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Abstract. In this paper, for a given set of real interval numbers σ that satisfies in special
conditions, we find an interval nonnegative matrix CI such that for each point set δ of given
interval spectrum σ, there exists a point matrix C of CI such that δ is its spectrum. For this
purpose, we use unit lower triangular matrices and especially try to use binary unit lower
triangular matrices. We also study some conditions for existence solution to the problem.
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1. Introduction and preliminaries

A matrix L is unit lower triangular provided each entry on its main diagonal equals
1, and each entry above its main diagonal is zero. The inverse of a unit lower triangular
matrix also is unit lower triangular and is easy to calculate. In Gaussian elimination
method and LU factorization unit lower triangular matrices play a very important role.
The binary unit lower triangular matrices is a unit lower triangular matrices that all
entries below its main diagonal are 0 or 1.

Interval analysis is used to solve many robotic problems such as the clearance effect,
robot reliability, motion planning, localization and navigation [6]. An interval matrix is
a matrix whose entries are interval numbers. The use of interval numbers began in the
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first half of the twentieth century and is expanding every day. In 1965, logic was fuzzy
by Zadeh and interval numbers were used [13]. In 1993, Rohn [10] found the inverse of
interval matrices.

Now, we recall some definition of interval analysis and interval matrices. The summa-
tion, subtraction, multiplication and division of two interval numbers b = [b, b],a = [a, a],
respectively, are defined as follows:

• a+ b = [a+ b, a+ b]

• a− b = [a− b, a− b]

• a · b = [min{a · b, a · b, a · b, a · b},max{a · b, a · b, a · b, a · b}]
• a

b = a · b′
, b

′
= [1

b
, 1b ] and 0 /∈ b

also the square of a interval number a = [a, a] is

• a2 =

 [a2, a2] if 0 ≤ a ≤ a,[
a2, a2

]
if a ≤ a ≤ 0,[

0,max{[a2, a2}
]
if a ≤ 0 ≤ a.

The interval complex number z is similarly defined as follows:

z = [z, z] = λ+ iµ = [λ, λ] + i[µ, µ],

where λ is the real part and µ is the imaginary part of this interval complex number.
The properties of interval complex numbers can be deduced based on the properties of
interval real numbers defined above.

Definition 1.1 Let A and A be n× n real matrices, the following set

AI = [A,A] = {A : A ≤ A ≤ A}

is called an n × n real interval matrix.The midpoint and the radius of AI are denoted

respectively by Ac =
A+A
2 and A∆ = A−A

2 .

If all interval entries of a real interval matrix ≥ 0, then AI is called nonnegative interval
matrix. The set of all real n× n interval matrices is denoted by IRn×n and the set of all
n× n nonnegative interval matrices also is denoted by NIRn×n.

Definition 1.2 Let AI be an interval square matrix. Then Λ(AI) = {λ ∈ C;Ax =
λx, x ̸= 0, A ∈ AI} is the set of eigenvalues of AI .

When we say that the interval number of λI
1 = [λ1, λ1] is greater than or equal the

interval number of λI
2 = [λ2, λ2], it means for all a ∈ λI

1 and b ∈ λI
2, a ⩾ b.

The eigenvalue of n×n nonnegative interval matrix AI is called Perron interval eigen-
value of AI if it is nonnegative and greater than or equal of all absolute value of eigenval-
ues of AI and denoted by λ1 = [λ1, λ1]. i.e. [λ1, λ1] ≥

∣∣[λi, λi]
∣∣ for i = 2, 3, · · · , n, where∣∣[λi, λi]

∣∣ = [min{
∣∣λi

∣∣ , ∣∣λi

∣∣},max{
∣∣λi

∣∣ , ∣∣λi

∣∣}]
The problem of finding the eigenvalue of interval matrices is one of the most pressing

issues for mathematicians, and several papers have been written in recent years, for
example [2–4, 11].

In 2018, Nazari et al. [9] started the inverse eigenvalue problem of nonnegative interval
matrices, which is briefly denoted by NIIEP. They solved NIIEP for matrices of order
at most 3. In this paper by helping unit lower triangular matrices and use similarity of
matrices we try to solve the problem for order greater than 3. Nazari et al. [7] solved
NIEP for any order of distance matrices via unit lower triangular matrices.
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When we say that the interval spectrum σI is realizable by interval matrix CI , it
means, we can find an interval nonnegative matrix CI such that for every point set δ of
interval set of eigenvalues σI (for each interval element one point), there exist a point
nonnegative matrix C of CI such that δ is its spectrum.

Some necessary conditions for NIIEP on the list of complex interval number σ ={
[λ1, λ1], [λ2, λ2], . . . , [λn, λn]

}
to be the spectrum of a nonnegative interval matrix are

listed below.
(1) The Perron eigenvalue max{|[λi, λi]|; [λi, λi] ∈ σ} belongs to σ (Perron-Frobenius
theorem in interval case).
(2) The list σ is closed under complex conjugation.

(3) sk =
∑n

i=1

[
λi, λi

]k ≥ 0.
(4) )smk ≤ nm−1skm for k,m = 1, 2, . . . (JLL inequality in interval case) [1, 5].

In this paper, we only consider real interval spectrum and postpone the inverse eigen-
value problem for complex spectrum to another paper in the near future. The paper is
organized as follows. First we solve the NIIEP in several cases where each element of
σ is real, and σ has at least as many negative eigenvalues as positive eigenvalues. Then
we solve the NIIEP in several cases where each element of σ is real and the number of
negative elements of σ is less than the number of positive elements of σ.

2. Interval real spectrum

Let k ⩽ 3 and σI =
{
[λ1, λ1], [λ2, λ2], . . . , [λn, λn]

}
be a given spectrum such that

[λ1, λ1] ⩾ [λ2, λ2] ⩾ · · · ⩾ [λk, λk] ⩾ 0 > [λn, λn] ⩾ · · · ⩾ [λk+1, λk+1]. We try to

construct a nonnegative interval matrix CI such that it realizes spectrum σ. At first we
solve the interval spectrum of Suleimanova. This spectrum has one positive eigenvalue
and nonpositive another eigenvalues with nonnegative summation.

Theorem 2.1 ([12] Suleimanova’s Theorem in interval case). Assume that given set
of real interval numbers σI =

{
[λ1, λ1], [λ2, λ2], . . . , [λn, λn]

}
such that [λ1, λ1] > 0 ⩾

[λn, λn] ⩾ [λn−1, λn−1] ⩾ · · · ⩾ [λ2, λ2], and s1 =
∑n

i=1[λi, λi] ≥ 0, then there exists a
set of nonnegative interval matrices that realizes σ.

Proof. If characteristic polynomial of interval matrix is

P (λ) =
∏n

i=1

(
λ− [λi, λi]

)
= λn − [an−1, an−1]λ

n−1 − [an−2, an−2]λ
n−2 − · · · − [a0, a0]

and all [ai, ai] ⩾ 0 for i = 0, 1, · · · , n − 1, then it is easy to see that the following
nonnegative interval companion matrix is solution of problem

CI =


0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 0 · · · 1[
a0, a0

] [
a1, a1

]
· · ·

[
an−1, an−1

]

 .

On the other hand, we construct the solution via unit lower triangular matrix. Let n = 2
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and consider the upper interval triangular matrix

AI =

([
λ1, λ1

]
α2

0
[
λ2, λ2

]) ,

where α2 =
[
α2, α2

]
is interval number and 2×2 unite lower tiangular matrix L =

(
1 0
1 1

)
.

Therefore, by similarity of matrices, the following matrix

CI = LAIL−1 =

([
λ1, λ1

]
− α2 α2[

λ1, λ1

]
− α2 −

[
λ2, λ2

]
α2 +

[
λ2, λ2

]) , (1)

has eigenvalues
[
λ1, λ1

]
and

[
λ2, λ2

]
and if −λ2 ≤ α2 ≤ α2 ≤ λ1, then the matrix CI is

nonnegative. For n = 3, we consider

AI =

[
λ1, λ1

]
α2 α3

0
[
λ2, λ2

]
0

0 0
[
λ3, λ3

]
 ,

where α2 =
[
α2, α2

]
, α3 =

[
α3, α3

]
are interval numbers and assume that

L =

1 0 0
1 1 0
1 0 1

 .

Then the matrix

CI = LAIL−1 =

[
λ1, λ1

]
− α2 − α3 α2 α3[

λ1, λ1

]
− α2 −

[
λ2, λ2

]
− α3 α2 +

[
λ2, λ2

]
α3[

λ1, λ1

]
− α2 − α3 −

[
λ3, λ3

]
α2 α3 +

[
λ3, λ3

]
 , (2)

is similar to the matrix AI and if −λ2 ≤ α2, −λ3 ≤ α3 and α2+α3 ≤ λ1, then the matrix

CI is nonnegative. To continue the proof, we follow the above process. Consider

AI =



[
λ1, λ1

]
α2 α3 · · · αn

0
[
λ2, λ2

]
0 · · · 0
. . .

0 0 0
. . . 0

0 0 0 · · ·
[
λn, λn

]

 .

Similarly, α2 =
[
α2, α2

]
, α3 =

[
α3, α3

]
, · · · , αn =

[
αn, αn

]
are interval numbers and

L =


1 0 0 · · · 0
1 1 0 · · · 0

. . .

1 0 0
. . . 0

1 0 0 · · · 1

 . (3)
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Then the matrix

CI = LAIL−1 =



[
λ1, λ1

]
− t α2 α3 · · · αn[

λ1, λ1

]
−
[
λ2, λ2

]
− t α2 +

[
λ2, λ2

]
α3 · · · αn

. . .[
λ1, λ1

]
−
[
λn−1, λn−1

]
− t α2 α3

. . . αn[
λ1, λ1

]
−
[
λn, λn

]
− t α2 α3 · · · αn +

[
λn, λn

]


(4)

with t =
∑n

i=2 αi is similar to the matrix AI , and if

−λi ≤ αi, i = 2, 3, · · · , n,

α2 + α3 + · · ·+ αn ≤ λ1, (5)

then the interval matrix CI is nonnegative and by similarity transformation for every
point set σ of σI , we can select the point matrix C of CI such that σ is its spectrum.
The system of inequalities (5) always has a feasible solution. For example, one of these
solutions is to put αi = −

[
λi, λi

]
for i = 2, 3, · · · , n. ■

Example 2.2 For the following interval set of eigenvalues find an interval matrix CI

such that realize this set.

σI = {[14, 17] , [−4,−3] , [−3,−2] , [−2,−1] , [−1, 0]}

All of necessary conditions satisfy. At first we find the characteristic polynomial

P (λ) = λ5 − [4, 11]λ4 − [49, 159]λ3 − [104, 589]λ2 − [60, 850]λ− [0, 408] .

Because all coefficients of the above polynomial except λ5 are negative, the following
nonnegative interval companion matrix realizes the subset of σ

CI =


0
0
0
0

[0, 408]

1
0
0
0

[60, 850]

0
1
0
0

[104, 589]

0
0
1
0

[49, 159]

0
0
0
1

[4, 11]

 .

Also, by choosing the interval matrix AI as

AI =


[14, 17]

0
0
0
0

[4, 5]
[−4,−3]

0
0
0

[3, 4]
0

[−3,−2]
0
0

[2, 3]
0
0

[−2,−1]
0

[1, 2]
0
0
0

[−1, 0]
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and the point matrix L from (3) for n = 6, we can find the nonnegative interval matrix
CI = LAIL−1 as follows:

CI =


[0, 7]
[3, 11]
[2, 10]
[1, 9]
[0, 8]

[4, 5]
[0, 2]
[4, 5]
[4, 5]
[4, 5]

[3, 4]
[3, 4]
[3, 4]
[3, 4]
[3, 4]

[2, 3]
[2, 3]
[2, 3]
[2, 3]
[2, 3]

[1, 2]
[1, 2]
[1, 2]
[1, 2]
[0, 2]

 ,

that σ is its spectrum.

Remark 1 We should pay attention to this that the interval matrix CI that we obtained
in the previous example is not such that the set of its eigenvalues is the σI , but for each
point set that we choose from the σI , we can choose a ponit matrix from the interval
matrix CI , such that the selected point set be the spectrum of the selected point matrix.
For example the following point matrix



1 5 4 3 2

3 2 4 3 2

10 5 4 3 2

9 5 4 3 2

8 5 4 3 2


∈ CI ,

but its eigenvalues,
[
0.0 0.0 18.7223 −3.3612 + 0.7484 i −3.3612− 0.7484 i

]
, don’t belong

to the σI .

3. Spectrum with two positive interval eigenvalues

First, for a set of interval eigenvalues σI = {
[
λ1, λ1

]
,
[
λ2, λ2

]
,
[
λ3, λ3

]
,
[
λ4, λ4

]
} such

that [λ1, λ1] ⩾ [λ2, λ2] ⩾ 0 > [λ4, λ4] ⩾ [λ3, λ3] and
∑4

i=1[λi, λi] ⩾ 0 and [λ1, λ1] ⩾∣∣[λi, λi]
∣∣ , i = 3, 4, we find an interval nonnegative 4 × 4 matrix CI such that realizes

σ and then for a given interval set σ with two positive interval eigenvalues and three
negative interval eigenvalues that have necessary conditions (1)-(4) solve the problem
and finally for two positive interval eigenvalues and more than three interval negative
eigenvalues with necessary conditions again study the problem.

Theorem 3.1 Let σI = {
[
λ1, λ1

]
,
[
λ2, λ2

]
,
[
λ3, λ3

]
,
[
λ4, λ4

]
} such that [λ1, λ1] ⩾

[λ2, λ2] ⩾ 0 > [λ4, λ4] ⩾ [λ3, λ3] and
∑4

i=1[λi, λi] ⩾ 0 and [λ1, λ1] ⩾
∣∣[λi, λi]

∣∣ , i = 3, 4.

Then there exists an interval nonnegative matrix that realizes σI .

Proof. If [λ1, λ1] ⩾ [λ4, λ4]+[λ3, λ3] then by (2) we can construct an interval nonnegative

matrix CI
1 with spectrum

{
[λ1, λ1], [λ4, λ4], [λ3, λ3]

}
and the nonnegative interval matrix

CI =

(
CI
1 0

0 [λ2, λ2]

)
realizes σ. Otherwise consider the interval matrix AI and point
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matrix L as follows:

AI =


[λ1, λ1] α2 + α4 α3 0

0 [λ2, λ2] α α4

0 0 [λ3, λ3] 0

0 0 0 [λ4, λ4]

 and L =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 ,

where α = β3 = [β3, β3] and αi = [αi, αi] for i = 2, 3, 4 are real interval numbers. For

convenience, we denote λi =
[
λi, λi

]
for i = 1, · · · , 4. Then the following interval matrix

CI = LAIL−1 =


λ1 − t α2 + α4 α3 0
λ1 − λ2 − t− α α2 + λ2 α3 + β3 α4

λ1 − λ3 − t α2 + α4 α3 + λ3 0
λ1 − λ2 − t− α α2 + λ2 − λ4 α3 + α α4 + λ4

 ,

is similar to the matrix A, where t =
∑4

i=2 αi. If

−λi ≤ αi, i = 2, 3, 4,

4∑
i=2

αi ≤ λ1

−α3 ≤ β3 ≤ β3 ≤ λ1 − λ2 −
4∑

i=2

αi, (6)

then the matrix C is nonnegative. ■

Now we consider the set of σI with two positive eigenvalues and three negative eigen-
values with special conditions.

Theorem 3.2 Consider spectrum σI = {
[
λ1, λ1

]
,
[
λ2, λ2

]
,
[
λ3, λ3

]
,
[
λ4, λ4

]
,
[
λ5, λ5

]
}

such that [λ1, λ1] ⩾ [λ2, λ2] ⩾ 0 >
[
λ5, λ5

]
⩾ [λ4, λ4] ⩾ [λ3, λ3], and

∑5
i=1[λi, λi] ⩾ 0

and [λ1, λ1] ⩾
∣∣[λi, λi]

∣∣ , i = 3, 4, 5. If there exist real interval numbers β3 = [β3, β3] and
αi = [αi, αi] for i = 2, 3, 4, 5 such that

−λi ≤ αi, i = 2, 3, 4, 5,

5∑
i=2

αi ≤ λ1,

α2 + α4 + α5 ⩾ 0,

−α3 ≤ β3 ≤ β3 ≤ λ1 − λ2 −
5∑

i=2

αi, (7)

then there exists a nonnegative interval 5× 5 matrix that realizes σ.

Proof. Let [λ1, λ1] ⩾ [λ5, λ5] + [λ4, λ4] + [λ3, λ3]. Then, by (4), we can construct an

interval nonnegative matrix CI
1 with spectrum

{
[λ1, λ1], [λ5, λ5], [λ4, λ4], [λ3, λ3]

}
and
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the nonnegative interval matrix CI =

(
CI
1 0

0 [λ2, λ2]

)
has spectrum σ. Otherwise in this

case we consider

AI =


(
λ1, λ1

]
α2 + α4 + α5 α3 0 0

0
[
λ2, λ2

]
β3 α4 α5

0 0
[
λ3, λ3

]
0 0

0 0 0
[
λ4, λ4

]
0

0 0 0 0
[
λ5, λ5

]

 ,

and

L =


1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 0 1 0
1 1 0 0 1

 , (8)

where β3 = [β3, β3] and αi = [αi, αi] for i = 2, 3, 4, 5 are real interval numbers and

similar above theorem, we denote λi =
[
λi, λi

]
for i = 1, · · · , 4. Then the following

interval matrix

CI =LAIL−1 =


λ1 − t α2 + α4 + α5 α3 0 0
λ1 − λ2 − t− β3 α2 + λ2 α3 + β3 α4 α5

λ1 − λ3 − t α2 + α4 + α5 α3 + λ3 0 0
λ1 − λ2 − t− β3 α2 + λ2 − λ4 α3 + β3 α4 + λ4 α5

λ1 − λ2 − t− β3 α2 + λ2 − λ5 α3 + β3 α4 α5 + λ5

 . (9)

is similar to the matrix A, where t =
∑4

i=2 αi. Since hold all conditions (7), then this
matrix is nonnegative and has spectrum σ. ■

Example 3.3 Let

σI = {
[
λ1, λ1

]
,
[
λ2, λ2

]
,
[
λ3, λ3

]
,
[
λ4, λ4

]
,
[
λ5, λ5

]
} =

{[11, 12], [3, 4], [−4,−3], [−3,−2], [−2,−1]}

where [11, 12] > [3, 4] > 0 ≥ [−2,−1] ≥ [−3,−2] ≥ [−4,−3] and
5∑

i=1
λi ≥ 0. We choose

the interval matrix AI as

AI =


[11, 12]

0
0
0
0

[1, 5]
[3, 4]
0
0
0

[4, 5]
[−4,−3]
[−4,−3]

0
0

0
[3, 4]
0

[−3,−2]
0

0
[2, 3]
0
0

[−2,−1]

 ,
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and choose the matrix (8). Then

CI = L−1AIL =


[1, 6]
[0, 7]
[4, 10]
[0, 7]
[0, 7]

[1, 5]
[0, 2]
[1, 5]
[2, 5]
[1, 4]

[4, 5]
[0, 2]
[0, 2]
[0, 2]
[0, 2]

0
[3, 4]
0

[0, 2]
[3, 4]

0
[2, 3]
0

[2, 3]
[0, 2]

 .

Now, we consider the general case of two positive interval eigenvalues.

Theorem 3.4 Take spectrum σI = {λ1, λ2, . . . , λn} = {
[
λ1, λ1

]
,
[
λ2, λ2

]
, · · · ,

[
λn, λn

]
}

such that [λ1, λ1] ⩾ [λ2, λ2] ⩾ 0 >
[
λn, λn

]
⩾ [λn−1, λn−1] ⩾ · · · ⩾ [λ3, λ3], and∑n

i=1[λi, λi] ⩾ 0 and [λ1, λ1] ⩾
∣∣[λi, λi]

∣∣ , i = 3, 4, · · · , n. If there exist real interval

numbers βi = [βi, βi] for i = 3, 4, · · · , r − 1 and αi = [αi, αi] for i = 2, 3, · · · , n such that

−λi ≤ αi, i = 2, 3, · · · , n,
n∑

i=2

αi ≤ λ1

α2 +

n∑
i=r

αi ⩾ 0,

−αj ≤ βj ≤ βj ≤ λ1 − λ2 −
n∑

i=2

αi, j = 3, 4, · · · , r − 1 (10)

then there exists a nonnegative interval n× n matrix that σ is its spectrum.

Proof. Let αi; α2, . . . , αn or i = 2, 3, . . . , n and αi ⩾ −λi (i = 3, . . . , n); be real interval
numbers. Let r be the smallest positive integer with 0 ⩾ λ2 +

∑n
i=r λi. Set t =

∑n
i=2 αi.

As λ1 + λ2 = −λ3 − · · · − λn, we have 3 ⩽ r ⩽ n. Consider the matrices

AI =



λ1 α2 + (αr + · · ·+ αn) α3 · · · αr−1 0 · · · 0
0 λ2 β3 · · · βr−1 αr · · · αn

0 0 λ3 · · · 0 0 · · · 0
...

...
...

. . .
...

... · · ·
...

0 0 0 0 λr−1 0 0 0
0 0 0 0 0 λr 0 0
...

...
...

...
...

...
. . .

...
0 0 0 · · · 0 0 · · · λn


and L =



1 0 0 · · · 0 0 · · · 0
1 1 0 · · · 0 0 · · · 0
1 0 1 · · · 0 0 · · · 0
...
...
...
. . .

...
... · · ·

...
1 0 0 · · · 1 0 · · · 0
1 1 0 · · · 0 1 · · · 0
...
...
...

...
...
...
. . .

...
1 1 0 · · · 0 0 · · · 1


,

where the second column of L has n−r+1 ones. Then the matrix CI = LAIL−1 is given
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by

CI =



c11 c12 α3 α4 · · · αr−1 0 · · · 0
c21 α2 + λ2 α3 + β3 α4 + β4 · · · αr−1 + βr−1 αr · · · αn

c31 c32 λ3 + α3 α4 + β4 · · · αr−1 + βr−1 0 · · · 0
c4,1 c42 α3 + β3 λ4 + α4 · · · αr−1 + βr−1 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
cr−1,1 cr−1,2 α3 + β3 α4 + β4 · · · λr−1 + αr−1 0 · · · 0
cr1 cr2 α3 + β3 α4 + β4 · · · αr−1 + βr−1 λr + αr · · · αn

...
...

...
...

...
...

...
. . .

...
cn1 cn2 α3 + β3 α4 + β4 · · · αr−1 + βr−1 0 · · · λn + αn


,

where

c11 =λ1 − t,

c31 =c41 = · · · = cr−1,1 = λ1 − λ2 − t,

c21 =cr1 = · · · = cn1 = λ1 − λ2 − t− (β3 + · · ·+ βr−1),

c12 =c32 = α2 + αr + · · ·+ αn and

ci2 =α2 + λ2 − λi, i = 4, . . . , n.

The interval matrix CI is nonnegative (and hence a realization of σI) if and only if hold
conditions (10). Setting αi = −λi (i = 2, . . . , n) and βi = λ1 for i = 3, . . . , n results in a
nonnegative CI . Hence, σ is realizable. ■

4. Spectrum with three positive interval eigenvalues

Now we consider NIIEP of given σI with three positive interval eigenvalues. Further-
more if we have one negative interval eigenvalue in σI , since we assume that λ1 = [λ1, λ1]

is Perron interval eigenvalue of σI then by (1) we can find 2×2 nonnegative interval ma-
trix CI

1 that has eigenvaliues σI
1 = {

[
λ1, λ1

]
,
[
λ4, λ4

]
} and the following 4×4 nonnegative

interval matrix has eigenvalues σI :

CI =

CI
1 0 0

0
[
λ2, λ2

]
0

0 0
[
λ3, λ3

]
 .

In the following theorem we assume that σI has five membrs, that three of which are
nonnegative.

Theorem 4.1 Let σI = {λ1, λ2, . . . , λ5} = {
[
λ1, λ1

]
,
[
λ2, λ2

]
, · · · ,

[
λ5, λ5

]
}, be a list of

real interval numbers satisfying [λ1, λ1] ⩾ [λ2, λ2] ⩾ [λ3,⩾λ3] ⩾ 0 > [λ5, λ5] ⩾ [λ4, λ4]

and
∑5

i=1 λi ⩾ 0. If λ1+λ3+λ4+λ5 ⩾ 0, |λ4| ⩾ |λ3, |λ5| ⩾ |λ3| and |λ4|+ |λ5| ⩾ λ2+λ2,
then σI is realizable.
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Proof. We consider two matrices A and L as follows:

AI =



λ1 −λ2 − λ3 − λ4 − λ5 0 0 0

0 λ2 −λ3 − λ5 −λ4 0

0 0 λ3 λ4 −λ5

0 0 0 λ4 0

0 0 0 0 λ5


, L =



1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 0 1 0

1 1 1 0 1


, L−1 =



1 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 −1 0 1 0

0 0 −1 0 1


.

Then

CI = LAL−1 =



λ1 + λ2 + λ3 + λ4 + λ5 −λ2 − λ3 − λ4 − λ5 0 0 0

λ1 + λ3 + λ4 + λ5 0 −λ3 − λ5 −λ4 0

λ1 + λ3 + λ4 + λ5 −λ3 − λ4 0 0 −λ5

λ1 + λ3 + λ4 + λ5 −λ4 −λ3 − λ5 0 0

λ1 + λ3 + λ4 + λ5 −λ3 − λ4 −λ5 0 0


.

By the given conditions in the theorem, it is clear that the matrix CI is a nonnegative
interval matrix. ■

Theorem 4.2 Let σI = {λ1, λ2, . . . , λ6} = {
[
λ1, λ1

]
,
[
λ2, λ2

]
, · · · ,

[
λ6, λ6

]
} be a list of

real interval numbers satisfying [λ1, λ1] ⩾ [λ2, λ2] ⩾ [λ3, λ3] ⩾ 0 >
[
λ6, λ6

]
⩾ [λ5, λ5] ⩾

[λ4, λ4], and
∑6

i=1 λi ⩾ 0. If there exist interval real numbers αi = [αi, αi] (i=1, . . . , 6),

β24 = [β24, β24], β34 = [β34, β34] and β35 = [β35, β35] such that

6∑
i=2

αi ⩽ λ1

−λi ⩽ αi i = 2, · · · , 6

−α5 ⩽ β35 ⩽ β35 ⩽ λ2 − λ3 + α2

−α4 ⩽ β24 ⩽ β24 ⩽ λ1 − λ2 −
6∑

i=2

αi

−α4 ⩽ β24 + β34 ⩽ β24 + β34 ⩽ λ1 − λ2 −
6∑

i=2

αi

α2 + α5 ⩾ 0

α3 + α6 ⩾ 0, (11)

then σI is realizable.
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Proof. Let

AI =


λ1 α2 + α5 + α6 + α3 0 α4 0 0
0 λ2 α6 + α3 β24 α5 0
0 0 λ3 β34 β35 α6

0 0 0 λ4 0 0
0 0 0 0 λ5 0
0 0 0 0 0 λ6

 and L =


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0
1 1 1 0 0 1

 .

Then the matrix CI = LAIL−1 is
λ1 − t α2 + α3 + α5 + α6 0 α4 0 0

λ1 − t− λ2 − β24 α2 + λ2 α3 + α6 α4 + β24 α5 0
λ1 − t− λ2 − β24 − β34 α2 + λ2 − λ3 − β35 α3 + λ3 α4 + β24 + β34 α5 + β35 α6

λ1 − t− λ4 α2 + α3 + α5 + α6 0 α4 + λ4 0 0
λ1 − t− λ2 − β24 α2 + λ2 − λ5 α3 + α6 α4 + β24 α5 + λ5 0

λ1 − t− λ2 − β24 − β34 α2 + λ2 − λ3 − β35 α3 + λ3 − λ6 α4 + β24 + β34 α5 + β35 α6 + λ6


(12)

where t =
∑6

i=2 αi. The matrix CI is nonnegative if and only if the claimed system of
inequalities (11) is consistent. ■

Example 4.3 Consider the following interval spectrum

σI = {λ1, λ2, λ3, λ4, λ5, λ6} = {[14, 15] , [4, 5] , [1, 2] , [−4,−3] , [−3,−2] , [−2,−1]} ,

where λ1 ≥ λ2 ≥ λ3 ≥ 0 ≥ λ6 ≥ λ5 ≥ λ4 and
5∑

i=1
λi ≥ 0. By Theorem 4.2 we construct

the nonnegative interval matrix CI that σI is its spectrum. Let α2 = [−2, 0], α3 = [−1, 0],
α4 = [6, 7], α5 = [3, 4] and α6 = [2, 3], then

AI =


[14, 15]

0
0
0
0
0

[0, 7]
[4, 5]
0
0
0
0

0
[1, 3]
[1, 2]
0
0
0

[4, 6]
[−4,−4]

0
[−4,−3]

0
0

0
[3, 4]
[−3, 2]

0
[−3,−2]

0

0
0

[2, 3]
0
0

[−2,−1]

 .

Now, by relation (12), we have

CI = LAL−1 =


[1, 11]
[0, 11]
[0, 11]
[4, 15]
[0, 11]
[0, 11]

[0, 7]
[0, 5]
[1, 12]
[0, 7]
[2, 8]
[1, 12]

0
[1, 3]
[0, 2]
0

[1, 3]
[2, 5]

[4, 6]
[3, 6]
[3, 6]
[0, 3]
[3, 6]
[3, 6]

0
[3, 4]
[0, 6]
0

[0, 2]
[0, 6]

0
0

[2, 3]
0
0

[0, 2]

 .

Theorem 4.4 Let σI = {λ1, λ2, . . . , λn} = {
[
λ1, λ1

]
,
[
λ2, λ2

]
, · · · ,

[
λ6, λ6

]
} be a list

of real interval numbers satisfying [λ1, λ1] ⩾ [λ2, λ2] ⩾ [λ3, λ3] ⩾ 0 >
[
λn, λn

]
⩾

[λn−1, λn−1] ⩾ · · · ⩾ [λ4, λ4], and
∑n

i=1 λi ⩾ 0. If there exist interval real numbers

αi = [αi, αi] (i=1, . . . , 6), β2i = [β2i, β2i], i = 1, 2, · · · , r1 − 1 and β3i = [β3i, β3i], i =
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1, 2, · · · , r2 − 1 such that

n∑
i=2

αi ⩽ λ1

−λi ⩽ αi i = 2, · · · , n

−αi ⩽ β3i ⩽ β3i ⩽ λ2 − λ3 + α2, i = r1, · · · , r2 − 1,

−αi ⩽ β2i ⩽ β2i ⩽ λ1 − λ2 −
n∑

i=2

αi, i = 4, · · · , r1 − 1,

−αi ⩽ β2i + β3i ⩽ β2i + β3i ⩽ λ1 − λ2 −
n∑

i=2

αi

α2 +

n∑
i=r1

αi ⩾ 0

α3 +

n∑
i=r2

αi ⩾ 0, (13)

then σI is realizable.

Proof. Let

AI =



λ1 α2 +
∑n

i=r1
αi 0 α4 · · · αr1 0 · · · · · · · · · · · · 0

0 λ2 α3 +
∑n

i=r2
αi β34 · · · β2,r1 αr1+1 · · · αr2 0 · · · 0

0 0 λ3 β34 · · · · · · · · · · · · β3,r2 αr2+1 · · · αn

0 0 0 0 λ4 0 · · · · · · · · · · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · λn


and

L =



1 0 · · · · · · 0
1 1 0 · · · · · · 0
1 1 1 0 · · · · · · 0
1 0 0 1 0 · · · · · · 0
...
...

...
...

. . .
. . . · · · · · ·

...
1 0 0 0 · · · 1 0 · · · · · · 0
1 1 0 0 0 0 1 0 · · · · · · 0
...
...

...
...

...
. . .

. . . · · ·
...

1 1 0 0 0 0 0 0 1 0 · · · 0
1 1 1 0 0 0 0 0 0 1 0
...
...

...
. . . 0

1 1 1 0 · · · · · · 0 1



.

Similar to [7], we can find CI = L−1AIL and according to the conditions of the theorem,
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the obtained interval matrix will be nonnegative. ■
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