with a given spectrum of frame operator and prescribed set of
lengths of frame vectors. Their method is also very restrictive and imposes high compu-
tational costs. There are two standard methods of extending a frame to a tight frame.
(1) Using the eigenvalues and eigenvectors of a given frame operator: Given a frame
{fi}mi=1 for Rn. Let {ei}ni=1 be the eigenvectors for the frame operator with eigenvalues
λ1 ⩾ λ2 ⩾ ... ⩾ λn. Construct the vectors gi =

√
λ1 − λiei for i = 2, 3, .., n. Then the

collection {fi}mi=1 ∪ {gi}ni=2 forms a tight frame.
(2) Extending vectors to equal norm orthogonal bases: Given a frame {fi}mi=1 for Rn, for
each i = 1, 2, ...,m add vectors {fij}nj=2 so that {fi} ∪ {fij}nj=2 is an equal norm orthog-
onal set. The construction of the vectors {fij}nj=2 is again done by using eigenvalues and
eigenvectors. Now the collection {f1}∪{f1j}nj=2∪{f2}∪{f2j}nj=2∪ ........∪{fn}∪{fnj}nj=2
forms a tight frame.

Both the above methods require the computation of eigenvalues and eigenvectors. The
computation of eigenvalues and eigenvectors are tedious job. To overcome the issue of
computing eigenvalues and eigenvectors, we propose new simple algorithms to construct
tight frames in finite dimensional real and complex Hilbert spaces. Given any basis we
extend it by adding some sparse vectors into it to form a tight frame without disturbing
the given basis elements. Also our algorithm will provide the tight frame bound auto-
matically without much computation. Although it seems little inconvenient adding extra
vectors into a basis, but as a result it gives a tight frame which is easier to handle. Also
the additional vectors are very sparse with at most two nonzero components. The new
tight frame also compensates for erasures. Initially, we start with the spaces R2 and R3,
then generalize the algorithm for Rn. We also construct tight frames in complex domains
C2 and C3, and then generalize our algorithm to Cn. As an application, we discuss the
effect of the process on the numerical range of the frame operator.

2. Basis expansion and construction of tight frames

We begin the section by recalling the basic concepts of frame and tight frame. Let H
be a finite dimensional Hilbert space with inner product ⟨., .⟩ and norm ∥.∥.
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Definition 2.1 A sequence of elements {ϕ}i∈I ⊂ H is called a frame for H if there exist
real positive constants A,B such that

A∥x∥2 ⩽
∑
i∈I

|⟨x, ϕi⟩|2 ⩽ B∥x∥2, ∀x ∈ H. (1)

If A = B, then (1) becomes
∑

i∈I |⟨x, ϕi⟩|2 = A∥x∥2 for all x ∈ H. In that case, the frame
{ϕ}i∈I is called a tight frame. If A = B = 1, then (1) becomes

∑
i∈I |⟨x, ϕi⟩|2 = ∥x∥2 for

all x ∈ H. In that case the frame {ϕ}i∈I is called a Parseval frame.
Let {ϕ}i∈I ⊂ H be a frame for H. The map L : H → l2 defined by Lx = {⟨x, ϕi⟩}i∈I is

called the analysis or pre-frame operator. L is bounded and linear. Its adjoint L∗ : l2 →
H, given by L∗({ci}i∈I) =

∑
i∈I

ciϕi is called the analysis operator. The operator S =

L∗L : H → H, defined by Sx =
∑
i∈I

⟨x, ϕi⟩ϕi is called the frame operator. The operator S

is bounded, linear, positive, self adjoint and invertible. When the frame {ϕ}i∈I is a tight
frame with bound A, then the frame operator S = AI, where I is the identity operator.

In this case, we have a nice explicit reconstruction formula x =
1

A

∑
i∈I

⟨x, ϕi⟩ϕi. That is

why tight frames are more useful in applications.

2.1 Construction of tight frames in R2

Consider a set of vectors M = {(1, 0), (1, 1)} in R2. It is a minimal spanning set for R2. It
is also a frame which is not tight. Now consider the setM ′ = {(1, 0), (1, 1), (−1, 1), (0, 1)}.
This is a tight frame with bound 3. Here we have extended the set M to make a tight
frame without disturbing the given vectors. So naturally the following questions arise:
1. Is it always possible to extend a minimal spanning set into a tight frame?
2. How to construct the tight frames?
3. How many extra vectors are to be added into the given system?
4. What will be the bound for the newly formed tight frame?
5. Can we formulate an algorithm to perform the above mentioned task?
6. Can we extend the algorithm to R3 and generalize it to Rn?
7. Can we construct such an algorithm for C2, C3 and generalize it to Cn?

The answers to Q.1, Q.5, Q.6 and Q.7 are affirmative. The following algorithm will
address Q.1, Q.2, Q.3 and Q.4.

Algorithm 1
Input basis F = {(a, b), (c, d)}
If F is a tight frame then stop. Print the frame F is tight. Else Let F = F ′

Include vectors (−a, b) and (−c, d) into F ′

Compute M = max{2(a2 + c2), 2(b2 + d2)}
Include vectors

√
M − 2(a2 + c2)(1, 0) and

√
M − 2(b2 + d2)(0, 1) into F ′

Remove the zero vector from F ′

The new set of vectors F ′ forms a tight frame.
The bound for the tight frame F ′ is M .

The above algorithm guarantees us to produce a tight frame from a given basis in R2.
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The maximum number of extra vectors to be added is 3.

Geometrical interpretation of this construction:
Given basis F = {(a, b), (c, d)}. If we extend it by using above algorithm then we obtain
the tight frame

F ′ = {(a, b), (c, d), (−a, b), (−c, d), (
√

M −M1, 0) or (0,
√

M −M2)},

where M1 = 2(a2 + c2), M2 = 2(b2 + d2) and M = max{M1,M2}. Note that (−a, b) and
(−c, d) are the reflections of the given vectors (a, b) and (c, d), respectively, about the y-
axis. (

√
M −M1, 0) and (0,

√
M −M2) are the adjustment vectors, where (

√
M −M1, 0)

lies on x− axis, whereas (0,
√
M −M2) lies on y−axis.

Example 2.2
Input basis Output tight frame Bound

{(2, 1), (1,−1)} {(2, 1), (1,−1), (−2, 1), (−1,−1),
√
6(0, 1)} 10{(1

2
,
1

3

)
, (1,−2)

} {(1
2
,
1

3

)
, (1,−2),

(
− 1

2
,
1

3

)
, (−1,−2),

√
103

18
(1, 0)

} √
74
3

{(1, 1), (1,−1)} {(1, 1), (1,−1)} 2

Proposition 2.3 If F = {(a, b), (c, d)} is a given basis in R2 with the property that
a2 + c2 = b2 + d2. If we construct a tight frame F ′ by using the Algorithm 1, then there
will be a maximum of 2 additional vectors.

Proof. The proof is straightforward from the Algorithm 1. As a2 + c2 = b2 + d2, and
M = max{2(a2+c2), 2(b2+d2)}. Hence

√
M − 2(a2 + c2) = 0 and

√
M − 2(b2 + d2) = 0.

As a result, we obtain two zero vectors, which have no contribution in the construction
tight frame, and we remove them from F ′. Hence there will be a maximum of 2 additional
vectors in F ′. ■

2.2 Construction of tight frames in R3

The algorithm in R2 with a little modification can be generalized to R3. Given a basis
{(a, b, c), (d, e, f), (g, h, i)} in R3. We extend the basis to construct a tight frame.

Algorithm 2
Input basis F = {(a, b, c), (d, e, f), (g, h, i)}
If F is a tight frame then stop. Print the frame F is tight. Else Let F = F ′

Include vectors
{(−a, b, 0), (a, 0,−c), (0,−b, c), (−d, e, 0), (d, 0,−f), (0,−e, f), (−g, h, 0),
(g, 0,−i), (0,−h, i)} into F ′.
Compute M = max{3(a2 + d2 + g2), 3(b2 + e2 + h2), 3(c2 + f2 + i2)}
Include vectors

√
M − 3(a2 + d2 + g2)(1, 0, 0),

√
M − 3(b2 + e2 + h2)(0, 1, 0)

and
√

M − 3(c2 + f2 + i2)(0, 0, 1) into F ′

Remove the zero vector from F ′

The new set of vectors F ′ forms a tight frame.
The bound for the tight frame F ′ is M .

The above algorithm guarantees us to produce a tight frame from a given basis in R3.



N. K. Sahu / J. Linear. Topological. Algebra. 12(03) (2023) 211-223. 215

The maximum number of extra vectors to be added is 11.

Example 2.4
Input basis Output tight frame Bound{

(1,0,0),(1,1,1), (1,1,0)
} {

(1,0,0),(1,1,1),(1,1,0),(-1,0,0),(1,0,0),
(-1,1,0), (1,0,-1),(0,-1,1),(-1,1,0),(1,0,0),

(0,-1,0),
√
3(0,1,0),

√
6(0,0,1)

}
9{(

1
2 ,

1
3 ,1

)
,(1,-2,5),(2,3,4)

} {(
1
2 ,

1
3 ,1

)
,(1,-2,5),(2,3,4),

(
-12 ,

1
3 ,0

)
,
(
1
2 ,0,-1

)
,(

0,-13 ,1
)
, (-1,-2,0), (1,0,-5),(0,2,5), (-2,3,0),

(2,0,-4),(0,-3,4),
√
441
2 (1,0,0),

√
260
3 (0,1,0)

}
126{

(1, 2, 1), (2,−1, 1), (1, 1, 2)
} {

(1,2,1),(2,-1,1),(1,1,2),(-1,2,0),
(1,0,-1),(0,-2,1),(-2,-1,0),(2,0,-1),
(0,1,1),(-1,1,0), (1,0,-2),(0,-1,2)

}
18

In the third row of the above table, one can observe that the number of extra vectors
added in the basis to form a tight frame is 9. But in general by the algorithm there should
be 11 additional vectors. This happened because of the additional property of the given
basis, 12 + 22 + 12 = 22 + (−1)2 + 12 = 12 + 12 + 22. That is the sum of the squares of
the first components of each vector is the same as the sum of the squares of the second
components of each vector is the same as the sum of the squares of the third components
of each vector. Hence we have the following proposition:

Proposition 2.5 If {(a, b, c), (d, e, f), (g, h, i)} is a given basis in R3 with the property
that a2 + d2 + g2 = b2 + e2 + h2 = c2 + f2 + i2. If we construct a tight frame by using
the Algorithm 2, then there will be a maximum of 9 additional vectors.

Proof. The proof is straightforward from the Algorithm 2. As a2+d2+g2 = b2+e2+h2 =
c2 + f2 + i2, and M = max{3(a2 + d2 + g2), 3(b2 + e2 + h2), 3(c2 + f2 + i2)}. Hence√

M − 3(a2 + d2 + g2) = 0 and
√

M − 3(b2 + e2 + h2) = 0. As a result, we have two
additional zero vectors, which have no contribution in the construction tight frame, and
we remove them. Hence there will be a maximum of 9 additional vectors. ■

Although there may be smaller tight frames containing a given basis, our algorithm
guarantees us to provide a tight frame for any given basis. Also the algorithm is very
simple to implement and requires very less number of computations.

2.3 Construction of tight frames in Rn

Now, we generalize our algorithm for Rn. Given a basis{
X1 = (x11, x12, ..., x1n), X2 = (x21, x22, ..., x2n), ..., Xn = (xn1, xn2, ..., xnn)

}
in Rn. We extend it to form a tight frame.

Algorithm 3
Input basis F =

{
X1 = (x11, x12, ..., x1n), X2 = (x21, x22, ..., x2n), ....,

Xn = (xn1, xn2, ..., xnn)
}

If F is a tight frame then stop. Print the frame F is tight.
Else,

let F = F ′.
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Include vectors

{(−x11, x12, 0, ..., 0), (x11, 0,−x13, 0, ..., 0), ....., (x11, 0, .., 0,−x1n),

(0,−x12, x13, 0, .., 0), (0, x12, 0,−x14, 0, .., 0), ..., (0, x12, 0, .., 0,−x1n),

..................................................................., (0, 0, ....,−x1n−1, x1n),

(−x21, x22, 0, ..., 0), (x21, 0,−x23, 0, ..., 0), ....., (x21, 0, .., 0,−x2n),

(0,−x22, x23, 0, .., 0), (0, x22, 0,−x24, 0, .., 0), ..., (0, x22, 0, .., 0,−x2n),

.................................................................., (0, 0, ....,−x2n−1, x2n),

..........................................................................................................,

{(−xn1, xn2, 0, ..., 0), (xn1, 0,−xn3, 0, ..., 0), ....., (xn1, 0, .., 0,−xnn),

(0,−xn2, xn3, 0, .., 0), (0, xn2, 0,−xn4, 0, .., 0), ..., (0, xn2, 0, .., 0,−xnn),

......................................................................., (0, 0, ....,−xnn−1, xnn)} into F ′.

Compute

M = max
{
n(x211 + x221 + ...+ x2n1), n(x

2
12 + x222 + ..+ x2n2), ...., n(x

2
1n + x22n + ..+ x2nn)

}
.

Compute

M1 =
√

M − n(x211 + x221 + ...+ x2n1),

M2 =
√

M − n(x212 + x222 + ...+ x2n2),

..........................................................,

Mn =
√

M − n(x21n + x22n + ...+ x2nn).

Include vectors M1(1, 0, ..., 0),M2(0, 1, 0, ..., 0), ........,Mn(0, 0, ..., 1) into F ′.
Remove the zero vectors from F ′.
The new set of vectors F ′ forms a tight frame.
The bound for the tight frame F ′ is M .

Given any basis in Rn, our algorithm extends it and provides us a tight frame without
much computation. In this process more number of vectors are added into the given
system. So it seems unwanted, but after the process we get a tight frame with very less
number of computations. Tight frames are easy to handle and more applicable in nature.
Also the new tight frame compensates for erasures. Therefore, it gives justice to the
process of adding some more vectors into the given system.

Theorem 2.6 Let

F =
{
(x11, x12, ..., x1n), (x21, x22, ..., x2n), ...., (xn1, xn2, ..., xnn)

}
be a given basis in Rn. Suppose we extend it by using Algorithm 3 to form a tight frame
F ′. Then max |F ′| = 1

2(n
3 − n2 +4n− 2), where max |F ′| indicates maximum number of
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nonzero vectors in F ′. Moreover, if

x211 + x221 + ...+ x2n1 = x212 + x222 + ...+ x2n2 = ... = x21n + x22n + ...+ x2nn,

then max |F ′| = 1
2(n

3 − n2 + 2n).

Proof. We can estimate this by using simple counting. Initially, we include the vectors
from the given basis, that gives rise to n vectors in F ′. Then in the second step of the

algorithm we include n

(
n

2

)
number of vectors into F ′. In the final step of the algorithm

we include vectors

M1(1, 0, ..., 0),M2(0, 1, 0, ..., 0), ........,Mn(0, 0, ..., 1)

into F ′, and these are another n vectors. At least one of these vectors is a zero vector
and we remove the zero vectors. That gives at most n− 1 nonzero vectors to be included
in F ′. Therefore, we have

max |F ′| = n+ n

(
n

2

)
+ n− 1

= 2n− 1 + n
n!

2!(n− 2)!
= 2n− 1 +

n2(n− 1)

2
=

1

2
(n3 − n2 + 4n− 2).

In the second part of the theorem, if

x211 + x221 + ...+ x2n1 = x212 + x222 + ...+ x2n2 = ... = x21n + x22n + ...+ x2nn,

then M1 = M2 = ... = Mn = 0. So, the vectors

M1(1, 0, ..., 0),M2(0, 1, 0, ..., 0), ........,Mn(0, 0, ..., 1)

are all zero vectors, and we remove them all. Therefore,

max |F ′| = n+ n

(
n

2

)
=

n3 − n2 + 2n

2
.

■

3. Construction of tight frames in C2

Given a basis B in C2, we extend it to form a tight frame. We apply similar a procedure
as discussed in the real case. We treat an element in C2 as an element in R4. Specifically,
we represent an element (a, b) ∈ C2 as (a, b) = (a1 + ia2, b1 + ib2) = (a1, a2, b1, b2). We
construct similar algorithms as in the real case but in this case the number of basis
elements is 2. Also in this case we have to add less number of vectors as compared to
R4.
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Suppose we are given a basis B = {(a, b), (c, d)} = {(a1+ia2, b1+ib2), (c1+ic2, d1+id2)}
of C2. We represent the basis as B = {(a1, a2, b1, b2), (c1, c2, d1, d2)}. We construct the
following algorithm to extend B to form a tight frame for C2.

Algorithm 1
Input basis B = {(a, b), (c, d)} = {(a1 + ia2, b1 + ib2), (c1 + ic2, d1 + id2)}
If B is a tight frame then stop.
Print the frame B is tight.
Else
Let B′ = {(a1, a2, b1, b2), (c1, c2, d1, d2)}
Include vectors
{(−a1, 0, b1, 0), (−a1, 0, 0, b2), (0,−a2, b1, 0), (0,−a2, 0, b2),
(−c1, 0, d1, 0), (−c1, 0, 0, d2), (0,−c2, d1, 0), (0,−c2, 0, d2)} into B′.
Compute M = max{3(a21 + a22 + c21 + c22), 3(b

2
1 + b22 + d21 + d22)}

Denote M1 = 3(a21 + a22 + c21 + c22) and M2 = 3(b21 + b22 + d21 + d22).
Include vectors

√
M −M1(1, 0, 0, 0),

√
M −M2(0, 0, 1, 0) into B′.

The new set of vectors
B′ =

{
(a1 + ia2, b1 + ib2), (c1 + ic2, d1 + id2), (−a1, b1), (−a1, ib2), (−ia2, b1), (−ia2, ib2),

(−c1, d1), (−c1, id2), (−ic2, d1), (−ic2, id2), (
√
M −M1, 0), (0,

√
M −M2)

}
forms a tight

frame.
Remove the zero vector from B′

The bound for the tight frame B′ is M .

Example 3.1
Input basis Output tight frame Bound{

(1 + i, 1− i), (3 + i, 2i)
} {

(1 + i, 1− i), (3 + i, 2i), (−1, 1), (−1,−i),
(−i, 1), (−i,−i), (−3, 0), (−3, 2i),

(−i, 0), (−i, 2i), (0,
√
18)

}
36{(

1
2 + i,−1

3 + i
)
,

(−1 + 2i, 2 + i)
} {(

1
2 + i,−1

3 + i
)
,
(
−1

2 , −
1
3

)
,
(
−1

2 , i
)
,(

−i,−1
3

)
,
(
−i, i

)
(−1 + 2i, 2 + i),(1, 2),

(1, i), (−2i, 2),(−2i, i),(0,
√

5
12)

}
75
4

3.1 Construction of tight frames in C3

Suppose we are given a basis B = {(a, b, c), (d, e, f), (g, h, k)}
= {(a1 + ia2, b1 + ib2, c1 + ic2), (d1 + id2, e1 + ie2, f1 + if2), (g1 + ig2, h1 + ih2, k1 + ik2)}
of C3. We represent the basis as B = {(a1, a2, b1, b2, c1, c2), (d1, d2, e1, e2, f1, f2),
(g1, g2, h1, h2, k1, k2)}. We construct the following algorithm to extend B to form a tight
frame for C3.

Algorithm 2
Input basis B = {(a, b, c), (d, e, f), (g, h, k)}
= {(a1 + ia2, b1 + ib2, c1 + ic2), (d1 + id2, e1 + ie2, f1 + if2), (g1 + ig2, h1 + ih2, k1 + ik2)}
If B is a tight frame then stop.
Print the frame B is tight.
Else
Let B′ = {(a1, a2, b1, b2, c1, c2), (d1, d2, e1, e2, f1, f2), (g1, g2, h1, h2, k1, k2)}
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Include vectors{
(−a1, 0, b1, 0, 0, 0), (−a1, 0, 0, b2, 0, 0), (−a1, 0, 0, 0, c1, 0), (−a1, 0, 0, 0, 0, c2),

(0,−a2, b1, 0, 0, 0), (0,−a2, 0, b2, 0, 0), (0,−a2, 0, 0, c1, 0), (0,−a2, 0, 0, 0, c2),
(0, 0,−b1, 0, c1, 0), (0, 0,−b1, 0, 0, c2), (0, 0, 0,−b2, c1, 0), (0, 0, 0,−b2, 0, c2)

}
into B′.

Include vectors{
(−d1, 0, e1, 0, 0, 0), (−d1, 0, 0, e2, 0, 0), (−d1, 0, 0, 0, f1, 0), (−d1, 0, 0, 0, 0, f2),

(0,−d2, e1, 0, 0, 0), (0,−d2, 0, e2, 0, 0), (0,−d2, 0, 0, f1, 0), (0,−d2, 0, 0, 0, f2),
(0, 0,−e1, 0, f1, 0), (0, 0,−e1, 0, 0, f2), (0, 0, 0,−e2, f1, 0), (0, 0, 0,−e2, 0, f2)

}
into B′.

Include vectors{
(−g1, 0, h1, 0, 0, 0), (−g1, 0, 0, h2, 0, 0), (−g1, 0, 0, 0, k1, 0), (−g1, 0, 0, 0, 0, k2),

(0,−g2, h1, 0, 0, 0), (0,−g2, 0, h2, 0, 0), (0,−g2, 0, 0, k1, 0), (0,−g2, 0, 0, 0, k2),
(0, 0,−h1, 0, k1, 0), (0, 0,−h1, 0, 0, k2), (0, 0, 0,−h2, k1, 0), (0, 0, 0,−h2, 0, k2)

}
into B′.

Compute
M = max

{
5(a21 + a22 + d21 + d22 + g21 + g22), 5(b

2
1 + b22 + e21 + e22 + h21 + h22),

5(c21 + c22 + f2
1 + f2

2 + k21 + k22)
}

Denote M1 = 5(a21 + a22 + d21 + d22 + g21 + g22), M2 = 5(b21 + b22 + e21 + e22 + h21 + h22)
and M3 = 5(c21 + c22 + f2

1 + f2
2 + k21 + k22).

Include vectors
√
M −M1(1, 0, 0),

√
M −M2(0, 1, 0) and

√
M −M3(0, 0, 1) into B′.

The new set of vectors
B′ =

{
(a1 + ia2, b1 + ib2, c1 + ic2), (−a1, b1, 0), (−a1, ib2, 0), (−a1, 0, c1), (−a1, 0, ic2),

(−ia2, b1, 0), (−ia2, ib2, 0), (−ia2, 0, c1), (−ia2, 0, ic2), (0,−b1, c1), (0,−b1, ic2),
(0,−ib2, c1), (0,−ib2, ic2), (d1 + id2, e1 + ie2, f1 + if2), (−d1, e1, 0), (−d1, ie2, 0),
(−d1, 0, f1), (−d1, 0, if2), (−id2, e1, 0), (−id2, ie2, 0), (−id2, 0, f1), (−id2, 0, if2),
(0,−e1, f1), (0,−e1, if2), (0,−ie2, f1), (0,−ie2, if2), (g1 + ig2, h1 + ih2, k1 + ik2),
(−g1, h1, 0), (−g1, ih2, 0), (−g1, 0, k1), (−g1, 0, ik2), (−ig2, h1, 0), (−ig2, ih2, 0),
(−ig2, 0, k1), (−ig2, 0, ik2), (0,−h1, k1), (0,−h1, ik2), (0,−ih2, k1), (0,−ih2, ik2),
(
√
M −M1, 0, 0), (0,

√
M −M2, 0), (0, 0,

√
M −M3)

}
forms a tight frame.

Remove the zero vector from B′

The bound for the tight frame B′ is M .

Example 3.2
Input basis Output tight frame Bound{
(1 + i, 1− i, i),

(3 + i, 2i, 1), (1, i,−i)
} {

(1 + i, 1− i, i), (−1, 1, 0), (−1,−i, 0),
(−1, 0, 0), (−1, 0, i), (−i, 1, 0), (−i,−i, 0),
(−i, 0, 0), (−i, 0, i), (0,−1, 0)(0,−1, i),
(0, i, 0), (0, i, i), (3 + i, 2i, 1), (−3, 0, 0)

(−3, 2i, 0), (−3, 0, 1), (−3, 0, 0), (−i, 0, 0)
(−i, 2i, 0), (−i, 0, 1), (−i, 0, 0), (0, 0, 1),

(0,−2i, 1), (0,−2i, 0), (1, i,−i), (−1, 0, 0),
(−1, i, 0), (−1, 0, 0), (−1, 0,−i), (0, i, 0),
(0, 0,−i), (0, 0,−i), (0,−i, 0), (0,−i,−i)

(0,
√
30, 0), (0, 0,

√
50)

}
65

3.2 Construction of tight frames in Cn

Now, we generalize our algorithm for Cn. Given a basis{
(x11 + iy11, x12 + iy12, .., x1n + iy1n), (x21 + iy21, x22 + iy22, ..., x2n + iy2n), ...., (xn1 +

iyn1, xn2 + iyn2, ..., xnn + iynn)
}
in Cn. We extend it to form a tight frame.
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Algorithm 3
Input basis B =

{
(x11 + iy11, x12 + iy12, ..., x1n + iy1n), (x21 + iy21, x22 + iy22, ..., x2n +

iy2n), ...., (xn1 + iyn1, xn2 + iyn2, ..., xnn + iynn)
}
.

If B is a tight frame then stop. Print the frame B is tight.
Else,

let B′ =
{
(x11, y11, x12, y12, ..., x1n, y1n), (x21, y21, x22, y22, ..., x2n, y2n),

..., (xn1, yn1, xn2, yn2, ..., xnn, ynn)
}
.

Include vectors

{(−x11, 0, x12, 0, ..), (−x11, 0, 0, y12, 0, ..), (−x11, 0, 0, 0, x13, 0, ..), .., (−x11, 0, .., 0, y1n),

(0,−y11, x12, 0, ..), (0,−y11, 0, y12, 0, ..), (0,−y11, 0, 0, x13, 0, ..), .., (0,−y11, 0, .., 0, y1n),

(0, 0,−x12, 0, x13, 0, ...), (0, 0,−x12, 0, 0, y13, 0, ...), ...., (0, 0,−x12, 0, 0, ..., y1n),

................................, (0, 0, ....,−y1n−1, x1n, 0), (0, 0, ....,−y1n−1, 0, y1n)} into B′.

Include vectors

{(−x21, 0, x22, 0, ..), (−x21, 0, 0, y22, 0, ..), (−x21, 0, 0, 0, x23, 0, ..), .., (−x21, 0, .., 0, y2n),

(0,−y21, x22, 0, ..), (0,−y21, 0, y22, 0, ..), (0,−y21, 0, 0, x23, 0, ..), .., (0,−y21, 0, .., 0, y2n),

(0, 0,−x22, 0, x23, 0, ..), (0, 0,−x22, 0, 0, y23, 0, ..), ..., (0, 0,−x22, 0, 0, ..., y2n),

.................................................., (0, 0, ....,−y2n−1, x2n, 0), (0, 0, ....,−y2n−1, 0, y2n),

........................................................................................................................,

........................................................................................................................,

(−xn1, 0, xn2, 0, ..), (−xn1, 0, 0, yn2, 0, ..), (−xn1, 0, 0, 0, xn3, 0, ..), .., (−xn1, 0, .., 0, ynn),

(0,−yn1, xn2, 0, .), (0,−yn1, 0, yn2, 0, .), (0,−yn1, 0, 0, xn3, 0, .), .., (0,−yn1, 0, .., 0, ynn),

(0, 0,−xn2, 0, xn3, 0, ..), (0, 0,−xn2, 0, 0, yn3, 0, ..), .., (0, 0,−xn2, 0, 0, .., ynn),

................................., (0, 0, ....,−ynn−1, xnn, 0), (0, 0, ....,−ynn−1, 0, ynn)
}
into B′.

Compute

M = max
{
(2n − 1)(x211 + y211 + x221 + y221 + ... + x2n1 + y2n1), (2n − 1)(x212 + y212 + x222 +

y222 + ...+ x2n2 + y2n2), ......., (2n− 1)(x21n + y21n + x22n + y22n + ...+ x2nn + y2nn)
}
.

Denote
M1 = (2n− 1)(x211 + y211 + x221 + y221 + ...+ x2n1 + y2n1),
M2 = (2n− 1)(x212 + y212 + x222 + y222 + ...+ x2n2 + y2n2),
.......................................................................................,
Mn = (2n− 1)(x21n + y21n + x22n + y22n + ...+ x2nn + y2nn).
Include vectors

√
M −M1(1, 0, 0, ..),

√
M −M2(0, 1, 0, ..),....,

√
M −Mn(0, 0, .., 1) into

B′.

The new set of vectors
B′ =

{
(x11 + iy11, x12 + iy12, .., x1n + iy1n), (x21 + iy21, x22 + iy22, .., x2n + iy2n), .., (xn1 +

iyn1, xn2 + iyn2, .., xnn + iynn),
(−x11, x12, 0, 0, ..), (−x11, iy12, 0, 0, ..), (−x11, 0, x13, 0, ..), (−x11, 0, iy13), ..,
(−x11, 0, 0, .., iy1n), (−iy11, x12, 0, ..), (−iy11, iy12, 0, ..), (−iy11, 0, x13, 0, ..), ..,
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(−iy11, 0, .., 0, iy1n), (0,−x12, x13, 0, ..), (0,−x12, 0, iy13, 0, ..), .., (0,−x12, 0, .., 0, iy1n),
....................................................., (0, 0, ....,−iy1n−1, x1n), (0, 0, ....,−iy1n−1, iy1n),
(−x21, x22, 0, ...), (−x21, iy22, 0, ...), (−x21, 0, x23, 0, ...), ....., (−x21, 0, .., 0, iy2n),
(−iy21, x22, 0, ..), (−iy21, iy22, 0, ..), (−iy21, 0, x23, 0, ..), ....., (−iy21, 0, .., 0, iy2n),
(0,−x22, x23, 0, ...), (0,−x22, iy23, 0, ...), ...., (0,−x22, 0, 0, ..., iy2n),
....................................................., (0, 0, ....,−iy2n−1, x2n), (0, 0, ....,−iy2n−1, iy2n),
...........................................................................................................................,
...........................................................................................................................,
(−xn1, xn2, 0, ...), (−xn1, iyn2, 0, ...), (−xn1, 0, xn3, 0, ...), ....., (−xn1, 0, .., 0, iynn),
(−iyn1, xn2, 0, ..), (−iyn1, iyn2, 0, ..), (−iyn1, 0, xn3, 0, ..), ....., (−iyn1, 0, .., 0, iynn),
(0,−xn2, xn3, 0, ...), (0,−xn2, iyn3, 0, ...), ...., (0,−xn2, 0, 0, ..., iynn),
.........................................., (0, 0, ....,−iynn−1, xnn), (0, 0, ....,−iynn−1, iynn),
(
√
M −M1, 0, 0, ...), (0,

√
M −M2, 0, ..), ....., (0, 0, ....,

√
M −Mn)

}
forms a tight frame.

Remove the zero vector from B′.
The bound for the tight frame B′ is M .

Given any basis in Cn, our algorithm extends it and provides us a tight frame without
much computation. In this process more number of vectors are added into the given
system. So it seems unwanted. But, tight frames are easy to handle and more applicable
in nature. Also the new tight frame compensates for erasures. Moreover, the additional
vectors are very sparse with at most two nonzero components. Therefore, it gives justice
to the process of adding some more vectors into the given system.

Theorem 3.3 Let B =
{
(x11 + iy11, x12 + iy12, ..., x1n + iy1n), (x21 + iy21, x22 +

iy22, ..., x2n + iy2n), ...., (xn1 + iyn1, xn2 + iyn2, ..., xnn + iynn)
}
be a given basis in Cn.

Suppose we extend it by using Algorithm 3 to form a tight frame B′. Then max |B′| =
(2n3 − 2n2 + 2n − 1), where max |B′| indicates maximum number of nonzero vectors in
B′. Moreover, if

x211 + y211 + x221 + y221 + ...+ x2n1 + y2n1 = x212 + y212 + x222 + y222 + ...+ x2n2 + y2n2

= ..... = x21n + y21n + x22n + y22n + ...+ x2nn + y2nn,

then max |B′| = (2n3 − 2n2 + n).

Proof. We can estimate this by using simple counting. Initially, we include the vectors
from the given basis, that gives rise to n vectors in B′. Then in the second step of the

algorithm we include n
{(2n

2

)
− n

}
number of vectors into B′. In the final step of the

algorithm we include the vectors√
M −M1(1, 0, ..., 0),

√
M −M2(0, 1, 0, ..., 0), ........,

√
M −Mn(0, 0, ..., 1)

into B′, and these are another n vectors. At least one of these vectors is a zero vector
and we remove the zero vectors. That gives at most n− 1 nonzero vectors to be included
in B′. Therefore, we have

max |B′| = n+ n
{(2n

2

)
− n

}
+ n− 1

= 2n− 1 + n
{ (2n)!

2!(2n− 2)!
− n

}
= 2n3 − 2n2 + 2n− 1.
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In the second part of the theorem, if

x211 + y211 + x221 + y221 + ...+ x2n1 + y2n1 = x212 + y212 + x222 + y222 + ...+ x2n2 + y2n2

= ..... = x21n + y21n + x22n + y22n + ...+ x2nn + y2nn,

then M1 = M2 = ... = Mn = M . So, the vectors√
M −M1(1, 0, ..., 0),

√
M −M2(0, 1, 0, ..., 0), ........,

√
M −Mn(0, 0, ..., 1)

are all zero vectors, and we remove them all. Therefore,

max |B′| = n+ n
{(2n

2

)
− n

}
= 2n3 − 2n2 + n.

■

As direct consequences of the above theorem, we have the following corollaries.

Corollary 3.4 Given a basis B in C2, if we extend it to form a tight frame B′ by using
Algorithm 1, then the maximum number of nonzero elements in B′ is 11.

Corollary 3.5 Given a basis B in C3, if we extend it to form a tight frame B′ by using
Algorithm 2, then the maximum number of nonzero elements in B′ is 41.

4. Application: Reduction of numerical range of frame operator

Let T be a bounded linear operator in a Hilbert space H. Then the numerical range
of T denoted by NR(T ) is defined as NR(T ) = {⟨Tx, x⟩ : x ∈ H, ∥x∥ = 1}.

Theorem 4.1 The numerical range of frame operator is either a singleton set or a closed
bounded set lying between the frame bounds. Moreover, it is a convex set.

Proof. Let {ϕi}i∈I be a non-tight frame for H with lower and upper frame bounds A

and B, respectively. The frame operator for {ϕi}i∈I is defined as Sx =
∑
i∈I

⟨x, ϕi⟩ϕi. Also

we have ⟨Sx, x⟩ =
∑
i∈I

|⟨x, ϕi⟩|2 for all x ∈ H. Therefore, A∥x∥2 ⩽ ⟨Sx, x⟩ ⩽ B∥x∥2 for

all x ∈ H. As a result we have

NR(S) = {⟨Sx, x⟩ : x ∈ H, ∥x∥ = 1} ⊆ [A,B].

If {ϕi}i∈I is a tight frame with bound A, then ⟨Sx, x⟩ =
∑
i∈I

|⟨x, ϕi⟩|2 = A∥x∥2 for all

x ∈ H. Therefore, NR(S) = {A}, a singleton set. In particular, if {ϕi}i∈I is a Parseval
frame then NR(S) = {1}. Moreover, since S is a bounded linear operator, by Toeplitz
Housdorff theorem, NR(S) is a convex set. In addition, if H is finite dimensional then
NR(S) is compact. ■

Let {ϕi}i∈I be a non-tight frame for H with lower and upper frame bounds A and
B, respectively. In this case NR(S) ⊆ [A,B]. If we extend {ϕi}i∈I to a tight frame with
bound M , then the numerical range of the frame operator is reduced to a singleton set
{M}. The singleton set {M} may not belong to [A,B].
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5. Conclusion

We have developed simple algorithms to extend any basis to form a tight frame. The
algorithms are simple to implement, they do not require the computation of eigenvalues
and eigenvectors. Although our algorithms require more number of vectors to be added
into the basis in comparison to the other existing methods, but by this we can avoid
the computation of eigenvalues and eigenvectors. Eigenvalues and eigenvectors are not
easy to compute for higher dimensional cases. So the methods developed in this paper
can be more useful in applications. Also the tight frames constructed by our methods
compensates for multiple erasures.
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