Journal of Linear and Topological Algebra Vol. 12, No. 03, 2023, 195-200 DOR: 20.1001.1.22520201.2023.12.03.4.6 DOI: 10.30495/JLTA.2023.706956

Equivalent characterization of right (left) centralizers or centralizers on Banach algebras

H. Ghahramani^a, Gh. Moradkhani^a, S. Sattari^{a,*}

^aDepartment of Mathematics, Faculty of Science, University of Kurdistan P.O. Box 416, Sanandaj, Kurdistan, Iran.

Received 7 August 2023; Revised 12 October 2023; Accepted 13 October 2023. Communicated by Lakshmi Narayan Mishra

Abstract. Let \mathcal{A} be a unital Banach algebra, $w \in \mathcal{A}$, and $\gamma : \mathcal{A} \to \mathcal{A}$ is a continuous linear map. We show that γ satisfies $a\gamma(b) = \gamma(w)$ ($\gamma(a)b = \gamma(w)$) whenever $a, b \in \mathcal{A}$ with ab = wand w is a left (right) separating point in \mathcal{A} if and only if γ is a right (left) centralizer. Also, we prove that γ satisfies $a\gamma(b) = \gamma(a)b = \gamma(w)$ whenever $a, b \in \mathcal{A}$ with ab = w and w is a left or right separating point in \mathcal{A} if and only if γ is a centralizer. We also provide some applications of the obtained results for characterization of a continuous linear map $\gamma : \mathcal{A} \to \mathcal{A}$ on a unital Banach *-algebra \mathcal{A} satisfying $a\gamma(b)^* = \gamma(w^*)^*$ ($\gamma(a)^*b = \gamma(w^*)^*$) whenever $a, b \in \mathcal{A}$ with $ab^* = w$ ($a^*b = w$) and w is a left (right) separating point, or γ satisfying $a\gamma(b)^* = \gamma(c)^*d = \gamma(w^*)^*$ whenever $a, b, c, d \in \mathcal{A}$ with $ab^* = c^*d = w$ and w is a left or right separating point.

Keywords: Left centralizer, right centralizer, centralizer, Banach algebra, Banach $\star\text{-algebra}.$

2010 AMS Subject Classification: 46H05, 46K05, 47B47, 47C05, 47C10.

1. Introduction

Throughout this paper all algebras and vector spaces will be over the complex field \mathbb{C} . Let \mathcal{A} be an algebra. One of the interesting issues in mathematics is to characterize the structure of a linear (additive) map $\gamma : \mathcal{A} \to \mathcal{A}$ satisfying

$$a, b \in \mathcal{A}, ab = w \Longrightarrow a\gamma(b) = \gamma(w) \quad (\mathbb{R}_w),$$

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2023 IAUCTB. http://jlta.ctb.iau.ir

^{*}Corresponding author.

E-mail address: h.ghahramani@uok.ac.ir, hoger.ghahramani@yahoo.com (H. Ghahramani); ghazalmorad-khani1981@yahoo.com; ghazalmoradkhani1981@gmail.com (Gh. Moradkhani); saman.sattari402@hotmail.com; saman.sattari402@gmail.com (S. Sattari).

$$a, b \in \mathcal{A}, ab = w \Longrightarrow \gamma(a)b = \gamma(w) \quad (\mathbb{L}_w),$$

or

$$a, b \in \mathcal{A}, ab = w \Longrightarrow a\gamma(b) = \gamma(a)b = \gamma(w) \quad (\mathbb{C}_w),$$

where $w \in \mathcal{A}$ is fixed. Recall that a linear (additive) map $\gamma : \mathcal{A} \to \mathcal{A}$ is said to be a right (left) centralizer if $\gamma(ab) = a\gamma(b)(\gamma(ab) = \gamma(a)b)$ for each $a, b \in \mathcal{A}$. The map γ is called a *centralizer* if it is both a left centralizer and a right centralizer. In case \mathcal{A} has a unity 1, $\gamma : \mathcal{A} \to \mathcal{A}$ is a right (left) centralizer if and only if γ is of the form $\gamma(a) = a\gamma(1)(\gamma(a) = \gamma(1)a)$ for all $a \in \mathcal{A}$. Also, γ is a centralizer if and only if $\gamma(a) = a\gamma(1) = \gamma(1)a$ for each $a \in \mathcal{A}$. The concept appears naturally in C^{*}-algebras. In ring theory it is more common to work with module homomorphisms. Clearly, each right (left) centralizer or centralizer satisfies \mathbb{R}_w (\mathbb{L}_w) or \mathbb{C}_w but in general, the converse is not true. In fact, the characterization of a linear (additive) map $\gamma: \mathcal{A} \to \mathcal{A}$ satisfying \mathbb{R}_w (\mathbb{L}_w) or \mathbb{C}_w , one of the main questions is whether the γ is expressed in terms of a right (left) centralizer or centralizer? In some of the results, the linear (additive) map γ satisfying \mathbb{R}_w (\mathbb{L}_w) or \mathbb{C}_w for specific points is described. In [2], Brešar proves that if $\mathcal R$ is a prime ring with a nontrival idempotent, then every additive mapping satisfying \mathbb{C}_0 is a centralizer. In [12], X. Qi and J. Hou characterize linear mappings satisfying \mathbb{C}_0 in triangular algebras. In [13], the authors study additive mappings satisfying \mathbb{R}_w (\mathbb{L}_w) or \mathbb{C}_w for various types of elements w in $B(\mathcal{H})$, where \mathcal{H} is a Hilbert space. For more information on mappings satisfying \mathbb{R}_w (\mathbb{L}_w) or \mathbb{C}_w , we refer to [1, 5–10] and references therein. Also, using fixed point techniques, (left, right) centralizers and their stability have been studied, see [3, 4, 11]. Motivated by the above studies, in this paper we consider the conditions \mathbb{R}_w (\mathbb{L}_w) or \mathbb{C}_w for a continuous linear map $\gamma : \mathcal{A} \to \mathcal{A}$, where \mathcal{A} is a Banach algebra with unity 1 and $w \neq 0$ is a left (right) separating point of \mathcal{A} . We say that $w \in \mathcal{A}$ is a left (right) separating point of \mathcal{A} if the condition wx = 0 (or xw = 0) for $x \in \mathcal{A}$ implies x = 0. In fact, under these conditions we prove that γ is a right (left) centralizer or centralizer. We also provide some applications of the obtained results for characterization of a continuous linear map $\gamma : \mathcal{A} \to \mathcal{A}$ satisfying

$$a, b \in \mathcal{A}, ab^* = w \Longrightarrow a\gamma(b)^* = \gamma(w^*)^* \quad (\mathbb{R}^*_w),$$

$$a, b \in \mathcal{A}, \ a^*b = w \Longrightarrow \gamma(a)^*b = \gamma(w^*)^* \quad (\mathbb{L}^*_w),$$

or

$$a, b, c, d \in \mathcal{A}, ab^* = c^*d = w \Longrightarrow a\gamma(b)^* = \gamma(c)^*d = \gamma(w^*)^* \quad (\mathbb{C}_w^*),$$

where \mathcal{A} is a Banach *-algebras and $w \in \mathcal{A}$ is a left (right) separating point.

2. Conditions \mathbb{R}_w and \mathbb{R}_w^*

This section is devoted to a continuous linear map with property \mathbb{R}_w or \mathbb{R}_w^* on a unital Banach algebra, in which $w \neq 0$ is a left separating point.

Theorem 2.1 Let \mathcal{A} be a Banach algebra with unity 1. Suppose that w in \mathcal{A} is a left separating point, and $\gamma : \mathcal{A} \to \mathcal{A}$ is a continuous linear map. The following are equivalent:

196

(i) γ satisfies \mathbb{R}_w ;

(ii) γ is a right centralizer.

Proof. (i) \Rightarrow (ii): Since w1 = w, it follows that $\gamma(w) = w\gamma(1)$. Let $a \in \mathcal{A}$ be an arbitrary element and $\lambda \in \mathbb{C}$ (the complex field). We have $w \exp(\lambda a) \exp(-\lambda a) = w$, where exp is the exponential function in \mathcal{A} . Hence,

$$\begin{split} \gamma(w) &= \gamma(w \exp(\lambda a)(\exp(-\lambda a)) \\ &= w \exp(\lambda a)\gamma(\exp(-\lambda a)) \\ &= w \exp(\lambda a)\gamma(\sum_{m=0}^{\infty} \frac{(-1)^m \lambda^m}{m!} a^m) \\ &= \sum_{m=0}^{\infty} \frac{(-1)^m \lambda^m}{m!} w \exp(\lambda a)\gamma(a^m) \\ &= \sum_{m=0}^{\infty} \frac{(-1)^m \lambda^m}{m!} \left(\sum_{n=0}^{\infty} \frac{\lambda^n}{n!} w a^n\right) \gamma(a^m) \\ &= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^m \lambda^{m+n}}{m!n!} w a^n \gamma(a^m) \\ &= w\gamma(1) + \sum_{k=1}^{\infty} \lambda^k \left(\sum_{m+n=k} \frac{(-1)^m}{m!n!} w a^n \gamma(a^m)\right) \end{split}$$

since γ is a continuous linear map. Thus,

$$\sum_{k=1}^{\infty} \lambda^k \left(\sum_{m+n=k} \frac{(-1)^m}{m!n!} w a^n \gamma(a^m) \right) = 0$$

,

for any $\lambda \in \mathbb{C}$. Consequently,

$$\sum_{m+n=k} \frac{(-1)^m}{m!n!} w a^n \gamma(a^m) = 0$$

for all $a \in \mathcal{A}$ and $k \in \mathbb{N}$. Let k = 1. we find that $wa\gamma(1) - w\gamma(a) = 0$ for all $a \in \mathcal{A}$. By the fact that w is a left separating point, we get $\gamma(a) = a\gamma(1)$ and hence, γ is a right centralizer.

(ii) \Rightarrow (i): is clear.

Since the unity 1 is a left separating point, we have the following corollary, which was proved in [7, Theorem 2.4].

Corollary 2.2 Let \mathcal{A} be a Banach algebra with unity 1, and $\gamma : \mathcal{A} \to \mathcal{A}$ be a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{R}_1 ;
- (ii) γ is a right centralizer.

In the following theorem, we examine condition \mathbb{R}^*_w .

Theorem 2.3 Let \mathcal{A} be a Banach *-algebra with unity 1. Suppose that w in \mathcal{A} is a left separating point, and $\gamma: \mathcal{A} \to \mathcal{A}$ is a continuous linear map. The following are equivalent:

(i) γ satisfies \mathbb{R}^*_w ;

(ii) γ is a left centralizer.

Proof. (i) \Rightarrow (ii): Consider $a, b \in \mathcal{A}$ with ab = w. So $a(b^*)^* = w$, and by assumption, $a\gamma(b^*)^* = \gamma(w^*)^*$. Define the continuous linear map $\xi : \mathcal{A} \to \mathcal{A}$ by $\xi(a) = \gamma(a^*)^*$. So, $a\xi(b) = \xi(w)$. Consequently, ξ satisfies \mathbb{R}_w , and by Theorem 2.1, $\xi(a) = a\xi(1)$ for all $a \in \mathcal{A}$. By definition of ξ , it results that $\gamma(a) = \gamma(1)a$ for all $a \in \mathcal{A}$.

(ii) \Rightarrow (i): Suppose that $\gamma(a) = \gamma(1)a$ for all $a \in \mathcal{A}$, and $a, b \in \mathcal{A}$ with $ab^* = w$. Hence,

$$a\gamma(b)^* = a(\gamma(1)b)^* = ab^*\gamma(1)^* = w\gamma(1)^* = (\gamma(1)w^*)^* = \gamma(w^*)^*.$$

The result below is straightforward.

Corollary 2.4 Let \mathcal{A} be a Banach algebra with unity 1 and $\gamma : \mathcal{A} \to \mathcal{A}$ be a continuous linear map. The following are equivalent:

(i) γ satisfies \mathbb{R}_1^* ;

(ii) γ is a left centralizer.

3. Conditions \mathbb{L}_w and \mathbb{L}_w^*

In this section, we study conditions \mathbb{L}_w and \mathbb{L}_w^* for a continuous linear map on a unital Banach algebra, in which $w \neq 0$ is a right separating point.

Theorem 3.1 Suppose that \mathcal{A} is a Banach algebra with unity 1. Let w in \mathcal{A} be a right separating point, and $\gamma: \mathcal{A} \to \mathcal{A}$ be a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{L}_w ;
- (ii) γ is a left centralizer.

Proof. (i) \Rightarrow (ii): Since 1w = w, it follows that $\gamma(w) = \gamma(1)w$. Let $a \in \mathcal{A}$ be an arbitrary element and $\lambda \in \mathbb{C}$. We have $\exp(-\lambda a)\exp(\lambda a)w = w$, where exp is the exponential function in \mathcal{A} . So,

$$\gamma(w) = \gamma(\exp(-\lambda a)(\exp(\lambda a)w) = \gamma(\exp(-\lambda a))\exp(\lambda a)w.$$

Now, according to these points and using a method similar to the proof of Theorem 2.1 on the above equation, the proof is obtained.

(ii) \Rightarrow (i): is clear.

The following conclusion is obvious.

Corollary 3.2 Assume that \mathcal{A} is a Banach algebra with unity 1, and $\gamma : \mathcal{A} \to \mathcal{A}$ is a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{L}_1 ;
- (ii) γ is a left centralizer.

In the following theorem, we check condition \mathbb{L}_{w}^{*} .

Theorem 3.3 Let \mathcal{A} be a Banach *-algebra with unity 1, and w in \mathcal{A} is a right separating point. Suppose that $\gamma : \mathcal{A} \to \mathcal{A}$ is a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{L}_w^* ;
- (ii) γ is a right centralizer.

Proof. (i) \Rightarrow (ii): Let $a, b \in \mathcal{A}$ with ab = w. So $(a^*)^*b = w$, and by assumption, $\gamma(a^*)^*b = \gamma(w^*)^*$. Define the continuous linear map $\xi : \mathcal{A} \to \mathcal{A}$ by $\xi(a) = \gamma(a^*)^*$. Hence, $\xi(a)b = \xi(w)$. Therefore, ξ satisfies \mathbb{L}_w , and by Theorem 3.1, $\xi(a) = \xi(1)a$ for all $a \in \mathcal{A}$. By definition of ξ it results that $\gamma(a) = a\gamma(1)$ for all $a \in \mathcal{A}$.

(ii) \Rightarrow (i): Suppose that $\gamma(a) = a\gamma(1)$ for all $a \in \mathcal{A}$, and $a, b \in \mathcal{A}$ with $a^*b = w$. Hence,

$$\gamma(a)^*b = (a\gamma(1))^*b = \gamma(1)^*a^*b = \gamma(1)^*w = (w^*\gamma(1))^* = \gamma(w^*)^*$$

The next result is obvious.

Corollary 3.4 Let \mathcal{A} be a Banach algebra with unity 1, and $\gamma : \mathcal{A} \to \mathcal{A}$ be a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{L}_1^* ;
- (ii) γ is a right centralizer.

4. Conditions \mathbb{C}_w and \mathbb{C}_w^*

In this section, we examine conditions \mathbb{C}_w and \mathbb{C}_w^* for a continuous linear map on a unital Banach algebra, in which $w \neq 0$ is a left or right separating point.

Theorem 4.1 Let \mathcal{A} be a Banach algebra with unity 1. Suppose that w in \mathcal{A} is a left or right separating point, and $\gamma : \mathcal{A} \to \mathcal{A}$ is a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{C}_w ;
- (ii) γ is a centralizer.

Proof. (i) \Rightarrow (ii): Let w be a left separating point and $a, b \in \mathcal{A}$ with ab = w. By assumption $a\gamma(b) = \gamma(w)$. It follows from Theorem 2.1 that $\gamma(a) = a\gamma(1)$ for all $a \in \mathcal{A}$. Suppose that $a \in \mathcal{A}$ is an invertible element. So $waa^{-1} = w$, and by assumption $\gamma(wa)a^{-1} = \gamma(w)$. Thus, $wa\gamma(1) = w\gamma(1)a$; that is, $a\gamma(1) = \gamma(1)a$ for all invertible element $a \in \mathcal{A}$, because w is a left separating point. Let $a \in \mathcal{A}$ be arbitrary and $\lambda \in \mathbb{C}$ such that $|\lambda| \ge ||a||$. So $\lambda 1 - a$ is invertible in \mathcal{A} and $(\lambda 1 - a)\gamma(1) = \gamma(1)(\lambda 1 - a)$. Hence, $a\gamma(1) = \gamma(1)a$ for all $a \in \mathcal{A}$. Now, we have $\gamma(a) = a\gamma(1) = \gamma(1)a$ for all $a \in \mathcal{A}$.

Assume that w is a right separating point and $a, b \in \mathcal{A}$ with ab = w. By assumption $\gamma(a)b = \gamma(w)$. It follows from Theorem 3.1 that $\gamma(a) = \gamma(1)a$ for all $a \in \mathcal{A}$. Suppose that $a \in \mathcal{A}$ is an invertible element. So $a^{-1}aw = w$, and by assumption $a^{-1}\gamma(aw) = \gamma(w)$. Thus $\gamma(1)aw = a\gamma(1)w$. That is $a\gamma(1) = \gamma(1)a$ for all invertible element $a \in \mathcal{A}$, because w is a right separating point. Now, with a proof similar to the above, we get the result. (ii) \Rightarrow (i): is clear.

The following result is straightforward.

Corollary 4.2 Let \mathcal{A} be a Banach algebra with unity 1, and $\gamma : \mathcal{A} \to \mathcal{A}$ be a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{C}_1 ;
- (ii) γ is a centralizer.

In the following, we check condition \mathbb{C}_w^* .

Theorem 4.3 Let \mathcal{A} be a Banach *-algebra with unity 1. Suppose that w in \mathcal{A} is a left or right separating point, and $\gamma: \mathcal{A} \to \mathcal{A}$ is a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{C}_w^* ;
- (ii) γ is a centralizer.

Proof. (i) \Rightarrow (ii): Consider $a, b \in \mathcal{A}$ with ab = w. So $a(b^*)^* = (a^*)^*b = w$, and by assumption, $a\gamma(b^*)^* = \gamma(a^*)^*b = \gamma(w^*)^*$. Define the continuous linear map $\xi : \mathcal{A} \to \mathcal{A}$ \mathcal{A} by $\xi(a) = \gamma(a^*)^*$. So, $a\xi(b) = \xi(a)b = \xi(w)$. Consequently, ξ satisfies \mathbb{C}_w , and by Theorem 4.1, $\xi(a) = a\xi(1) = \xi(1)a$ for all $a \in \mathcal{A}$. By definition of ξ it results that $\gamma(a) = \gamma(1)a = a\gamma(1)$ for all $a \in \mathcal{A}$.

(ii) \Rightarrow (i): Similar to the proof of (ii) \Rightarrow (i) Theorems 2.3 and 3.3, it is obtained.

The next result is obvious.

Corollary 4.4 Let \mathcal{A} be a Banach algebra with unity 1, and $\gamma : \mathcal{A} \to \mathcal{A}$ be a continuous linear map. The following are equivalent:

- (i) γ satisfies \mathbb{C}_1^* ;
- (ii) γ is a centralizer.

Acknowledgment

The authors like to express their sincere thanks to the referee(s) for this paper.

References

- [1] A. Barari, B. Fadaee, H. Ghahramani, Linear maps on standard operator algebras characterized by action on zero products, Bull. Iran. Math. Soc. 45 (2019), 1573-1583.
- M. Brešar, Characterizing homomorphisms, multipliers and derivations in rings with idempotents, Proc. R. Soc. Edinb. Sect. A. 137 (2007), 9-21.
 [3] D. Das, N. Goswami, V. N. Mishra, Some results on fixed point theorems in Banach algebras, Int. J. Anal.
- Appl. 13 (1) (2017), 32-40.
- [4] D. Das, N. Goswami, V. N. Mishra, Some results on the projective cone normed tensor product spaces over Banach algebras, Boletim da Soc. Paranaense de Matemtica. 38 (1) (2020), 197-220.
- [5] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterr. J. Math. 15 (2018), 15:38.
- [6] H. Ghahramani, Left ideal preserving maps on triangular algebras, Iran. J. Sci. Technol. Trans. Sci. 44 (2020), 109-118.
- H. Ghahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci. Soc. 38 (2015), 155-164.
- H. Ghahramani, A. H. Mokhtari, Characterizing linear maps of standard operator algebras through orthogonality, Acta Sci. Math. 88 (2022), 777-786.
- [9] H. Ghahramani, S. Sattari, Characterization of reflexive closure of some operator algebras acting on Hilbert C*-modules, Acta. Math. Hungar. 157 (2019), 158-172.
- [10] J. He, J. Li, and Qian, Characterizations of centralizers and derivations on some algebras, J. Korean Math. Soc. 54 (2017), 685-696.
- [11] A. K. Mishra, -. Padmawati, L. Rathour, V. N. Mishra, Some fixed point theorem using generalized cone metric spaces with Banach algebra, High. Tech. Letters. 29 (1) (2023), 153-162.
- [12] X. Qi, J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta. Math. Sinica. 29 (2013), 1245-1256.
- W. Xu, R. An, J. Hou, Equivalent characterization of centralizers on B(H), Acta. Math. Sinica. 32 (2016), [13]1113-1120.

200