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Abstract. Let G be a graph with each vertex is colored either white or black. A white vertex
is changed to a black vertex when it is the only white neighbor of a black vertex (color-change
rule). A zero forcing set S of a graph G is a subset of vertices G with black vertices, all other
vertices G are white, such that after finitely many applications of the color-change rule all
of vertices G becomes black. The zero forcing number of G is the minimum cardinality of
a zero forcing set in G, denoted by Z(G). In this paper, we define ℓ−Path graphs. We give
some ℓ−Path and ℓ−Ciclo graphs such that their maximum nullity are equal to their zero
forcing number. Also, we obtain minimum propagation time and maximum propagation time
for them.
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1. Introduction

In this paper, all graphs are assumed to be finite, simple and undirected. We will often
use the notation G = (V,E) to denote the graph with non-empty vertex set V = V (G)
and edge set E = E(G). Order of a graph is the number of vertices in the graph and
size of a graph is the number of edges in the graph. An edge of G with endpoints u
and v is denoted by uv. For every vertex x ∈ V (G), the open neighborhood of vertex
x is denoted by NG(x) and defined as NG(x) = {y ∈ V (G) | xy ∈ E(G)}. Also, the
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closed neighborhood of vertex x ∈ V (G), NG[x], is NG[x] = NG(x) ∪ {x}. The degree of
a vertex x ∈ V (G) is degG(x) =

∣∣NG(x)
∣∣. The minimum degree and maximum degree

of a graph G denoted by δ(G) and ∆(G), respectively. We denote the complete graph
on n vertices by Kn, the cycle on n vertices by Cn and the path on n vertices byPn.
The union of Gi = (V i,Ei), for i = 1, . . . , h, is

⋃h
i=1Gi = (

⋃h
i=1 Vi,

⋃h
i=1Ei). The

set of n × n real symmetric matrices will be denoted by Sn(R). For A ∈ Sn(R), the
graph of A = (aij), denoted by G(A), is a graph with vertices {1, . . . , n} and edges
{ij| aij ̸= 0, 1 ⩽ i, j ⩽ n}. Note that the diagonal of A is ignored in determining G(A).
The set of symmetric matrices of graph G is defined by S(G) = {A ∈ Sn(R) | G(A) = G}.
The maximum nullity of G is M(G) = max{null(A) | A ∈ S(G)} and the minimum rank
of G is mr(G) = min{rank(A) | A ∈ S(G)}. It is well-known that if G is a graph of order
n, then mr(G) +M(G) = n.

Let each vertex of a graph G be given one of two colors “black” and “white”. If a
white vertex b is the only white neighbor of a black vertex a, then a changes the color
of b to black, called color-change rule. Furthermore, we say a forces b or b is forced by
a. Let B be the initial black vertices. Then B is said a zero forcing set of G if all of the
vertices of G will be turned black after finitely many applications of the color-change
rule. The zero forcing number of G, called Z(G), is the minimum cardinality among all
zero forcing sets. The notation of a zero forcing set, as well as the associated zero forcing
number, of a simple graph was introduced by the “AIM Minimum Rank-Special Graphs
Work Group” in 2008 [1]. They used the technique of zero forcing parameter of graph
G and found an upper bound for the maximum nullity of G related to zero forcing sets.
It is shown that for any graph G, M(G) ⩽ Z(G). Also, the following question has been
raised in [1].
What is the class of graphs G for which M(G) = Z(G)? As a simple example, the
complete graph Kn on n vertices has Z(Kn) = M(Kn) = n− 1.

In this paper, we give some families graphs which their maximum nullity and zero
forcing number are equal. For more results, see [2, 5–7, 10–14, 16, 19].

Let G = (V,E) be a graph and B a zero forcing set of G. Define B(0) = B and for ℓ ⩾ 0,

B(ℓ+1) is the set of vertices w for which there exists a vertex b ∈
⋃ℓ

i=0B
(i) such that w

is the only neighbor of b not in
⋃ℓ

i=0B
(i). The propagation time of B in G, denoted by

Pt(G,B), is the smallest integer ℓ0 such that V =
⋃ℓ0

i=0B
(i). The minimum propagation

time of G is Pt(G) = min{Pt(G,B) | B is a minimum zero forcing set of G}.
In other word, the propagation time is the number of steps it take for an initial zero
forcing set to force all vertices of a graph to black. The maximum propagation time of
G is PT (G) = max{Pt(G,B) | B is a minimum zero forcing set of G}. Also, the
propagation time discrepancy of G is defined as pd(G) = PT (G) − Pt(G). For more
results, see [8, 9, 15, 17, 18].

In this paper, we give some of ℓ−Path and ℓ−Ciclo graphs such that their maximum
nullity are equal to their zero forcing number. Also, we obtain minimum and maximum
propagation time for them. Specially, we introduce families of graphs with minimum
propagation time 1.

2. Preliminary

Ciclo graphs have defined by Almodovar et al. [2]. We define ℓ−Ciclo graphs and
ℓ−path graphs in the following.
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Definition 2.1 [2] Let H be a graph and e be an edge of H. A ℓ−ciclo of H with e,
denoted by Cℓ(H, e), is constructed from a ℓ−cycle Cℓ and ℓ copies of H by identifying
each edge of Cℓ with the edge e in one copy of H.

Definition 2.2 Let H be a graph and Pℓ be a ℓ-path with V (Pℓ) = {v1, v2, . . . , vℓ}. Also,
let e be an edge of H with end vertices a and b. A ℓ-path graph of H with e, denoted by
Pℓ(H, e), is constructed from Pℓ and ℓ copy of H by merging the two vertices vi and a
also, vi+1 and b for every 1 ≤ i ≤ ℓ− 1 (see Figure 1).

Theorem 2.3 [13] Let G be a connected graph of order n ⩾ 2. Then Z(G) = n − 1 if
and only if G is isomorphic to a complete graph of order n.

Theorem 2.4 [1] Let G = (V,E) be a graph and Z ⊆ V be a zero forcing set for G.
Then M(G) ⩽ Z(G).

Theorem 2.5 [1] If G =
⋃h

i=1Gi, then mr(G) ≤
∑h

i=1mr(Gi).

Theorem 2.6 [15] Let G be a graph of order n. Then Pt(G) ≥ n−Z(G)
Z(G) .

Theorem 2.7 [15] If G is a graph of order n, then PT (G) ⩽ n− Z(G).

Theorem 2.8 [15] For a graph G of order n, the following are equivalent:

i) pt(G) = n− 1.
ii) pT (G) = n− 1.
iii) Z(G) = 1.
iv) G is a path.

It is well-known that Pt(Kn) = 1 = PT (Kn) and

Pt(Cn) = PT (Cn) =

{
n−2
2 if n is even

n−1
2 if n is odd.

3. Main results

In this section, we show the maximum nullity of some families graphs are equal to their
zero forcing number. Also, we obtain propagation time discrepancy for some of them.

Theorem 3.1 Let G be a graph of order n, e = ab ∈ E(G) and M(G) = Z(G). Also,
let B be a zero forcing set for G with minimum cardinality such that {a, b} ⊆ B and
every white vertex in NG(b) can be forced by a vertex except b. Then M(Pℓ(G, e)) =
Z(Pℓ(G, e)) = (ℓ− 1)(|B| − 1) + 1 and mr(Pℓ(G, e)) = (ℓ− 1)(n− |B|).

Proof. Let V (Pℓ) = {v1, v2, . . . , vℓ}, V (Gi \ {a, b}) = {vi1, vi2, . . . , vi(n−2)}, where Gi is
the i− th copy of G in Pℓ(G, e) (1 ≤ i ≤ ℓ−1). Since {a, b} ⊆ B and a is adjacent to b, so

|NG(a)| ⩾ 2 and |NG(b)| ⩾ 2. Let Bi = B ∩ (Gi \ {a, b}) and Z = V (Pℓ)
⋃ℓ−1

i=1 Bi be the
initial black vertices. Since every white vertex in NG(b) can be forced by a black vertex
except b, so Z is a zero forcing set for Pℓ(G, e). Hence, Z(Pℓ(G, e)) ≤ (ℓ−1)(|B|−1)+1.

It is clear that Pℓ(G, e) =
⋃ℓ−1

i=1 Gi. By Theorem 2.5, mr(Pℓ(G, e)) ≤ (ℓ−1)mr(G). Since
M(G) = |B|, so mr(Pℓ(G, e)) ≤ (ℓ− 1)(n−M(G)) = (ℓ− 1)(n− |B|) and

M(Pℓ(G, e)) ≥ ((ℓ− 1)(n− 2) + ℓ)− (ℓ− 1)(n− |B|) = (ℓ− 1)(|B| − 1) + 1.
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By Theorem 2.4, (ℓ− 1)(|B|− 1)+1 ⩾ Z(Pℓ(G, e)) ≥ M(Pℓ(G, e)) ≥ (ℓ− 1)(|B|− 1)+1.
Therefore, M(Pℓ(G, e)) = Z(Pℓ(G, e)) = (ℓ − 1)(|B| − 1) + 1 and so mr(Pℓ(G, e)) =
(ℓ− 1)(n− |B|). ■

Corollary 3.2 Let r ⩾ 4 and e = ab ∈ E(Kr). Then Z(Pℓ(Kr, e)) = M(Pℓ(Kr, e)) =
(ℓ− 1)(r − 2) + 1 and Pt(Pℓ(Kr, e)) = 1 (see Figure 1).

Proof. It is well-known that M(Kr) = Z(Kr) = r − 1. Let Z be a zero forcing set of
Kr with |Z| = r − 1 and {a, b} ⊆ Z. By Theorem 3.1, M(Pℓ(Kr, e)) = Z(Pℓ(Kr, e)) =
(ℓ − 1)(r − 2) + 1. Let B = V (Pℓ(Kr, e)) \ {vi(r−2) | 1 ≤ i ≤ ℓ − 1} be the initial black
vertices. Then for every 1 ≤ i ≤ ℓ − 1, vi(r−2) is the only white neighbor of vi2, so
vi(r−2) is forced by vi2. Thus, B is a zero forcing set of Pℓ(Kr, e). Furthermore, we have

B(0) = B, B(1) = {vi(r−2) | 1 ≤ i ≤ ℓ − 1} and V (Pℓ(Kr, e)) = B(0) ∪ B(1). Hence,
Pt(Pℓ(Kr, e), B) = 1. Therefore, Pt(Pℓ(Kr, e)) = 1.

v1

v2

v11 v12

v21 v22

v31

v3

v32

v41 v42

v51 v52

v4
v5 v6

Figure 1. P6(K4, e)

■

Corollary 3.3 Let r ⩾ 4 and e = ab ∈ E(Kr). Then Pd(Pℓ(Kr, e)) = ℓ− 2.

Proof. By Theorems 2.7 and 3.1, PT (Pℓ(Kr, e)) ⩽ ℓ− 1. Let V (Cℓ) = {v1, . . . , vℓ} and
B = V (Pℓ(Kr, e)) \ {vi | 2 ≤ i ≤ ℓ} be the initial black vertices. Then B(1) = {v2},
B(2) = {v3}, . . . , B(ℓ−1) = {vℓ}. So V (Pℓ(Kr, e)) = B(0) ∪ B(1) ∪ . . . ∪ B(ℓ−1). Hence,
Pt(Pℓ(Kr, e), B) = ℓ−1 and so PT (Pℓ(Kr, e)) ⩾ ℓ−1. Therefore, PT (Pℓ(Kr, e)) = ℓ−1.
By Corollary 3.2, Pd(Pℓ(Kr, e)) = ℓ− 2. ■

Corollary 3.4 Let r ⩾ 4, e = ab ∈ E(Kr) andG1 = Pℓ(Kr, e). Then Pt(Pℓ(G1, e1)) = 1,
where e1 = v1v11.

Proof. By Theorem 3.1, the proof is straightforward. ■

Theorem 3.5 Let ℓ and r be even and greater than 4 such that r ≤ ℓ + 2. Then
Z(Pℓ(Cr, e)) = M(Pℓ(Cr, e)) = ℓ and Pt(Pℓ(Cr, e)) = r − 2, where e = ab ∈ E(Cr) (see
Figure 2).

Proof. It is clear that {a, b} is a zero forcing set of Cr. By Theorem 3.1, M(Pℓ(Cr, e)) =
Z(Pℓ(Cr, e)) = ℓ. Let V (Pℓ) = {v1, v2, . . . , vℓ}, V (Hi) \ {a, b} = {vi1, vi2, . . . , vi(r−2)},
where Hi is the i − th copy of Cr and 1 ≤ i ≤ ℓ − 1. Also, let j = r

2 and

B = {v(2k)(j−1), v(2k)j | 1 ≤ k ≤ ℓ−2
2 } ∪ {v1, vℓ} be initial black vertices. Then

B(1) = {v(2k)(j−2), v(2k)(j+1) | 1 ≤ k ≤ ℓ−2
2 }, . . . , B(j−1) = {v2k, v2k+1 | 1 ≤ k ≤ ℓ−2

2 },
B(j) = {v(2k+1)1, v(2k+1)(r−2) | 0 ≤ k ≤ ℓ−2

2 }, . . . , B(2j−2) = {v(2k+1)(j−1), v(2k+1)j | 0 ≤
k ≤ ℓ−2

2 }. Since 2j − 2 = r − 2, so V (Pℓ(Cr, e)) =
⋃r−2

i=0 B
(i). Thus, B is a zero forcing

set of Pℓ(Cr, e) with |B| = ℓ and Pt(Pℓ(Cr, e), B) = r − 2. Hence, Pt(Pℓ(Cr, e)) ⩽ r − 2.
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By Theorem 2.6, Pt(Pℓ(Cr, e)) ≥ (r−2)(ℓ−1)
ℓ . Since propagation time of a graph is integer

and r ≤ ℓ+ 2, P t(Pℓ(Cr, e)) ≥ r − 2, Pt(Pℓ(Cr, e)) = r − 2.

v1 v2

v11 v12

v21 v22

v31

v3

v32

v41 v42

v51 v52

v4 v5 v6

Figure 2. P6(C4, e)

■

Following Ashrafi et al. [3], a link of graphs G1 and G2 by vertices a ∈ V (G1) and
b ∈ V (G2) is defined as the graph (G1 ∼ G2)(a, b) obtained by joining a and b by an
edge in the union of these graphs. For example, see Figure 3, where V (K1) = {a} and
b ∈ V (C4).

a

x

b

y

z

Figure 3. (K1 ∼ C4)(a, b)

Theorem 3.6 Let V (K1) = {a}, b ∈ V (Cr), H = (K1 ∼ Cr)(a, b) and e = ab (see
Figure 4). Then Z(Pℓ(H, e)) = M(Pℓ(H, e)) = ℓ. Also,

Pd(Pℓ(H, e)) =

{
r−2
2 if r is even

r−3
2 if r is odd.

Proof. Let V (Pℓ) = {v1, v2, . . . , vℓ}, V (Hi) \ {a, b} = {vi1, vi2, . . . , vi(r−1)}, where Hi

is the i − th copy of H and 1 ≤ i ≤ ℓ − 1. Let Z = {v1} ∪ {vi1 | 1 ≤ i ≤ ℓ − 1}
be the initial black vertices. Then v1 forces v2, v12 is forced by v11. So v12 forces v13.
Similarly, all vertices of the H1 are forced. Now, v2 forces v3. With the above method,
all vertices Hi, (1 ≤ i ≤ ℓ − 1) are forced. So, Z is a zero forcing set for Pℓ(H, e).

Hence, Z(Pℓ(H, e)) ≤ ℓ. It is easy to see that Pℓ(H, e) =
⋃ℓ−1

i=1 Cr ∪ Pℓ. By Theorem
2.5, mr(Pℓ(H, e)) ≤ (ℓ − 1)(r − 2) + (ℓ − 1). Thus, M(Pℓ(H, e)) ≥ (r(ℓ − 1) + 1)) −
((ℓ − 1)(r − 2) + (ℓ − 1)) = ℓ. By Theorem 2.4, ℓ ⩾ Z(Pℓ(H, e)) ≥ M(Pℓ(H, e)) ≥ ℓ.
Therefore, Z(Pℓ(H, e)) = M(Pℓ(H, e)) = ℓ. Now, let B be a zero forcing set for Pℓ(H, e)
with |B| = ℓ. Then |B ∩ (V (Hi) \ {a, b})| ≥ 1 for every 1 ≤ i ≤ ℓ− 1. Since |B| = ℓ,

B = {vi1 | 1 ≤ i ≤ ℓ− 1} ∪ {v1} = B1 or B = {vi1 | 1 ≤ i ≤ ℓ− 1} ∪ {vℓ} = B2.

For zero forcing set B1, since Pt(Pℓ) = ℓ−1, with ℓ−1 steps the forcing process, all of the
vertices of Pℓ are forced. For every 1 ⩽ i ⩽ ℓ−2, with r−2 steps the forcing process, all of
the vertices of Hi are forced. Finally, if r is even, then with r−2

2 steps the forcing process,
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all of the vertices of Hℓ−1 are forced. Therefore, if r is even, then Pt(Pℓ(H, e), B1) =
(ℓ−2)(r−1)+ r

2 . Similarly, if r is odd, then Pt(Pℓ(H, e), B1) = (ℓ−2)(r−1)+ r+1
2 . Also, for

zero forcing setB2, we haveB
(1)
2 = {v(ℓ−1)2}, B

(2)
2 = {v(ℓ−1)3}, . . . , B

(r−2)
2 = {v(ℓ−1)(r−1)}

and B
(r−1)
2 = {vℓ−1}. In the other word, with ℓ − 1 steps the forcing process, all of the

vertices of Pℓ are forced. For every 1 ⩽ i ⩽ ℓ− 1, with r− 2 steps the forcing process, all
of the vertices of Hi are forced. Thus, Pt(Pℓ(H, e), B2) = (ℓ− 1)(r − 1). It is clear that
Pt(Pℓ(H, e), B1) ⩽ Pt(Pℓ(H, e), B2). Therefore, PT (Pℓ(H, e)) = (ℓ− 1)(r − 1) and

Pt(Pℓ(H, e))) =

{
(ℓ− 2)(r − 1) + r

2 if r is even

(ℓ− 2)(r − 1) + r+1
2 if r is odd.

■
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v35

Figure 4. P4((K1 ∼ C6)(a, b), e)

Theorem 3.7 Let ℓ be even, b ∈ V (Kr), V (K1) = {a}, H = (K1 ∼ Kr)(a, b) and
e = ab. Then Z(Cℓ(H, e)) = M(Cℓ(H, e)) = ℓ(r − 2) + 2. Also, Pd(Cℓ(H, e)) = 0 (see
Figure 5).

Proof. Let V (Cℓ) = {v1, v2, . . . , vℓ} and V (Hi)\{a, b} = {vi1, vi2, . . . , vi(r−1)}, where Hi

is the i− th copy of H and 1 ≤ i ≤ ℓ. Let Z = {v1, v2}∪ {vjk | 1 ≤ j ≤ ℓ, 2 ≤ k ≤ r− 1}
be the initial black vertices. Since vx1 is the only white neighbor of vx2, for x ∈ {1, ℓ}, so
vx2 forces vx1. Since v3 is the only white neighbor of v2, so v3 is forced by v2. Similarly, v1
forces vℓ. We see that v21 and v(ℓ−1)1 are forced by v22 and v(ℓ−1)2, respectively. By similar
argument, Z is a zero forcing set of Cℓ(H, e). Thus, Z(Cℓ(H, e)) ≤ |Z| = ℓ(r − 2) + 2.

Since Cℓ(H, e) =
⋃ℓ

i=1Kr ∪ Cℓ, by Theorem 2.5, mr(Cℓ(H, e)) ≤ ℓmr(Kr) +mr(Cℓ) =
ℓ + ℓ − 2 = 2ℓ − 2. Hence, M(Cℓ(H, e)) ≥ (ℓ(r − 1) + ℓ) − (2ℓ − 2) = ℓ(r − 2) + 2.
By Theorem 2.4, ℓ(r − 2) + 2 ≤ M(Cℓ(H, e)) ≤ Z(Cℓ(H, e)) ≤ ℓ(r − 2) + 2. Therefore,
Z(Cℓ(H, e)) = ℓ(r − 2) + 2 = M(Cℓ(H, e)) and mr(Cℓ(H, e)) = 2ℓ − 2. Now, let B
be a zero forcing set of Cℓ(H, e) with |B| = ℓ(r − 2) + 2. Then, for every 1 ≤ i ≤ ℓ,
|B ∩ {vij | 1 ≤ j ≤ r − 1}| ≥ r − 2 and so we have three following cases:
Case 1: B ∩ {v1, v2, . . . , vℓ} = ∅. In this case, without loss of generality, we assume

that B = {v1j , vℓj | 1 ≤ j ≤ r − 1}
⋃ℓ−1

i=2{vij | 2 ≤ j ≤ r − 1} = B1.Then B
(1)
1 =

{v1, v2}, B(2)
1 = {vℓ, v3}, B

(3)
1 = {v(ℓ−1)1, v21}, B

(4)
1 = {vℓ−1, v4}, B

(5)
1 = {v(ℓ−2)1, v31},
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. . . , B
(ℓ−2)
1 = {v ℓ+2

2
, v ℓ+4

2
}, B(ℓ−1)

1 = {v( ℓ+2

2
)1, v( ℓ+4

2
)1}. Thus, V (Cℓ(H, e)) =

⋃ℓ−1
i=0 B

(i)
1

and Pt(Cℓ(H, e), B1) = ℓ− 1.
Case 2: |B ∩ {v1, v2, . . . , vℓ}| = 1. In this case, without loss of generality, we may

assume that |B ∩ {v1, v2, . . . , vℓ}| = {v1} and B = {v1} ∪ V (H1) \ {a, b}
⋃ℓ

i=2{vij | 2 ≤
j ≤ r − 1} = B2. Then B

(1)
2 = {v2, vℓ1}, B

(2)
2 = {v3, vℓ}, B

(3)
2 = {v21, v(ℓ−1)1}, . . . ,

B
(ℓ−2)
2 = {v ℓ+2

2
, v ℓ+4

2
}, B(ℓ−1)

2 = {v( ℓ+2

2
)1, v( ℓ+4

2
)1}. Hence, V (Cℓ(H, e)) =

⋃ℓ−1
i=0 B

(i)
2 and so

Pt(Cℓ(H, e), B2) = ℓ− 1.
Case 3: |B ∩ {v1, v2, . . . , vℓ}| = 2 and B ∩ {v1, v2, . . . , vℓ} = {vi, vj}. Since B is a zero
forcing set of Pt(Cℓ, e)), so |i − j| = 1. Without loss of generality, we may assume that

i = 1, j = 2. Then B = {v1, v2}
⋃ℓ

i=1{vij | 2 ≤ j ≤ r − 1} = B3. It is easy to see

that B
(1)
3 = {v11, vℓ1}, B

(2)
3 = {v3, vℓ}, B

(3)
3 = {v21, v(ℓ−1)1}, . . . , B

(ℓ−2)
3 = {v ℓ+2

2
, v ℓ+4

2
},

B
(ℓ−1)
3 = {v( ℓ+2

2
)1, v( ℓ+4

2
)1}. Hence, V (Cℓ(H, e)) =

⋃ℓ−1
i=0 B

(i)
3 and so Pt(Cℓ(H, e), B3) =

ℓ− 1. Therefore, Pt(Cℓ(H, e)) = ℓ− 1 = PT (Cℓ(H, e)) and so Pd(Cℓ(H, e)) = 0.

v11 v2

v12 v13

v1 v4

v21

v3

v22

v23

v43
v31

v41 v33 v32v42

Figure 5. C4((K1 ∼ K4)(a, b), e)

■

Theorem 3.8 Let V (K1) = {a}, b ∈ V (Kr), H = (K1 ∼ Kr)(a, b) and e = ab.
Then Z(Pℓ(H, e)) = M(Pℓ(H, e)) = (ℓ − 1)(r − 2) + 1, mr(Pℓ(H, e)) = 2ℓ − 2 and
Pd(Pℓ(H, e)) = 0 (see Figure 6).

Proof. Let V (Pℓ) = {v1, v2, . . . , vℓ}, V (Hi) \ {a, b} = {vi1, vi2, . . . , vi(r−1)}, where Hi

is the i − th copy of H and 1 ≤ i ≤ ℓ − 1. Also, let Z = {v1} ∪ {vjk | 1 ≤ j ≤
ℓ− 1, 2 ≤ k ≤ r− 1}, be initial black vertices.Then v1 forces v2. The vertex v11 is forced
by v12. Now v2 forces v3. It is easy to see that Z is a zero forcing set of Pℓ(H, e). Hence,

Z(Pℓ(H, e)) ≤ |Z| = (ℓ− 1)(r − 2) + 1. Since Pℓ(H, e) =
⋃ℓ−1

i=1 Kr ∪ Pℓ, by Theorem 2.5,
mr(Pℓ(H, e)) ≤ (ℓ−1)mr(Kr)+mr(Pℓ) = 2ℓ−2. So, M(Pℓ(H, e)) ≥ r(ℓ−1)+1−2ℓ+2 =
(r − 2)(ℓ− 1) + 1.
By Theorem 2.4, (ℓ − 1)(r − 2) + 1 ⩾ Z(Pℓ(H, e)) ≥ M(Pℓ(H, e)) ≥ (r − 2)(ℓ − 1) + 1.
Therefore, Z(Pℓ(H, e)) = M(Pℓ(H, e)) = (r− 2)(ℓ− 1)+1 and so mr(Pℓ(H, e)) = 2ℓ− 2.
Let B be a zero forcing set of Pℓ(H, e) with |B| = (r − 2)(ℓ− 1) + 1. Then

B = {v1} ∪ {vjk | 1 ≤ j ≤ ℓ− 1, 2 ≤ k ≤ r − 1} = B1

or

B = {vℓ} ∪ {vjk | 1 ≤ j ≤ ℓ− 1, 2 ≤ k ≤ r − 1} = B2.

It is easy to see that B
(1)
1 = {v2}, B

(2)
1 = {v11}, B

(3)
1 = {v3}, B

(4)
1 = {v21}, . . . ,
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B
(2ℓ−3)
1 = {vℓ} and B

(2ℓ−2)
1 = {v(ℓ−1)1}. Hence, V (Pℓ(H, e)) =

⋃2ℓ−2
i=0 B

(i)
1 . Thus,

Pt(Pℓ(H, e), B1) = 2(ℓ − 1). Also, we have B
(1)
2 = {v(ℓ−1)1}, B

(2)
2 = {vℓ−1}, B

(3)
2 =

{v(ℓ−2)1}, B
(4)
2 = {vℓ−2}, . . . , B

(2ℓ−4)
2 = {v2}, B(2ℓ−3)

2 = {v11} and B
(2ℓ−2)
2 = {v1}. Hence,

V (Pℓ(H, e)) =
⋃2ℓ−2

i=0 B
(i)
2 and Pt(Pℓ(H, e), B2) = 2(ℓ − 1). Therefore, Pt(Pℓ(H, e)) =

2(ℓ− 1) = PT (Pℓ(H, e)) and Pd(Pℓ(H, e)) = 0.

v1 v2

v11

v12

v13

v14

v15

v3

v21

v22

v23

v24

v25

v4

v31

v32

v33

v34

v35

Figure 6. P4((K1 ∼ K6)(a, b), e)
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Theorem 3.9 Let ℓ and r be even, b ∈ V (Cr), V (K1) = {a}, H = (K1 ∼ Cr)(a, b) and

e = ab. Then Z(Cℓ(H, e)) = M(Cℓ(H, e)) = ℓ + 2 and Pt(Cℓ(H, e)) = (r−1)(ℓ−2)
2 (see

Figure 7).

Proof. Let V (Cℓ) = {v1, v2, . . . , vℓ} and V (Hi \ {a, b}) = {vi1, vi2, . . . , vi(r−1)}, where
Hi is the i− th copy of H and 1 ≤ i ≤ ℓ. Let Z = {v1, v2}∪{vi1 | 1 ≤ i ≤ ℓ} be the initial
black vertices. Since vℓ2 and v12 are the only white neighbor of vℓ1 and v11, respectively,
so vℓ2 is forced by vℓ1 and v12 is forced by v11. It is easy to see that vℓj and v1j are forced
by vℓ(j−1) and v1(j−1), respectively for (3 ≤ j ≤ r − 1). Also, v3 is forced by v2 and vℓ
is forced by v1. Since v22 and v(ℓ−1)2 are the only white neighbor of v21 and v(ℓ−1)1, so
v21 forces v22 and v(ℓ−1)1 forces v(ℓ−1)2. Also, v2j and v(ℓ−1)j are forced by v2(j−1) and
v(ℓ−1)(j−1) for (3 ≤ j ≤ r − 1). By similar argument, we see that Z is a zero forcing

set for Cℓ(H, e). Hence, Z(Cℓ(H, e)) ≤ |Z| = ℓ+ 2. Since Cℓ(H, e) = (
⋃ℓ

i=1Cr) ∪ Cℓ, by
Theorem 2.5, mr(Cℓ(H, e)) ≤ ℓ(mr(Cr)) +mr(Cℓ) = ℓ(r− 2) + ℓ− 2. So M(Cℓ(H, e)) ≥
ℓr−(ℓ(r−2)+ℓ−2) = ℓ+2. By Theorem 2.4, ℓ+2 ⩾ Z(Cℓ(H, e)) ≥ M(Cℓ(H, e)) ≥ ℓ+2.
Therefore, Z(Cℓ(H, e)) = M(Cℓ(H, e)) = ℓ + 2. Now, let B be a zero forcing set for
Cℓ(H, e) with |B| = ℓ + 2. Then |B ∩ (V (Hi) \ {a, b})| ≥ 1 for every 1 ≤ i ≤ ℓ. Since
|B| = ℓ+ 2, we have three following cases:
Case 1: Let B∩{v1, v2, . . . , vℓ} = ∅. Then there exist (1 ≤ j ≤ ℓ) such that |B∩V (Hj)\
{a, b}| = |B ∩ V (Hj+1) \ {a, b}| = 2. Without loss of generality we may assume that
j = 1. Let B = {v1( r−2

2
), v1( r

2
), v2( r−2

2
), v2( r

2
)} ∪ {vi1 | 3 ≤ i ≤ ℓ} = B1. If k ̸= r−2

2 and

B = {v1k, v1(k+1), v2k, v2(k+1)} ∪ {vi1 | 3 ≤ i ≤ ℓ} = B2, then since Pt(Cr) =
r−2
2 ,

P t(Cℓ(H, e), B1) ≤ Pt(Cℓ(H, e), B2).

For zero forcing set B1 = {v1( r−2

2
), v1( r

2
), v2( r−2

2
), v2( r

2
)} ∪ {vi1 | 3 ≤ i ≤ ℓ}, with r−2

2 steps
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the forcing process, all of the vertices of H1∪H2∪{v2, v3} are forced. Since Pt(Cℓ) =
ℓ−2
2 ,

with ℓ−2
2 steps the forcing process, all of the vertices of Cℓ are forced. For every 3 ⩽ i ⩽ ℓ

2 ,

i ̸= ℓ+2
2 and i ̸= ℓ+4

2 , with r−2 steps the forcing process, all of the vertices of Hi∪Hℓ−i+3

are forced. Finally, with r−2
2 steps the forcing process, all of the vertices of H ℓ+2

2
∪H ℓ+4

2

are forced. Thus, Pt(Cℓ(H, e), B1) =
(r−1)(ℓ−2)

2 .
Case 2: Let |B ∩ {v1, v2, . . . , vℓ}| = 2. Without loss of generality, we assume that B =
{v2, v3} ∪ {vi1 | 1 ≤ i ≤ ℓ} = B3. Then with r − 2 steps the forcing process, all of the
vertices of H1 ∪H2 are forced. Since Pt(Cℓ) =

ℓ−2
2 , with ℓ−2

2 steps the forcing process,

all of the vertices of Cℓ are forced. Also, for every 3 ⩽ i ⩽ ℓ
2 , with r− 2 steps the forcing

process, all of the vertices of Hi ∪Hℓ−i+3 are forced. with r−2
2 steps the forcing process,

all of the vertices of H ℓ+2

2
∪H ℓ+4

2
are forced. Thus, Pt(Cℓ(H, e), B3) =

(r−1)(ℓ−1)−1
2 .

Case 3: Let |B ∩ {v1, v2, . . . , vℓ}| = 1. Without loss of generality, we assume that |B ∩
{v1, v2, . . . , vℓ}| = {v1}. Then B ∩ V (H1) = {v1 r

2
, v1 r+2

2
} and B = {v1} ∪ {v1 r−2

2
, v1 r

2
} ∪

{vi1 | 2 ≤ i ≤ ℓ} = B4. It is easy to see that Pt(Cℓ(H, e), B1) ⩽ Pt(Cℓ(H, e), B3) and

Pt(Cℓ(H, e), B1) ⩽ Pt(Cℓ(H, e), B4). Therefore, Pt(Cℓ(H, e)) = (r−1)(ℓ−2)
2 .

v11 v2

v12 v13

v1 v4

v21

v3

v22

v23

v43 v31

v41 v33 v32v42

Figure 7. C4((K1 ∼ C4)(a, b), e)
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