Journal of Linear and Topological Algebra Vol. 12*, No.* 03*,* 2023*,* 163*-* 177 *DOR: 20.1001.1.22520201.2023.12.03.2.4 DOI: 10.30495/JLTA.2023.1992299.1578*

Projectivity and injectivity of G**-Hilbert** *ℑ***-modules**

A. Yousefi^a , M. R. Mardanbeigi^a*,[∗]*

^a*Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.*

Received 25 July 2023; Revised 2 September 2023; Accepted 4 September 2023.

Communicated by Amin Mahmoodi Kebria

Abstract. Let G be a discrete group acting on C^* -algebra \Im . In this paper, we investigate projectivity and injectivity of *G*-Hilbert *ℑ*-modules and study the equivalent conditions characterizing G-*C ∗* -subalgebras of the algebra of compact operators on G-Hilbert spaces in terms of general properties of G-Hilbert *ℑ*-modules. In particular, we show that G-Hilbert *ℑ*-(bi)modules on G-*C ∗* -algebra of compact operators are both projective and injective.

Keywords: *G*-projective, *G*-projective cover, extremally *G*-disconnected, *G*-*C ∗* -algebra, *G*-Hilbert *ℑ*-module, *G*-injective Hilbert *ℑ*-module, *G*-projective Hilbert *ℑ*-module, *G*-self dual, *G*-monotone complete, *G*-*∗*-representation.

2010 AMS Subject Classification: 46H25, 46L08.

1. Introduction and preliminaries

The aim of this paper is to generalize the main results of [8, 16] for actions of discrete groups on Hilbert C^* -modules. Accordingly, we investigate two specific problems:

- (i) characterizations of $G-C^*$ -algebras \Im and ζ for each G -Hilbert \Im - ζ -bimodule is projective or injective, for appropriate morphisms a[nd](#page-14-0) [sub](#page-14-1)objects;
- (ii) characterizations of injective or projective G-Hilbert *ℑ*-*ζ*-bimodules, for G-*C ∗* algebras *ℑ* and *ζ* and appropriate morphisms.

Most of the existing work on injectivity for C^* -algebras are focused on (contractive) completely positive maps. The work of Hamana [9, 10] on G-injective operator system and

Print ISSN: 2252-0201 \bigodot 2023 IAUCTB.
Online ISSN: 2345-5934 http://jlta.ctb.

 ${\rm http://jlta.ctb.iau.ir}$

*[∗]*Corresponding author.

E-mail address: A.yousefi.math@gmail.com (A. Yousefi); mr[mar](#page-14-2)[dan](#page-14-3)beigi@srbiau.ac.ir, mmardanbeigi@yahoo.com (M. R. Mardanbeigi).

G-injective envelopes, gives the flavor of G-injectivity for operator system endowed with G-actions. In the category of topological spaces with a G-action, Hadwin and Paulsen [11] gave a characterization of G-projective and G-injective spaces. Most of these investigations are restricted to the case of actions of discrete groups. In [3], it has been shown that Fréchet algebra $\cap_{n\in\mathbb{N}}L^{\infty}(\mathsf{G},\omega_n^{-1})$ is projective if and only if G is finite and Fréchet algebra $∩_{n\in\mathbb{N}}C_0(\mathsf{G}, \omega_n^{-1})$ [is](#page-14-4) projective (injective) if and only if **G** is compact (finite), where **G** is a locally compact group. Oikhberg [19] proved that every p-multinormed space embeds into (is a quotient of) an injective (resp. a projective) p-mul[ti](#page-14-5)normed space. Mahmoodi and Mardanbeigi [17] showed that an injective AF-algebra must be finite dimensional, while the question is open for injective and projective **G-AF-algebras**.

Insections 2 and 3, we consider c[ate](#page-14-6)gories of G-Hilbert \Im -modules \mathcal{X}_G on some fixed G-*C ∗* -algebra *ℑ* and specify another G-*C ∗* -algebra *ζ* that using module-specific G-*∗* representations ac[ts](#page-14-7) on X_G as a set of adjointable bounded operators. This gives on such a module \mathcal{X}_G the structure of a G-Hilbert \Im - ζ -bimodule with $\langle e_l_1, l_2 \rangle = e \langle l_1, l_2 \rangle$ ^{*} for each $e \in \Im$, $\flat \in \zeta$, and $\iota_1, \iota_2 \in \mathcal{X}_\mathsf{G}$. We call \mathcal{X}_G a G-Hilbert \Im - ζ -bimodule. Note that any G-Hilbert *ℑ*-*ζ*-module is automatically a G-Hilbert *ℑ*-C-bimodule. Then projective and injective G-Hilbert *ℑ*-*ζ*-module on a fixed G-*C ∗* -algebra are defined for morphisms being bounded G-equivariant maps.

A method for generalizing Hilbert C^* -modules ($\mathcal{H}C^*$ -M) is to consider the category whose objects are G-Hilbert *ℑ*-module on a fixed G-*C ∗* -algebra *ℑ*, subobjects are Gsubmodules and morphisms are the bounded *ℑ*-module G-equivariant maps. As in the case of Banach spaces, if one considers the morphisms to be contractive module maps, the theory of injective $\mathcal{H}C^*$ -M is nearly simpler and is large works out in (e.g. [15, 16, 23]). In [15, 16], sometimes the morphisms are adjointable contractive module mappings, objects are $\mathcal{H}C^*$ -M and subobjects are $\mathcal{H}C^*$ -submodules. There are similar observations about projectivity, which is a kind of dual theory of injectivity. In addition to specifying morphisms, the coefficients must also be specified for projectivity. In S[ect](#page-14-8)i[on](#page-14-1) [3, w](#page-14-9)e pro[vid](#page-14-8)[e de](#page-14-1)tailed definitions of it. The sets of morphisms in our study are either bounded bimodule G-equivariant maps, or bimodule G-equivariant maps. We will show these two categories with $B_G(\Im, \zeta)$ and $B_G^*(\Im, \zeta)$ respectively. We show that for each G-C^{*}-algebra *ℑ*, any G-Hilbert *ℑ*-*ζ*-bimodule in the category *B∗* G (*ℑ, ζ*) is projective. When *ℑ* is a G-*C ∗* -algebra of compact operators, we show that any G-Hilbert *ℑ*-*ζ*-bimodule in *B*G(*ℑ, ζ*) is projective, but we can not solve the question of whether these are the only G-*C ∗* algebras with this property. Even the question of whether all G-Hilbert *ℑ*-modules are projective remains open in the larger category. However, we show that all G-Hilbert *ℑ*-*ζ*-bimodules on a G-*C ∗* -algebra in these categories are projective iff the kernel of any surjective bounded module map between G-Hilbert *ℑ*-module is a topological direct summand of the domain. Moreover, we identify a family of G-projective G-Hilbert *ℑ*-module on unital G-*C ∗* -algebras. We show that finitely generated G-Hilbert *ℑ*-module on unital G-*C ∗* -algebras of both categories are projective objects. The G-*C ∗* -algebras *ℑ* of the form $\Im = \varpi_0$ - $\sum_{\sigma} \mathcal{K}(\mathcal{H}_{\sigma})$ are of particular importance, where $\mathcal{K}(\mathcal{H}_{\sigma})$ represents the G- C^* -algebra of all compact operators on some G-Hilbert space \mathcal{H}_{σ} , and when the group G is said to have the fixed point property, the ϖ_0 -sum is either a finite block-diagonal sum or a block-diagonal sum with a ϖ_0 -convergence condition.

2. G-injective Hilbert *ℑ***-modules**

An operator system in the category of unital completely positive $(\mathcal{U}.\mathcal{C}.\mathcal{P})$ linear maps and *C ∗* -algebras, is a self-adjoint linear subspace *Q* of a unital *C ∗* -algebra *A* containing the identity I of *A* move the references. An order isomorphim of two operator systems *Q* and *Q'* is a *U.C.P.* linear isomorphism $\Omega : Q \longrightarrow Q'$ so that Ω^{-1} is also completely positive. We say that Ω is an automorphism, if $\mathcal{Q}' = \mathcal{Q}$, also we denote the automorphisms group of *Q* by $Aut(Q)$. Any $\Omega \in Aut(Q)$ is automatically completely isometric, therefore, if *Q* be a (unital) *C ∗* -algebra, the definition of an automorphism coincides to the usual concept of an automorphism of a *C ∗* -algebra (e.g. [2]). We say that *Q* is a G-operator system, if an action of discrete group G on an operator system *Q* be always assumed by automorphisms. We say that *Q* is a G-*C ∗* -algebra, if *Q* is a *C ∗* -algebra. The image of *ι* under ρ , for every $\rho \in \mathbb{G}$ and $\iota \in \mathcal{Q}$, is denoted by $\rho \cdot \iota$. A G-operator system is a G-equivariant *U.C.P.* maps and G-projective objecti[n](#page-14-10) the category of G-operator system. Suppose that \mathcal{X}_G be a G-operator system, if \mathcal{C}_G is a G-operator system, then we say that (C_G, Υ) is a G-cover of \mathcal{X}_G and Υ : $C_G \longrightarrow \mathcal{X}_G$ is a G-equivariant $\mathcal{U} \subset \mathcal{P}$ linear epimorphism on \mathcal{X}_G . If $(\mathcal{C}_G, \Upsilon)$ be a G-cover, then we say that $(\mathcal{C}_G, \Upsilon)$ is G-essential cover of \mathcal{X}_G , and whenever \mathcal{Y}_G is a G-operator system; $\Gamma : \mathcal{Y}_G \longrightarrow \mathcal{C}_G$ is G-equivariant $\mathcal{U}.\mathcal{C}.\mathcal{P}$ map and $\Upsilon(\Gamma(\mathcal{Y}_{\mathsf{G}})) = \mathcal{X}_{\mathsf{G}}$, then $\Gamma(\mathcal{Y}_{\mathsf{G}}) = \mathcal{C}_{\mathsf{G}}$. We say that $(\mathcal{C}_{\mathsf{G}}, \Upsilon)$ is a **G**-rigid cover of \mathcal{X}_{G} , if there exists a G-cover and G-equivariant $U.C.P$ map $\Gamma : C_G \longrightarrow C_G$ satisfying $\Upsilon(\Gamma(\varpi)) = \Upsilon(\varpi)$ for each $\omega \in \mathcal{C}_G$ is a complete isometric.

Entirely this section, we assume that G is a discrete group. A G-*C ∗* -algebra, equipped with the action of G by automorphisms is a C^* -algebra. In other words, a $G-C^*$ -algebra *ℑ* is a *C ∗* -algebra and a left G-M. Given G-*C ∗* -algebras *ℑ* and *ζ*, the *U.C.P* linear map $\varphi : \Im \longrightarrow \zeta$ is G- equivariant if $\varphi(\varrho \cdot e) = \varrho \cdot \varphi(e)$, for any $\varrho \in \mathsf{G}$ and $e \in \Im$.

A G-*C ∗* -algebra *ℑ* is said to be G-injective if for each G-*C ∗* -algebras *ζ* and *C*, any Gequivariant complete isometry $\pi : \zeta \longrightarrow \mathcal{C}$ and any G-equivariant $\mathcal{U}.\mathcal{C}.\mathcal{P}$ map $\varphi : \zeta \longrightarrow \Im$, there exists a G-equivariant $U.C.P.$ map $\tilde{\varphi} : C \longrightarrow \Im$ satisfying $\tilde{\varphi} \circ \pi = \varphi$.

Definition 2.1 A G-pre-Hilbert *ℑ*-module on a G-*C ∗* -algebra *ℑ* is an *ℑ*-module *X*^G equipped with an \Im -valued map $\langle \cdot, \cdot \rangle : \mathcal{X}_G \times \mathcal{X}_G \longrightarrow \Im$ that in the first argument is *ℑ*-linear and has the following properties:

$$
\langle \iota, \varsigma \rangle = \langle \varsigma, \iota \rangle^*, \langle \iota, \iota \rangle \geq 0 \text{ with equality if and only if } \iota = 0.
$$

Then $\langle \cdot, \cdot \rangle$ is said to be the *S*-valued inner product $(\Im \text{-} V \mathcal{I} \mathcal{I} \mathcal{P})$ in \mathcal{X}_G .

Example **2.2** Suppose that *ℑ* is a G-*C ∗* -algebra and C is the set of all numbers of complex. Then

- (i) Each inner product space on action G is a left G -pre-Hilbert module on \mathbb{C} ;
- (ii) If $\mathfrak I$ is a (closed) right G-invariant ideal of $\mathfrak F$, then $\mathfrak I$ is a G-pre-Hilbert $\mathfrak F$ -module if $\langle e, \flat \rangle := e^{\flat}$; especially \Im is a G-pre-Hilbert \Im -module;
- (iii) Let $\{\mathfrak{M}_{\alpha}\}_{1\leq \alpha \leq \mathfrak{m}}$ be a finite family of G-pre-Hilbert \Im *-module*. Then the vector space direct sum $\bigoplus_{\alpha=1}^m \mathfrak{M}_{\alpha}$ is a G-pre-Hilbert *S*-module if we define

$$
(\iota_1,\cdots,\iota_{\mathfrak{m}})e=(\iota_1e,\cdots,\iota_{\mathfrak{m}}e),\langle(\iota_1,\cdots,\iota_{\mathfrak{m}}),(\varsigma_1,\cdots,\varsigma_{\mathfrak{m}})\rangle=\sum_{\alpha=1}^{\mathfrak{m}}\langle\iota_{\alpha},\varsigma_{\alpha}\rangle.
$$

 $\textbf{Definition 2.3 A G-pre-Hilbert } \mathfrak{F}-module $\{\mathcal{X}_{\mathsf{G}_1}, \langle \cdot, \cdot \rangle\}$ is G-Hilbert \mathfrak{F}-module iff it is$ complete with respect to the norm $\|\cdot\| = \|\langle \cdot, \cdot \rangle\|_{\mathcal{S}}^2$.

Example 2.4 Suppose that $\{\mathcal{X}_n\}$ is a sequence of G-Hilbert \Im *-module*. Then

$$
\bigoplus_{\alpha=1}^{\infty}\xi_{\mathfrak{n}}=\{\{\iota_{\mathfrak{n}}\}| \iota_{\mathfrak{n}}\in\mathcal{X}_{\mathfrak{n}}, \sum_{n=1}^{\infty}\langle \iota_{\mathfrak{n}}, \iota_{\mathfrak{n}}\rangle \text{ converges in } \nu\}
$$

166 *A. Yousefi and M. R. Mardanbeigi / J. Linear. Topological. Algebra.* 12*(*03*) (*2023*)* 163*-*177*.*

with operations

$$
\{\iota_{\mathfrak{n}}\} + \nu\{\varsigma_{\mathfrak{n}}\} = \{\iota_{\mathfrak{n}} + \nu\varsigma_{\mathfrak{n}}\}, \{\iota_{\mathfrak{n}}\}e = \{\iota_{\mathfrak{n}}e\}, \langle\{\iota_{\mathfrak{n}}\}, \{\varsigma_{\mathfrak{n}}\}\rangle = \sum_{\alpha=1}^{\infty} \langle \iota_{\mathfrak{n}}, \varsigma_{\mathfrak{n}}\rangle
$$

is a G-Hilbert \Im -module. Note that in $\bigoplus_{n=p}^q \mathcal{X}_n$, we have

$$
\sum_{n=p}^q \|\langle \iota_n, \varsigma_n \rangle \| = \|\sum_{n=p}^q \langle \iota_n, \iota_n \rangle \| \| \sum_{n=p}^q \langle \varsigma_n, \varsigma_n \rangle \|.
$$

Hence, by the Cauchy criterion, $\sum_{n=1}^{\infty} \langle \iota_n, \zeta_n \rangle$ converges. For completeness, let $\{\mathfrak{v}_\pi\}_\pi$ be a Cauchy sequence in $\bigoplus_{n=1}^{\infty} \mathcal{X}_n$ and for all $\pi, \mathfrak{v}_\pi = {\iota_{\mathfrak{n},\pi}}_{\mathfrak{n}}$. Applying

$$
\|\iota_{n,\pi}-\iota_{n,l}\|=\|\langle \iota_{n,\pi}-\iota_{n,l},\iota_{n,\pi}-\iota_{n,l}\rangle\|=\|\sum_{n=1}^{\infty}\langle \iota_{n,\pi}-\iota_{n,l},\iota_{n,\pi}-\iota_{n,l}\rangle\|=\|\mathfrak{v}_{\pi}-\mathfrak{v}_{l}\|^{2},
$$

we deduce that $\{\iota_{\mathfrak{n},\pi}\}_{\pi}$ is Cauchy, for any $\mathfrak{n} \in \mathbb{N}$. So for any \mathfrak{n} , there is \mathfrak{u}_n so that $\lim_{\pi} \iota_{\mathfrak{n},\pi} = \mathfrak{u}_{\mathfrak{n}}$. Now, we put $\mathfrak{u} = {\mathfrak{u}_{\mathfrak{n}}}$. Then $\lim_{\pi} \mathfrak{v}_{\pi} = \mathfrak{u}$.

G-Hilbert *ℑ*-module behaves like Hilbert spaces in some way, for example,

$$
\|\iota\| = \sup\{\|\langle \iota, \varsigma \rangle\|, \|\varsigma\| = 1, \, \varsigma \in \mathcal{X}_{\mathsf{G}}\}.
$$

But there exists one fundamental method in which G-Hilbert *ℑ*-modules differs from Hilbert spaces. Given a closed submodule \mathcal{Y}_G of a G-Hilbert *S*-module \mathcal{X}_G , we define

$$
\mathcal{Y}_{\mathsf{G}}^{\perp} = \{ \varsigma \in \mathcal{X}_{\mathsf{G}} \mid \langle \iota, \varsigma \rangle = 0, \forall \iota \in \mathcal{Y}_{\mathsf{G}} \}.
$$

Then $\mathcal{Y}_{\mathsf{G}}^{\perp}$ is a closed submodule, but $\mathcal{X}_{\mathsf{G}} \neq \mathcal{Y}_{\mathsf{G}} + \mathcal{Y}_{\mathsf{G}}$ and $\mathcal{Y}_{\mathsf{G}}^{\perp \perp} \neq \mathcal{Y}_{\mathsf{G}}$.

Example 2.5 Let $\Im = C([0, 1]), \mathcal{X}_G = \Im$ and $\mathcal{Y}_G = \{T \in \Im | T(\frac{1}{2}) = 0\}$. Then $\mathcal{Y}_G^{\perp} = \{0\}$. Also, for all $\varrho \in \mathcal{Y}_{\mathsf{G}}^{\perp}$, $\varrho(\tau)|\tau - \frac{1}{2}$ $\left|\frac{1}{2}\right| = 0$. Hence, by continuity, $\rho \equiv 0$. The equality of Pythagoras stating $\mathcal{E}, \gamma \in \mathcal{H}$ and $\mathcal{E} \perp \gamma$ imply $\|\mathcal{E} + \gamma\|^2 = \|\mathcal{E}\|^2 + \|\gamma\|^2$ does not hold, in general, for G-Hilbert \Im *-modules.* For example, consider $\Im = C([0,1] \cup [2,3])$ as a G-Hilbert *ℑ*-module.

$$
\Upsilon(\iota) = \begin{cases} 1 & \iota \in [0,1] \\ 0 & \iota \in [2,3] \end{cases} \quad \text{and} \quad \varrho(\iota) = \begin{cases} 0 & \iota \in [0,1] \\ 1 & \iota \in [2,3] \end{cases}.
$$

Then $\langle \Upsilon, \varrho \rangle = \Upsilon \varrho = 0$, $\|\Upsilon + \varrho\| = 1$ and $\|\Upsilon\| = \|\varrho\| = 1$.

Two G-Hilbert *ℑ*-modules are G-isomorphic if as Banach *ℑ*-modules, they are Gisometrically isomorphic on G.

Definition 2.6 The set of all bounded \Im *-module* G-equivariant $r : \mathcal{X}_G \longrightarrow \Im$ forms a **G-Banach** \Im **-module** \mathcal{X}'_G **.** The **G-Banach** \Im -module \mathcal{X}'_G is **G**-dual of \mathcal{X}_G . The action of module \Im on \mathcal{X}'_G for any $\iota \in \mathcal{X}_G$, $e \in \Im$, $\mathfrak{r}, \mathfrak{s} \in \mathcal{X}'_G$ and $\nu \in \mathbb{C}$ is defined as follows:

- (i) $(\mathfrak{r} + \mathfrak{s})(\iota) = \mathfrak{r}(\iota) + \mathfrak{s}(\iota);$
- (ii) $(\nu \mathfrak{r})(\iota) = \nu(\mathfrak{r}(\iota));$
- (iii) $(e \cdot \mathfrak{r})(\iota) = \mathfrak{r}(\iota)e^*$.

The map \wedge : $\mathcal{X}_{\mathsf{G}} \longrightarrow \mathcal{X}_{\mathsf{G}}'$, $\iota \longrightarrow \hat{\iota}$, where $\hat{\iota} : \mathcal{X}_{\mathsf{G}} \longrightarrow \Im, \hat{\iota}(\varsigma) = \langle \iota, \varsigma \rangle$ is a **G**-isometric \Im -linear map. We may identify \mathcal{X}_{G} with $\mathcal{X}_{\mathsf{G}} = \{\hat{\iota} : \iota \in \mathcal{X}_{\mathsf{G}}\}$ as a submodule of \mathcal{X}_{G} .

Definition 2.7 A G-Hilbert *ℑ*-module *{X*G*,⟨·, ·⟩}* on a G-*C ∗* -algebra *ℑ* is called G*-self dual* iff any bounded \Im -module G-equivariant $\mathfrak{r} : \mathcal{X}_G \longrightarrow \Im$, for some element $\iota_{\mathfrak{r}} \in \mathcal{X}_G$, is of the form $\langle \cdot, \iota_{\mathfrak{r}} \rangle$.

In fact, \mathcal{X}_G is called G-self dual if $\hat{\mathcal{X}}_G = \mathcal{X}'_G$.

Example 2.8 Consider the G-C^{*}-algebra $\Im = \varpi_0$ of all sequences that converge to zero and put $\mathcal{X}_G = \varpi_0$ with the standard \Im -*V.I.P*. Let \mathcal{X}_G both as a G-Hilbert \Im -module and a G-Hilbert $\Re_G(\Im)$ -module. The G-multiplier G-C^{*}-algebra of $\Im = \varpi_0$ is $\Re_G(\Im) = \mathfrak{l}^{\infty}$. Then $\mathcal{X}'_{\mathsf{G}}$, as a one-sided \Im *-module*, is independent of choosing a set of coefficients equal to $\mathfrak l^\infty$.

Theorem 2.9 \mathcal{X}_G is G-self dual, as a G-Hilbert *G*-module, if and only if \mathcal{X}_G is unital.

Proof. Let \mathcal{X}_G be unital with unit 1 and $\tau \in \mathcal{X}'_G$. Then

$$
\tau(e) = \tau(1 \cdot \iota) = \tau(1) \cdot \iota = \langle \tau(1)^*, \iota \rangle = (\tau(1)^*)^{\wedge}(e)
$$

for all $\iota \in \mathcal{X}_{\mathsf{G}}$. Hence, $\tau = (\tau(1)^*)^{\wedge} \in \hat{\mathcal{X}}_{\mathsf{G}} \subseteq \mathcal{X}'_{\mathsf{G}}$. If $\mathcal{X}_{\mathsf{G}} = \mathcal{X}'_{\mathsf{G}}$, then $\alpha : \mathcal{X}_{\mathsf{G}} \longrightarrow \mathcal{X}_{\mathsf{G}}$, $\alpha(\varsigma) = \varsigma$ being bounded G-equivariant \Im -linear, for some $\iota \in \mathcal{X}_G$, is of the form $\hat{\iota}$. Hence $\varsigma = \alpha(\varsigma) = \hat{\iota}(\varsigma) = \langle \iota, \varsigma \rangle = \iota^* \varsigma$ for all $\varsigma \in \mathcal{X}_\mathsf{G}$. Therefore, ι^* is the unit of \mathcal{X}_G .

Let \mathcal{X}_G be a G-Hilbert \Im -module and $\{\mathfrak{e}_\nu\}$ be an approximate unit for \Im . For $\iota \in \xi_G$, we have

$$
\langle \iota - \iota \mathfrak{e}_{\nu}, \iota - \iota \mathfrak{e}_{\nu} \rangle = \langle \iota, \iota \rangle - \mathfrak{e}_{\nu} \langle \iota, \iota \rangle - \langle \iota, \iota \rangle \mathfrak{e}_{\nu} + \mathfrak{e}_{\nu} \langle \iota, \iota \rangle \mathfrak{e}_{\nu} \longrightarrow 0.
$$

Then $\lim_{\nu} \iota_{\mathfrak{e}_{\nu}} = \iota$. As a result, $\mathcal{X}_{\mathsf{G}}\mathfrak{F}$, defined as the linear span of $\{\iota e | \iota \in \mathcal{X}_{\mathsf{G}}, e \in \mathfrak{F}\}\$, is dense in \mathcal{X}_G and if \Im is unital, then $\iota \cdot 1 = \iota$. Clearly, $\langle \mathcal{X}_G, \mathcal{X}_G \rangle = span{\langle \iota, \varsigma \rangle | \iota, \varsigma \in \mathcal{X}_G \rangle}$ is a *∗*-G-bi-ideal of *ℑ*.

Definition 2.10 If $\langle \mathcal{X}_G, \mathcal{X}_G \rangle$ is dense in \Im , then we say that \mathcal{X}_G is G -full.

ℑ as an *ℑ*-module is an example of G-full. Let *X*^G and *Y*^G be G-Hilbert *ℑ*-modules and

$$
B(\mathcal{X}_G,\mathcal{Y}_G)=\{\tau:\mathcal{X}_G\longrightarrow \mathcal{Y}_G:\ \exists \tau^*: \mathcal{Y}_G\longrightarrow \mathcal{X}_G,\ \langle \tau\iota,\varsigma\rangle=\langle \iota,\tau^*\varsigma\rangle\},
$$

where τ is G-equivariant. Then τ must be *S*-linear, since $\langle \tau(\iota e), \varsigma \rangle = \langle \iota e, \tau^* \varsigma \rangle =$ $e^*\langle \iota, \tau^*\varsigma \rangle = e^*\langle \tau \iota, \varsigma \rangle = \langle (\tau \iota)e, \varsigma \rangle$ for all ς . Hence $\langle \tau(\iota e) - (\tau \iota)e, \varsigma \rangle = 0$ and then $\langle \tau(\iota e) - (\tau \iota) e, \tau(\iota e) - (\tau \iota) e \rangle = 0$. It concludes that $\tau(\iota e) - (\tau \iota) e = 0$. Similarly, $\tau(\nu \iota + \varsigma) =$ *ντι*+*τς*. Also, for every *ι* in the unit ball of X_G , *τ* must be bounded, which Υ *ι* : $X_G \longrightarrow \Im$ is defined by $\Upsilon_{\iota}(\varsigma) = \langle \tau \iota, \varsigma \rangle = \langle \iota, \tau^* \varsigma \rangle$. Then $\|\Upsilon_{\iota}(\varsigma)\| = \|\iota\| \|\tau^* \varsigma\| = \|\tau^* \varsigma\|$. Therefore, $\{\|\Upsilon_{\iota}\| : \iota \in \mathcal{X}_1\}$ is bounded. This and $\|\tau_{\iota}\| = \sup_{\varsigma \in \mathcal{Y}_1} \|\langle \tau_{\iota}, \varsigma \rangle \| = \sup_{\varsigma \in \mathcal{Y}_1} \|\Upsilon_{\iota}(\varsigma)\| = \|\Upsilon_{\iota}\|$ indicate that τ is bounded. Then we say that $B(\mathcal{X}_{\mathsf{G}}, \mathcal{Y}_{\mathsf{G}})$ is the space of adjointable G-maps and we put $B(\mathcal{X}_{\mathsf{G}}) = B(\mathcal{X}_{\mathsf{G}}, \mathcal{X}_{\mathsf{G}})$.

Example 2.11 Let $\mathcal{Y}_G = \Lambda = C([0,1]), \mathcal{X}_G = \{ \Upsilon \longrightarrow \Lambda, \Upsilon(\frac{1}{2}) = 0 \}$ and $\alpha : \mathcal{X}_G \longrightarrow \mathcal{Y}_G$, $\Upsilon \longrightarrow \Upsilon$ be the inclusion map. If α is adjointable and 1 represents the identity element of \Im , then $\langle \iota, \alpha^*(1) \rangle = \langle \alpha(\iota), 1 \rangle = \langle \iota, 1 \rangle$ for all $\iota \in \mathcal{X}_G$. So $\alpha^*(1) = 1$, but $1 \notin \mathcal{E}_G$ and therefore α cannot be adjointable.

B(X ^G) is a G-*C*^{*}-algebra. If $\tau \in B(\mathcal{X}_G, \mathcal{Y}_G)$, then $\tau^* \in B(\mathcal{Y}_G, \mathcal{X}_G)$. If \mathcal{Z}_G is a G-Hilbert $\mathfrak{F}\text{-module and } s \in B(\mathcal{Y}_G, \mathcal{Z}_G)$, then $\mathfrak{s}\tau \in B(\mathcal{X}_G, \mathcal{Z}_G)$. Therefore, $B(\mathcal{X}_G)$ is a G- $*$ -algebra. If $\tau_{\mathfrak{n}} \longrightarrow \tau$, then

$$
\begin{aligned} \|\tau_n^* \varsigma - \tau_m^* \varsigma \| &= \sup_{\iota \in \mathcal{X}_G} \|\langle \iota, (\tau_n^* - \tau_m^*) \varsigma \rangle \| \\ &= \sup_{\iota \in \mathcal{X}_G} \|\langle (\tau_n - \tau_m) \iota, \varsigma \rangle \| \\ &= \sup_{\iota \in \mathcal{X}_G} \| (\tau_n - \tau_m) \iota \| \| \varsigma \| \\ &= \|\tau_n - \tau_m \| \| \varsigma \| . \end{aligned}
$$

It concludes that $\{\tau_n^*\varsigma\}$ converges to \mathfrak{s}_{ς} (say). Hence

$$
\langle \tau \iota, \varsigma \rangle = \lim_{\mathfrak{n}} \langle \tau_{\mathfrak{n}} \iota, \varsigma \rangle = \langle \iota, \lim_{\mathfrak{n}} \tau_{\mathfrak{n}}^* \varsigma \rangle = \langle \iota, \mathfrak{s} \varsigma \rangle.
$$

Thus, $\tau \in B(\mathcal{X}_{\mathsf{G}})$ and $B(\mathcal{X}_{\mathsf{G}})$ is a closed subset of

 ${\{\Delta : \mathcal{X}_{\mathsf{G}} \longrightarrow \mathcal{X}_{\mathsf{G}} : \Delta \text{ is linear and bounded}\}.}$

Hence, $B(\mathcal{X}_{\mathsf{G}})$ is a Banach algebra. Moreover,

$$
\|\tau\|^2 = \sup_{\iota \in \mathcal{X}_{\mathsf{G}}} \|\tau\iota\|^2 = \sup_{\iota \in \mathcal{X}_{\mathsf{G}}} \| \langle \tau\iota, \tau\iota \rangle \| = \sup_{\iota \in \mathcal{X}_{\mathsf{G}}} \| \langle \tau^* \tau\iota, \iota \rangle \| = \|\tau^* \tau\|.
$$

Hence, $||\tau||^2 = ||\tau^*\tau||$. Thus, $B(\mathcal{X}_G)$ is a $G-C^*$ -algebra.

Let *ℑ* and *ζ* be G-*C ∗* -algebras. Consider two categories. In both categories, the objects will be G-Hilbert *ℑ*-*ζ*-bimodules. We study the sets of morphisms that include of either all bounded bimodule G-equivariant between the objects, or all bounded bimodule G-equivariant, adjointable between them. In both states, norm closed subspaces are invariant under the both module actions, that is, the subobjects will be the set of all G-Hilbert *ℑ*-*ζ*-subbimodules. We will represent these two categories, along with the specified sets of subobjects, with $B_G(\Im,\zeta)$ and $B^*_G(\Im,\zeta)$, respectively. Note that any left G-Hilbert *ℑ*-module is always equipped with a (right) action by C, and any G-*C ∗* -algebra is left G-module. Therefore, $B_G(\Im, \mathbb{C})$ (resp. $B_G^*(\Im, \mathbb{C})$) is just the category of bounded (resp. adjointable, bounded) G-equivariant maps and left G-Hilbert *ℑ*-module.

Definition 2.12 A ξ ^C is G-injective G-Hilbert \Im *-module in B*_G(\Im , ζ), (resp. $B^*_{\mathsf{G}}(\Im, \zeta)$) if and only if for every G-Hilbert *ℑ*-*ζ*-bimodule, *X*^G of *Y*G, and any bounded, (resp. bounded, adjointable) bimodule G-equivariant $\Omega : \mathcal{X}_G \longrightarrow \xi_G$, there exists a bounded (resp. bounded, adjointable), bimodule G-equivariant ℧ : *Y*^G *−→ ξ*^G that extends Ω. In other words, a G-Hilbert *ℑ*-*ζ*-bimodule *ξ*^G is G-injective Hilbert *ℑ*-module iff the diagram

$$
\mathcal{Y}_{\mathsf{G}}\n\Delta\n\uparrow\n\mathcal{X}_{\mathsf{G}}\n\longrightarrow \xi_{\mathsf{G}}
$$
\n(2.1)

can be completed to a commutative diagram by an *ℑ*-*ζ*-bimodule G-equivariant ℧ : *Y*_G → *ξ*_G of the selected category.

End∗ (*X*G) represents G-*C ∗* -algebra of all bounded *ℑ*-linear adjointable operators on *ℑ* G-Hilbert *ℑ*-module *X*^G and *Endℑ*(*X*G) represents Banach algebra of all bounded *ℑ*linear operators on \mathcal{X}_{G} . In [16] was shown to be a G-Hilbert \Im -module is injective iff it as a G-Hilbert *ℑ*-module, be orthogonally comparable. Can be shown that expanding the morphisms to *ℑ*-*ζ*-bimodule maps, rather significantly change the picture, but necessitate the inclusion maps to be morphisms.

Theorem 2.13 Let *ℑ* be [an a](#page-14-1)rbitrary G-*C ∗* -algebra, *{ξ*G*,⟨·, ·⟩}* be a G-Hilbert *ℑ*-module and *ζ* be a G-*C*^{*}-algebra that admits a G-∗-representation in *End*^{*}_δ^{*ξ*}(*ξ*_G). Then *ξ*_G is *ℑ* a G-injective object in the category whose objects are the G-Hilbert *ℑ*-*ζ*-bimodules, morphisms are either the (adjointable) bounded bimodoul G-equivariants or (adjointable) contractive, subobjects are the *ℑ*-*ζ*-subbimodules and inclusion G-maps are adjointable. As a result, any element of those categories is G-injective Hilbert *ℑ*-module.

Proof. By hypothesis, the inclusion Δ : $\mathcal{X}_G \hookrightarrow \mathcal{Y}_G$ is an $\mathcal{A}.\mathcal{B}.\Im\{-\infty\}$. Gequivariant, the G-equivariant ∆*∗* is a surjective bounded *ℑ*-*ζ*-bimodule G-equivariant and by Theorem 15.3.8 from [22], the image set $\Delta(\mathcal{X}_G) \subseteq \mathcal{Y}_G$ is a subset orthogonal summand of *Y*G. Furthermore, the G-equivariant ∆*−*¹ : ∆(*X*G) *−→ X*^G defined by $\Delta^{-1}(\Delta(\iota)) = \iota$ for $\iota \in \mathcal{X}_{\mathsf{G}}$ is everywhere defined on $\Delta(\mathcal{X}_{\mathsf{G}}) \subseteq \mathcal{Y}_{\mathsf{G}}$ and bijective. Thus, by definition, it is bounded G-equivariant and *ℑ*-*ζ*-bilinear. It can be developed to a map defined on \mathcal{Y}_G simply placed on [th](#page-14-11)e zero maps in the orthogonal complement of $\Delta(\mathcal{X}_G)$ in \mathcal{Y}_G . By preserving the concept Δ^{-1} for this development, we put $\mathcal{U} = \Omega \circ \Delta^{-1}$ that implies the desired development of Ω to \mathcal{Y}_G . As a result, the G-Hilbert \Im -*ζ*-bimodule ξ_G , in the category under investigation, is automatically G-injective G-Hilbert *ℑ*–module. ■

Now, for further progress in identifying the G-injective G-Hilbert *ℑ*–module objects of category $B_G(\Im,\zeta)$, we consider the results of the definition of G-injective G-Hilbert *ℑ*–module.

The G-C^{*}-module of all bounded \Im -module G-maps from \mathcal{X}'_G into \Im , shown by \mathcal{X}''_G . Let Ω_{G} be the G-map G-Hilbert \Im -module Ω_{G} : $\xi_{\mathsf{G}} \longrightarrow \mathcal{X}'_{\mathsf{G}}$, $\Omega_{\mathsf{G}}(\iota)(\tau) = \tau(\iota)^*, \iota \in \mathcal{X}_{\mathsf{G}}, \tau \in \mathcal{X}'_{\mathsf{G}}$.

Definition 2.14 A G-Hilbert \Im -module \mathcal{X}_G is called G- \Im -reflexive if Ω_G is a Gisomorphism of *ℑ*-modules.

Let \mathcal{X}_G and \mathcal{Y}_G be a G-Hilbert \Im -module. For $\iota \in \mathcal{X}_G$ and $\varsigma \in \mathcal{Y}_G$, define $\Theta_{\iota,\varsigma}: \mathcal{Y}_G \longrightarrow \mathcal{X}_G$ by $\Theta_{\iota,\varsigma}(\vartheta) = \iota \langle \varsigma, \vartheta \rangle$ for $\vartheta \in \mathcal{Y}_\mathsf{G}$. Then

$$
\Theta_{\iota,\varsigma}^* = \Theta_{\varsigma,\iota}\Theta_{\iota,\varsigma}\Theta_{\mathfrak{v},z} = \Theta_{\iota\langle\varsigma,\mathfrak{v}\rangle,z}, \quad \tau\Theta_{\iota,\varsigma} = \Theta_{\tau\iota,\varsigma} \quad (\mathfrak{v} \in \mathcal{X}_{\mathsf{G}}, \quad z \in \mathcal{Y}_{\mathsf{G}}).
$$

Suppose that the set of "compact" G-operators $\mathcal{K}(\mathcal{Y}_G,\mathcal{X}_G)$ is the closed linear span of $\{\Theta_{\iota,\varsigma}|\iota \in \mathcal{X}_{\mathsf{G}}, \varsigma \in \mathcal{Y}_{\mathsf{G}}\}$. Let \mathcal{X}_{G} be a G-Hilbert \Im -module and $\iota \in \mathcal{X}_{\mathsf{G}}$.

$$
\Theta_{e,\vartheta}(\varsigma) = e\langle \vartheta, \varsigma \rangle = \langle \vartheta e^*, \varsigma \rangle = (\vartheta e^*)^{\wedge}(\varsigma) \quad (e \in \Im) \quad (*)
$$

and so $\hat{\iota} \in \mathcal{K}(\mathcal{X}_{\mathsf{G}},)$, where ι is of the form ϑe^* . Since $\mathfrak{M}_{\mathsf{G}}\Im$ is dense in $\mathfrak{M}_{\mathsf{G}}$ for every $\iota \in \mathfrak{M}_{\mathsf{G}}$ there exists a sequence $\{\iota_n\}$ in $\mathfrak{M}_{\mathsf{G}}\mathfrak{S}$ so that $\lim_{n \to \infty} \iota_n = \iota$. But $\mathfrak{M}_{\mathsf{G}} \longrightarrow L(\xi_{\mathsf{G}}, \Im)$, $\iota \longrightarrow \hat{\iota}$ is continuous (isometry). Therefore, since $\mathcal{K}(\mathfrak{M}_{\mathsf{G}}, \Im)$ is closed in $L(\mathfrak{M}_{\mathsf{G}}, \Im)$, then $\hat{\iota} = \lim_{n} \hat{\iota}_n \in \mathcal{K}(\mathfrak{M}_{\mathsf{G}}, \mathfrak{F}).$

Condition (*) shows that each element of $\mathcal{K}(\mathfrak{M}_{\mathsf{G}}, \Im)$ is of the from $\hat{\iota} = \langle \iota, \cdot \rangle$ a Riesz theorem for G-Hilbert *ℑ*-modules, for some *ι ∈ X*G.

Lemma 2.15 Let \Im and ζ be G-C^{*}-algebras and $\{\xi_{\mathsf{G}}, \langle \cdot, \cdot \rangle\}$ be a G-injective Hilbert *ℑ*-*ζ*-bimodule in one of the two categories under investigation. If *ξ*^G *⊆ Y*^G is an *ℑ*-*ζ*subbimodule, then the Hilbert *ℑ*-*ζ*-bimodule *ξ*^G is a topological summand of the Hilbert *ℑ*-*ζ*-bimodule *Y*G. Furthermore, *ξ*^G as a G-Hilbert *ℑ*-module is G-*ℑ*-reflexive and when *ξ*^G is a G - H \Im -submodule of another G -Hilbert \Im -module \mathcal{X}_G with $\xi_G^{\perp} = \{0\}$, then $\xi_G = \xi_G^{\perp \perp}$ in \mathcal{X}_G .

Proof. According to the definition of G-injectivity, let $\mathcal{X}_G = \xi_G$, $\Delta : \xi_G \hookrightarrow \mathcal{Y}_G$ indicates inclusion and $\Omega = id_{\xi_{\mathsf{G}}}$. By assumption there is an *S*- ζ -bimodule G-equivariant U : $\mathcal{Y}_{\mathsf{G}} \longrightarrow \xi_{\mathsf{G}}$ so that $\mathcal{U} \circ \Delta = id_{\xi_{\mathsf{G}}}$. By Lemma 3.1.8(2) from [12], we have the set identities $\mathcal{Y}_\mathsf{G} = \mathbb{U}^{-1}(\xi_\mathsf{G}) = \text{Im}(\Delta) + \text{Ker}(\mathbb{U})$ and $\{0\} = \Delta(\text{Ker}(id_{\xi_\mathsf{G}})) = \text{Im}(\Delta) \cap \text{Ker}(\mathbb{U})$. Thus, $\mathcal{Y}_\mathsf{G} = \Delta(\xi_\mathsf{G}) + Ker(\mathcal{U})$, that is, ξ_G with topological complement $Ker(\mathcal{U})$ there, must be a topological summand.

To extract the G-*ℑ*-reflexivity of G-injective G-Hilbert *ℑ*-[mod](#page-14-12)ule, consider the definition of G-injectivity with $\mathcal{X}_{\mathsf{G}} = \xi_{\mathsf{G}}$, $\mathcal{Y}_{\mathsf{G}} = \xi_{\mathsf{G}}''$ and $\Omega = id_{\xi_{\mathsf{G}}}$. By Proposition 2.1 from [6], the \Im -*V*.*I*.*P* on ξ _{**G**} expands to an \Im *-V*.*I*.*P* on its \Im -bidual Banach \Im -module ξ' ₆. Furthermore, since any bounded G-module operator on *ξ*^G expands to a bounded G-module operator on ξ''_G in a unique method [21], the G- $*$ -representation of ζ on ξ_G turns into a G- $*$ representation of ζ on ξ''_G via the canonical isometric embedding $\xi_G \subseteq \xi''_G$. Ho[we](#page-14-13)ver, the embedded copy of ξ _G is a topological summand of ξ' ^{*''*} iff both they coincide. Actually, since by [20, 21], we have $\xi_{\mathsf{G}} \subseteq \xi_{\mathsf{G}}' \subseteq \xi_{\mathsf{G}}'$ as the chain of isometric embedding, the supposition of *ξ*^G being a non-trivial top[olo](#page-14-14)gical summand of *ξ ′′* G leads to the non-uniqueness of the representation of the zero maps on ξ _G in ξ' _G, which contradict the definition of this set. The statement above is a result of the G-*ℑ*-reflexivity, G-injectivity of *ξ*^G and Lemma 3.1 from $[4]$.

By Lemma 2.15, if an object is complemented in any object that it is a subobject, then it is injective. According to [8], this holds for G-injective.

Ins[pi](#page-14-16)red by [8], we have the following proposition for G-Hilbert *ℑ*-module with the fact that unital G-*C ∗* -algebras *ℑ*, as G-Hilbert *ℑ*-modules, are ever orthogonally comparable. The same is [true](#page-6-0) for some non-unital $G-C^*$ -algebras \Im with the condition $\Re_G(\Im)$ = $L\Re$ ^{*G*(\Im).}

Proposition 2.16 Let *ℑ* be a G-*C ∗* -algebra and *ℑ* ^N be the G-Hilbert *ℑ*-module of all $\mathfrak{N}\text{-tuples of elements of } \mathfrak{F} \text{ for } \mathfrak{N} \in \mathbb{N}.$ The following conditions are equivalent:

- (i) $\mathfrak{F}^{\mathfrak{N}}$ is **G**-injective in $B_{\mathsf{G}}(\mathfrak{F}, \mathbb{C})$ for $\mathfrak{N} \in \mathbb{N}$;
- (ii) $\mathfrak{S}^{\mathfrak{N}}$ is G-injective in $B_{\mathsf{G}}(\mathfrak{S}, \mathbb{C})$ for any $\mathfrak{N} \in \mathbb{N}$;
- (iii) \Im is G-injective in $B_G(\Im, \mathbb{C});$
- (iv) $\Re_G(\Im)$ is a G-monotone complete (G-m.c.) G-C^{*}-algebra.

Proof. Let $\mathcal{X}_G \subseteq \mathcal{Y}_G$ be a subobject and $\Omega : \mathcal{X}_G \longrightarrow \mathcal{F}^{\mathfrak{N}}$ be a bounded \mathcal{F} -module map. We have $\Omega = (\Omega_1, ..., \Omega_{\mathfrak{N}})$, where $\Omega_\alpha : \mathcal{X}_\mathsf{G} \longrightarrow \mathcal{F}$ are bounded \mathcal{F} -module maps. \mathcal{F} : $\mathcal{Y}_G \longrightarrow \mathcal{F}^{\mathfrak{N}}$ that extends Ω exists iff there are bounded \mathcal{F} -module maps $\mathcal{U}_\alpha : \mathcal{Y}_G \longrightarrow \mathcal{F}_{(\alpha)}$ coinciding with Ω_{α} on \mathcal{X}_{G} , the index (α) denotes α -th coordinate of $\mathfrak{F}^{\mathfrak{N}}$. In this case, (1)*,*(2) and (3) are equivalence. We also see that such an expansion exists iff a generalized Hahn-Banach theorem is credible for arbitrary pairs of G-Hilbert \Im -modules $\mathcal{X}_G \subseteq \mathcal{Y}_G$ and arbitrary bounded \Im *-linear functionals* $r : \mathcal{X}_\mathsf{G} \longrightarrow \Im$ *. By, Theorem 2 from [4], this* happens iff \Re ^{*G*(\Im) is **G**-m.c.}

Definition 2.17 A G-Hilbert \Im -module \mathcal{X}_G is G -m.c. if underlying Hilbert \Im -module \Im is a m.c.

Definition 2.18 A G-Hilbert \Im -module \mathcal{X}_G is G -simple when it has no non-trivial 2-sided G-invariant ideals.

Proposition 2.19 Let *ℑ* be a unital G-*C ∗* -algebra. If there is every G-full *ℑ*-module that in $B_G(\Im, \mathbb{C})$ is G-injective, then \Im is G-m.c. Therefore, if \Im is G-simple, not G-m.c and unital, then there exists no non-zero injective G-Hilbert \Im -module in $B_G(\Im, \mathbb{C})$.

Proof. Let *ξ*^G be an injective G-full *ℑ*-module. By Lemma 2.4.3 from [18], there is a finite positive integer n and a subset of elements $\{\mathfrak{e}_1, ..., \mathfrak{e}_n\}$ of *E* so that $\sum_{\alpha=1}^n \langle \mathfrak{e}_\alpha, \mathfrak{e}_\alpha \rangle = 1$ since the G-Hilbert *ℑ*-module *ξ*^G is full. Note that *ξ* n G is G-injective Hilbert *ℑ*-module whenever *ξ*^G is G-injective G-Hilbert *ℑ*-module and n is a finite. Hence, one has an isometric left *S*-module G-equivariant, $\Omega : \Im \longrightarrow \xi_{\mathsf{G}}^{\mathfrak{n}}$ defined by $\Omega(e) = \sum_{\alpha}^{\mathfrak{n}} e \mathfrak{e}_{\alpha=1}$. Because, *ℑ* is orthogonally comparable by, Proposition 6.2 and Theorem 6.3 from [6], there is a bounded *ℑ*-module G-equivariant, ℧ : *ξ* n ^G *−→* Ω(*ℑ*). So, we simply conclude that Ω(*ℑ*) in *B*G(*ℑ,* C) is G-injective G-Hilbert *ℑ*-module. Therefore, by Proposition 3.3 from [8], $\Re_G(\Im) = \Im$ is G-m.c. For the final claim, since \Im is G-simple and unital, each non-zero G-Hilbert *ℑ*-module is G-full, since the range of its *ℑ*-*V.I.P.* is norm-closed [2](#page-14-13)-sided ideal in \Im .

In the following example, we show that when \Im is unital, not G-simple and G-m.c., it may be G-injective in $B_G(\Im, \mathbb{C})$. However, we show that when \Im is unital but not G-m.c., in this case, there exist not enough G-injectives so that in a G-injection, any G-Hilbert *ℑ*-module can be embedded.

Example 2.20 Let $\Im = \mathbb{C} \oplus \zeta$, where ζ be a unital G-*C*^{*}-algebra which is not G-m.c. Therefore, \Im is unital and not G-m.c. Note that any G-Hilbert space \mathcal{K}_G is a (non-full) **G-Hilbert** \Im **-module with** $(0 \oplus \zeta) \mathcal{K} = 0$ **. We assert** $\mathcal{K}_\mathbf{G}$ **is an injective G-Hilbert** \Im **-module** in $B_G(\Im, \mathbb{C})$. Indeed, ξ_G is a G-Hilbert \Im -module and $\mathcal{H}_G = (\mathbb{C} \oplus 0)\xi_G$ and $\mathcal{Z}_G = (0 \oplus \zeta)\xi_G$ are its submodules, then $\xi_{\mathsf{G}} = \mathcal{H}_{\mathsf{G}} \oplus \mathcal{Z}_{\mathsf{G}}$ is an orthogonal direct sum decomposition. In addition, each \Im -module G-equivariant from ξ _G into \mathcal{K}_G is zero on \mathcal{Z}_G , and it is a linear map on H_G . Given the fact that K_G in $B_G(\Im,\mathbb{C})$ is G-injective, it is easy to conclude that it is G-injective in the category of G-Hilbert space and bounded linear G-equivariant maps.

The following theorem shows that G-C^{*}-algebras for which any G-Hilbert ^{*S*}-module is G-injective in $B_G(\Im, \mathbb{C})$.

Theorem 2.21 Let *ℑ* be a compact operators G-*C ∗* -algebra on some G-Hilbert space. Let $\{\xi_{\mathsf{G}}, \langle \cdot, \cdot \rangle\}$ be a G-Hilbert \Im -module and ζ be another G-C^{*}-algebra admitting a G-*∗*-representation on *ξ*G. Then *ξ*^G is a G-injective G-Hilbert *ℑ*-module object in *B*G(*ℑ, ζ*). Contrariwise, suppose that \Im is a G-C^{*}-algebra. If any G-Hilbert \Im -module is G-injective in *B*G(*ℑ,* C), then *ℑ* is *∗*-isomorphic to a compact operators G-*C ∗* -algebra on some G-Hilbert space.

Proof. By Theorem 2.1 and Proposition 2.2 from [8], we observe any bounded *ℑ*-linear map between G-Hilbert \Im -modules on a G-*C*^{*}-algebra \Im of type $\varpi_0 - \sum_{\alpha} \bigoplus \mathcal{K}(\mathcal{H}_{\alpha})$ has an adjoint. Therefore, each inclusion map is adjointable and according to Theorem 2.13, the first claim hold.

To illustrate the reverse, consider a maximal G-[in](#page-14-0)variant left-sided I^G of the G-*C ∗* algebra \Im . Put $\xi_{\mathsf{G}} = \mathcal{X}_{\mathsf{G}} = \Im_{\mathsf{G}}, \mathcal{Y}_{\mathsf{G}} = \Im_{\mathsf{G}}, \Omega = id_{\mathcal{I}_{\mathsf{G}}}$ and in the definition of G-injectivity, take *ℑ*-linear embedding of I^G into *ℑ*. Then the existence of an *ℑ*-module G-equiva[raint](#page-6-1) map $\mathcal{O}: \mathcal{F} \to \mathcal{I}_\mathsf{G}$ expanding Ω is G-equivariant to the existence of $\mathcal{P}_{\mathcal{I}_\mathsf{G}} \in \mathbb{R}_\mathsf{G}(\mathcal{F})$ as an orthogonal projection so that $\mathfrak{I}_{G} = \Im_{\mathcal{P} \mathcal{I}_{G}}$. Therefore, by Proposition 2.2 of [6], the $G-C^*$ -algebra \Im has the form ϖ_0 - $\sum_{\alpha} \bigoplus \mathcal{K}(\mathcal{H}_\alpha)$.

Theorem 2.22 Let \Im be G-m.c. G-*C*^{*}-algebra and $\{\mathcal{X}_{\mathsf{G}}, \langle \cdot, \cdot \rangle\}$ be a G-Hilbert \Im -module. Let ζ be a G-*C*^{*}-algebra admitting a G-*∗*-representation in $End_{\mathfrak{F}}^*(\mathcal{X}_\mathsf{G})$. Then \mathcal{X}_G is Ginjective in $B_G(\Im, \zeta)$ iff \mathcal{X}_G , as G-Hilbert \Im -module, is G-self-dual.

Proof. Assume that \mathcal{X}_G is G-injective in $B_G(\Im,\zeta)$, and let the canonical isometric embedding of \mathcal{X}_G into its \Im -dual G-Banach \Im -module \mathcal{X}'_G . By Theorem 4.7 of [7], the \Im - $V \mathcal{I} \mathcal{P}$ *.* on X_G can be extended to an \Im -*V*.*I*.*P*. on X'_G in a manner compatible with $X_G \hookrightarrow X'_G$, as the canonical embedding. The G- $*$ -representation of ζ on \mathcal{X}_G on the right with the canonical embedding induces a G -***-representation of ζ on \mathcal{X}'_G , because any bounded module operator on \mathcal{X}_{G} expands to a unique bounded module operator on $\mathcal{X}'_{\mathsf{G}}$ ([[20](#page-14-18)]). Eventually, the copy of X_G in X'_G is a topological summand of them iff both the sets coincide, because otherwise, the zero functional on \mathcal{X}_{G} accepts multiple **G**- $*$ -representations in $\mathcal{X}'_{\mathsf{G}}$. Thus, X_G should be G-self-dual. To create the inverse notion, consider the following diagram with a bounded *ℑ*-*ζ*-bilinear map Ω and an isometric *ℑ*-*ζ*-bilinear emb[edd](#page-14-15)ing ∆:

In this diagram, Ω can be replaced with $\frac{\Omega}{\|\Omega\|}$, a contractive map. Then, by Theorem 2.2 of [16], there is a bounded \Im -linear G-equivariant $\mathcal{O} : \mathcal{L}_G \longrightarrow \mathcal{X}_G$ so that $\left(\frac{\Omega}{\|\Omega\|} \right) = \mathcal{O} \circ \Delta$. The G-equivariant ℧ is also *ζ*-linear, because Ω and ∆ are *ζ*-linear. By multiplying the constant $||\Omega||$ on both sides, we get the map $||\Omega||\mathcal{U}$, which completes the above diagram to a commutative one. Therefore, in the selected category, \mathcal{X}_G is G-injective G-Hilbert *ℑ*-[mo](#page-14-1)dule. ■

When the G-*C ∗* -algebra of coefficients of a G-Hilbert *ℑ*-module *ξ*^G is not a unital G-*C ∗* -algebra and the G-Hilbert *ℑ*-module *ξ*^G is full, that is, its G-*C ∗* -algebra of coefficients *ℑ* is the minimal admissible one, so we can consider G-Hilbert *ℑ*-module *ξ*^G on larger G-*C ∗* -algebras, logically, as an ideal, on G-*C ∗* -algebras containing the G-*C ∗* -algebra of coefficients \Im and belonging to the multiplier algebra $\Re_G(\Im)$ of \Im . The construction introduced in [1] gives us the opportunity to institute the necessary terms on those G-Hilbert *ℑ*-modules to be G-injective in the G-Hilbert *ℜG*(*ℑ*)-module category.

Suppose that \Im equipped with an \Im -*V.I.P.* $\langle \cdot, \cdot \rangle$ is a (non-unital) G-C^{*}-algebra and *X*^G is a full G-Hilbert *ℑ*-module. If *ℑ* is equipped with the standard *ℑ*-*V.I.P.* defined by the rule $\langle e, \flat \rangle_{\Im} = e^{\flat^*}$ $\langle e, \flat \rangle_{\Im} = e^{\flat^*}$ $\langle e, \flat \rangle_{\Im} = e^{\flat^*}$, then $\mathcal{X}_{\mathsf{G}_d}$ represents the G-Hilbert $\Re_G(\Im)$ -module $End^*_{\Im}(\Im, \mathcal{X}_{\mathsf{G}})$ of all \Im -linear maps from \Im to \mathcal{X}_G . The $\Re_G(\Im)$ -V.T.P. on \mathcal{X}_{G_d} is defined by $\langle \mathfrak{r}, \mathfrak{s} \rangle = \mathfrak{s}^* \circ \mathfrak{r}$ for every $\mathfrak{r}, \mathfrak{s} \in \mathcal{X}_{\mathsf{G}_d}$. One of the significant features of this structure is the existence of an isometric embedding Γ of \mathcal{X}_{G} into $\mathcal{X}_{\mathsf{G}_d}$. It is defined by $\Gamma(\iota)(e) = e\iota$ for every $e \in \Im$, and $\iota \in \mathcal{X}_{\mathsf{G}}$. The image $\Gamma(\mathcal{X}_{\mathsf{G}}) \subseteq \mathcal{X}_{\mathsf{G}_d}$ coincides with the subset $\Im \cdot \mathcal{X}_{\mathsf{G}_d}$. Note that the structure depends on the unitary equivalence classes of both the *ℑ*-*V.I.P.* on \Im and χ_{G} . In addition, χ_{G_d} can be specified topologically as the linear hull of the completion of the unit ball of \mathcal{X}_{G} with respect to the strict topology, which is induced by the set of semi-norms $\{\|\langle \cdot, \iota \rangle\|_{\Im} : \iota \in \mathcal{X}_{\mathsf{G}}\} \cup \{\|\varsigma \cdot\|_{\mathcal{X}_{\mathsf{G}}} : \varsigma \in \Im\}$. Thus, $\mathcal{X}_{\mathsf{G}_d} \equiv \mathcal{X}_{\mathsf{G}_{dd}},$ that is, the described extension is a closure operation for every G-Hilbert *ℑ*-module *X*G. Eventually, $(\mathcal{X}_{\mathsf{G}}\bigoplus \mathcal{Y}_{\mathsf{G}})_d = \mathcal{X}_{\mathsf{G}_d} \bigoplus \mathcal{Y}_{\mathsf{G}_d}$, that is, the closure operation obeys orthogonal

decompositions, and the sets of all adjointable bounded module maps over \mathcal{X}_{G} and $\mathcal{X}_{\mathsf{G}_d}$ are always G- $*$ -isomorphic, by limiting operators over \mathcal{X}_{G_d} in the $\Re_G(\Im)$ -invariant subset $\Gamma(\mathcal{X}_{\mathsf{G}}) \subseteq \mathcal{X}_{\mathsf{G}_d}$ which is isometrically isomorphic in \mathcal{X}_{G} . See [1] for more information.

Proposition 2.23 Suppose that *ℑ* is a non-unital G-*C ∗* -algebra and *ξ*^G a full G-Hilbert *ℑ*-module. Let *ζ* be another G-*C ∗* -algebra that admits a G-*∗*-representation on *ξ*G. If *ξ*^G is G-injective in $B_G(\Re_G(\Im), \zeta)$, then $\xi_G \equiv \xi_d$.

Proof. The isomorphism of the sets of all adjointable bounded module maps on both the G-Hilbert *ℑ*-module and its strict closure turns the strict closure into a *ℜG*(*ℑ*) *ζ*-bimodule, too. Thus, *ξ^d* is included in the same category under consideration. By definition of G-injectivity, set $\mathcal{X}_{G} = \xi_{G}$, $\mathcal{Y}_{G} = \xi_{d}$, we specify ξ_{G} with its image, $\Gamma(\xi_{G}) \subseteq \xi_{d}$ and $\Omega = id_{\xi_{\mathsf{G}}}$. Because $\Gamma(E)$ is G-injective, there exists a bounded $\Re_G(\Im)$ - ζ -bimodule map, $\mathcal{O}: \xi_d \longrightarrow \Gamma(\xi_{\mathsf{G}})$ expanding the identity map. In addition, by [5, Theorem 6.4], we have the canonical isometric inclusions $\xi_G \hookrightarrow \xi_d \hookrightarrow \xi'_G$, and the $\Re_G(\Im)$ -linear bounded identity operator over *ξ*^G has a unique extension to the identity operator over *ξ ′* preserving the norm. Also, the identity operator over ξ _G expands uniquely to the identity operator over ξ_d . Hence, ξ _G $\equiv \xi_d$.

One has *ξ*^G *≡ ξ^d* for a G-Hilbert *ℑ*-module *ξ*^G provided that either the G-*C ∗* -algebra *ℑ* of coefficients or the $G-C^*$ -algebra $\mathcal{K}_{\Im}(\xi_G)$ is unital.

Corollary 2.24 Let *ℑ* be a G-*C ∗* -algebra. If *ℑ* is G-injective in the category $B_G(\Re_G(\Im), \mathbb{C})$, then \Im should be unital (*that is*, $\Im = \Re_G(\Im)$) and **G**-m.c. In addition, if $\mathfrak{F}^{\mathfrak{N}}$ is G-injective for some $\mathfrak{N} \in \mathbb{N}$, then $\mathfrak{F}^{\mathfrak{N}}$ is G-injective for every $\mathfrak{N} \in \mathbb{N}$, in particular, for $\mathfrak{N} = 1$.

Proof. This is a result of the reality that $\Im_d = \Re_G(\Im)$ and $(\Im^{\mathfrak{N}})_d = \Re_G(\Im)^{\mathfrak{N}}$ for every $\mathfrak{N} \in \mathbb{N}$ according to the structure. Thus, $\mathfrak{S} = \mathfrak{R}_G(\mathfrak{S})$ with the prior proposition. Moreover, Proposition 3.3 and Theorem 3.9 enforce \Im to be G-m.c.

3. G-projective G-Hilbert *ℑ***-modules**

As in the pervious section, let *ℑ* and *ζ* be two fixed G-*C ∗* -algebras, and suppose $B_G(\Im,\zeta)$ (resp. $B^*_G(\Im,\zeta)$) is the sets of all bounded bimodule G-equivariant maps between the G-Hilbert *ℑ*-*ζ*-bimodules, (resp. all adjointable, bounded bimodule G-equivariants between them).

Definition 3.1 By definition, a G-Hilbert *ℑ*-*ζ*-bimodule *Z*^G is G*-projective* G*-Hilbert ℑ-module* in *B*G(*ℑ, ζ*) (resp. *B[∗]* G (*ℑ, ζ*)) iff the following diagram

$$
\mathcal{Z}_{\mathsf{G}}
$$
\n
$$
\mathcal{Y}_{\mathsf{G}} \xrightarrow{\Omega} \mathcal{X}_{\mathsf{G}}
$$
\n
$$
\mathcal{Y}_{\mathsf{G}} \xrightarrow{(3.1)}
$$

where Δ is a surjective \Im -*ζ*-bimodule (resp. adjointable) morphism and Ω is a (resp. adjointable) *ℑ*-*ζ*-bimodule morphism among G-Hilbert *ℑ*-*ζ*-bimodules, can be completed to a commutative diagram by an *ℑ*-*ζ*-bimodule (resp. adjointable) morphism ℧ : *Z*^G *−→ Y*G.

The proof is relatively easy (and we do) that any object is **G**-projective in $B^*_{\mathsf{G}}(\Im, \zeta)$. We do not know that this holds for $B_G(\Im,\zeta)$, but we will identify a family of $\mathsf{G}\text{-}C^*$ -algebras that holds in $B_{\mathsf{G}}(\mathfrak{F}, \zeta)$.

Theorem 3.2 Let *ℑ* be an arbitrary G-*C ∗* -algebra, *{F*G*,⟨·, ·⟩}* a G-Hilbert *ℑ*-module and ζ another $\mathsf{G}\text{-}C^*$ -algebra that admits a $\mathsf{G}\text{-}*$ -representation in $End^*_{\mathfrak{F}}(\mathcal{Z}_{\mathsf{G}})$. Then \mathcal{Z}_{G} is a G-projective object in $B^*_{\mathsf{G}}(\Im, \zeta)$.

Proof. Let $\Delta : \mathcal{Y}_{\mathsf{G}} \longrightarrow \mathcal{X}_{\mathsf{G}}$, where \mathcal{X}_{G} and \mathcal{Y}_{G} are G-Hilbert \Im - ζ -bimodules, be an adjointable surjective bounded *ℑ*-*ζ*-bimodule map. By definition, since ∆ has closed range, the range of Δ^* : \mathcal{X}_G → \mathcal{Y}_G in \mathcal{Y}_G is closed and an orthogonal summand by Proposition 1.1 of [8]. Since ∆ is surjective, ∆*∗* should be G-injective, and one has the decomposition $\mathcal{Y}_G = \Delta^*(\mathcal{X}_G) \bigoplus Ker(\Delta)$. By construction, both these orthogonal summands are *ℑ*-*ζ*-invariant. Each element *ι ∈ X*^G has a unique G-pre-image ∆*−*¹ (*ι*) *∈* ∆*∗* (*X*G). The operator ∆*−*¹ : *X*^G *−→* ∆*[∗]* (*X*G) *⊆ Y*^G defined as this is defined everywhere on *X*^G and has a close[d](#page-14-0) range, so it is bounded. In addition, it is *Ĵ*-*ζ*-linear. If $\mathcal{U} : \mathcal{Z}_\mathsf{G} \longrightarrow \mathcal{Y}_\mathsf{G}$ is defined with the rule $\mathcal{O}(\Upsilon) = \Delta^{-1}(\Omega(z)) \in \Delta^*(\mathcal{X}_G) \subseteq \mathcal{Y}_G$ for $z \in \mathcal{Z}_G$, then we obtain a bounded \Im -*ζ*-bilinear map \Im that completes diagram (3.1) to the commutative diagram.

The following theorem shows a way to find non G-projective G-Hilbert *ℑ*-module if such G-Hilbert *ℑ*-modules are available.

Theorem 3.3 Let \Im and ζ be arbitrary G-*C*^{*}-algebras and $\{\mathcal{Z}_{\mathsf{G}}, \langle \cdot, \cdot \rangle\}$ be a G-Hilbert *ℑ*-*ζ*-bimodule. Then the following equivalent conditions hold:

- (i) \mathcal{Z}_G is G-projective in $B_\mathsf{G}(\mathfrak{F}, \zeta);$
- (ii) each surjective, bounded bimodule G-equivariant, ∆ : *Y*^G *−→ Z*^G has a right inverse, $Q: \mathcal{Z}_G \longrightarrow \mathcal{X}_G$ which is a bounded bimodule G-equivariant;
- (iii) if $\Delta : \mathcal{Y}_\mathsf{G} \longrightarrow \mathcal{Z}_\mathsf{G}$ is a surjective, bounded bimodule G-equivariant, then $Ker(\Delta)$ is a topological bimodule summand.

Proof. (ii) = (iii) is clear. We show that (i) \Rightarrow (iii). Suppose that \mathcal{Z}_G is G-projective G-Hilbert *ℑ*-module. By definition, there exists an *ℑ*-*ζ*-bimodule G-equivariant map ℧ : $\mathcal{Z}_\mathsf{G} \longrightarrow \mathcal{Y}_\mathsf{G}$ so that $\Delta \circ \mathcal{U} = id_{\mathcal{Z}_\mathsf{G}}$. Using [12, Lemma 3.1.8(2)], we have the set identities $\mathcal{Y}_\mathsf{G} = \Delta^{-1}(\mathcal{Z}_\mathsf{G}) = Im(\mathsf{U}) + Ker(\Delta)$ and $\{0\} = \mathsf{U}(Ker(id_{\mathcal{Z}_\mathsf{G}})) = Im(\mathsf{U}) \cap Ker(\Delta)$. Hence, the G-Hilbert \Im -*ζ*-bimodule $Ker(\Delta) \subseteq \mathcal{Y}_G$ is a topological summand with topological complement *Im*(*U*) there, that is, $\mathcal{Y}_G = U(\mathcal{Z}_G) + Ker(\Delta)$. The invariance of $Ker(\Delta)$ under the action of ζ is due to the *S*- ζ -b[ilin](#page-14-12)earity of the operator Δ .

To show (iii) \Rightarrow (i), suppose that (ii) holds and according to the diagram (2.1), let $\mathcal{L}_\mathsf{G} =$ $\{(z,\varsigma) \in \mathcal{Z}_\mathsf{G} \oplus \mathcal{Y}_\mathsf{G} : \Omega(z) = \Delta(\varsigma)\}\$, that is an \Im *-* ζ -submodule of $\mathcal{Z}_\mathsf{G} \oplus \mathcal{Y}_\mathsf{G}$. $\mathfrak{Q} : \mathcal{L}_\mathsf{G} \longrightarrow \mathcal{Z}_\mathsf{G}$ defined by $\mathfrak{Q}((z,\varsigma)) = z$ is a bounded bimodule surjection G-equivariant and so has a right inverse, $\mathcal{Q}: \mathcal{Z}_{\mathsf{G}} \longrightarrow \mathcal{L}_{\mathsf{G}}$. Assume that $\mathfrak{P}: \mathcal{L}_{\mathsf{G}} \longrightarrow \mathcal{Y}_{\mathsf{G}}$ is defined by $\mathfrak{P}((z,\varsigma)) = \varsigma$, therefore \mathfrak{P} is a bounded bimodule G-equivariant map and $\mathfrak{V} = \mathfrak{P} \circ \mathcal{Q} : \mathcal{Q}_{\mathsf{G}} \longrightarrow \mathcal{Y}_{\mathsf{G}}$ is the desired lifting of Ω .

Theorem 3.4 Let \Im be a G-*C*^{*}-algebra of type $\varpi_0 - \sum_{\alpha} \bigoplus \mathcal{K}(\mathcal{H}_{\alpha})$, that is, a compact operators G-*C ∗* -algebra on a G-Hilbert space. Let *{Z*G*,⟨·, ·⟩}* be a G-Hilbert *ℑ*-module and ζ be another G-*C*^{*}-algebra admitting a G-*∗*-representation in $End_{\mathcal{S}}^*(\mathcal{Z}_\mathsf{G})$. Then \mathcal{Z}_G is a G-projective G-Hilbert \Im -module in $B_G(\Im,\zeta)$.

Proof. By Theorem 2.1 and Proposition 2.2 of [8], we can complete the proof. ■

Corollary 3.5 Let *ℑ* be G-*C ∗* -algebra. Each G-Hilbert *ℑ*-module is G-projective G-Hilbert \Im -module in the category $B_G(\Im, \mathbb{C})$ iff the kernel of any surjective bounded

ℑ-linear G-equivariant maps between G-Hilbert *ℑ*-modules is a topological summand.

Proof. Apply condition (iii) of 3.3.

Now, we investigate the relationship between G-projectivity of G-Hilbert *ℑ*-modules in the case of unital G-*C ∗* -algebras and Kasparovs stabilization theorem.

Proposition 3.6 Let *ℑ* be a u[nita](#page-11-0)l G-*C ∗* -algebra. Then, for any N *∈* N the G-Hilbert *ℑ*-module, *ℑ* ^N is G-projective G-Hilbert *ℑ*-module in *B*G(*ℑ,* C).

Proof. Let \mathcal{Y}_G be a G-Hilbert \Im -module and $\Delta : \mathcal{Y}_G \longrightarrow \Im^{\mathfrak{N}}$ a bounded surjective Gequivariant, we select elements $\iota_{\beta} \in \mathcal{Y}_{\mathsf{G}}$ so that $\Delta(\iota_{\beta}) = \nu_j$, where ν_j represents the element that in the *β*-th component, is 1_{\Im} and elsewhere 0. The mapping $\mathfrak{Q} : \Im^{\mathfrak{N}} \longrightarrow \mathcal{Y}_{\mathsf{G}}$ defined by $\mathfrak{Q}((e_1, ..., e_{\mathfrak{N}})) = \Sigma_{\beta}e_{\beta}\iota_{\beta}$ is a right inverse for Δ .

The respective infinite dimensional version of *ℑ* ^N is

$$
l^{2}(\Im) = \{ (e_1, e_2, \ldots) : \Sigma_{\mathfrak{n}=1}^{\infty} e_{\mathfrak{n}} e_{\mathfrak{n}}^{*} \in \Im \},
$$

where the convergence is meaning the norm.

Definition 3.7 A closed submodule \mathcal{Y}_G of a G-Hilbert \Im *-module* \mathcal{X}_G is topologically complementable if there exists a closed submodule H_G so that $\mathcal{Y}_G + \mathcal{H}_G = \mathcal{X}_G$ and *Y*_G ∩ *H*_G = {0}. We say that *Y*_G is G-*O.C.* (G-orthogonally complemented) if we have the condition $\mathcal{Y}_{\mathsf{G}} \perp \mathcal{H}_{\mathsf{G}}$.

Example **3.8** Let $\Im = \mathcal{C}([0,1])$, $\partial = {\Upsilon \in \Im(\Upsilon(0) = 0} \approx \mathcal{C}_0((0,1])$ and $\mathcal{X}_\mathsf{G} = \Im \oplus \partial$ as a G-Hilbert S-module. If $\mathcal{Y}_G = \{(\Upsilon, \Upsilon) | \Upsilon \in \partial\}$, then $\mathcal{Y}_G^{\perp} = \{(\varrho, -\varrho) | \varrho \in \partial\}$, $\mathcal{Y}_G + \mathcal{Y}_G^{\perp} =$ $\partial + \partial \neq \mathcal{Y}_\mathsf{G}$ and $\mathcal{H}_\mathsf{G} = \{(\Upsilon, 0)|\Upsilon \in \mathcal{F}\}\$ is a topological complement for \mathcal{Y}_G . Therefore, not each topologically complemented is G-*O.C*.

Proposition 3.9 If $l^2(\Im)$ is G-projective G-Hilbert \Im -module in $B_G(\Im, \mathbb{C})$, then each countably generated G-Hilbert *ℑ*-module is G-projective G-Hilbert *ℑ*-module in *B*G(*ℑ,* C).

Proof. If \mathcal{X}_G is countably generated then $\mathcal{X}_G \bigoplus l^2(\Im)$ is \Im -module G-isomorphic to $l^2(\Im)$ by Kasparov's stabilization theorem [13]. Therefore, \mathcal{X}_G is G-isomorphic to a G - \mathcal{O} . \mathcal{C} *.* submodule of $\mathfrak{l}^2(\mathfrak{S})$. Therefore an elementary diagram chase presents that a $\mathsf{G}\text{-}\mathcal{O}\mathcal{C}$ *.* submodule of a G-projective G-Hilbert *ℑ*-module is G-projective G-Hilbert *ℑ*-module. ■

[G](#page-14-20)iven every G-Hilbert \Im -module \mathcal{X}_G , we can represent it on G-Hilbert spaces as operators. This gives us the idea that we can imagine the norms of matrices on G-Hilbert *ℑ*-modules, and that these norms depend only on the internal product, in other words, they are canonical. We denote the set of $\infty \times \infty$ matrices on \Im by $M_{\infty}(\Im)$, that are bounded, that is, $||(e_{\alpha,\beta})|| \equiv \sup_{\mathfrak{n}}||(e_{\alpha,\beta})_{\alpha,\beta=1}^{\mathfrak{n}}|| < +\infty$ and $\mathfrak{C}_{\infty}(\mathcal{X}_{\mathsf{G}}) = \{(\mathfrak{m}_1,\mathfrak{m}_2,\ldots)^\tau :$ $({\langle \mathfrak{m}_{\alpha}, \mathfrak{m}_{\beta} \rangle}) \in M_{\infty}(\Im)$.

Proposition 3.10 Let $\Omega: \mathfrak{l}^2(\Im) \longrightarrow \mathcal{X}_{\mathsf{G}}$ be defined by $\Omega((e_1, e_2, \ldots)) = \sum_{\mathfrak{n}} e_{\mathfrak{n}} \mathfrak{m}_{\mathfrak{n}}$. Then Ω defines a bounded \Im -module G-equivariant map iff $||(\langle \mathfrak{m}_{\alpha}, \mathfrak{m}_{\beta} \rangle)||$ is finite. Furthermore, $||\Omega|| = ||(\langle \mathfrak{m}_{\alpha}, \mathfrak{m}_{\beta} \rangle)||.$

Proof. For each finitely supported tuple, one has

$$
||\Omega((e_1,...,e_n,0,0...))||=||\sum_{\alpha,\beta=1}^{\mathfrak{n}}e_{\alpha}\langle \mathfrak{m}_{\alpha},\mathfrak{m}_{\beta}\rangle e_{\beta}^*||.
$$

But for each $(p_{\alpha,\beta}) \in M_n(\Im)$, one has

$$
||(p_{\alpha,\beta})|| = \sup\{||\sum_{\alpha,\beta=1}^n e_{\alpha}p_{\alpha,\beta}e_{\beta}^*|| : \sum_{\beta=1}^n e_{\beta}e_{\beta}^* \leq 1_{\Im}\}.
$$

Thus, the result is obtained. ■

Theorem 3.11 Let \Im be a unital \Im -C^{*}-algebra. Then $l^2(\Im)$ is \Im -projective \Im -Hilbert \Im module in $\mathcal{X}_G(\Im, \mathbb{C})$ iff for each G-Hilbert \Im -modules $\mathcal{Y}_G, \mathcal{X}_G$ and each surjective, bounded module G-equivariant, $\Delta : \mathcal{Y}_G \longrightarrow \mathcal{X}_G$, the induced G-equivariant $\Delta_\infty : \mathfrak{C}_\infty(\mathcal{Y}_G) \longrightarrow$ $\mathfrak{C}_{\infty}(\mathcal{X}_{\mathsf{G}})$, is surjective.

Proof. Suppose we are setting of diagram (2.1). Since the G-equivariant $\Omega: \mathfrak{l}^2(\Im) \longrightarrow \mathcal{X}_\mathsf{G}$ is bounded, one has $(\mathfrak{m}_1, \mathfrak{m}_2, \ldots)^\tau \in \mathfrak{C}_\infty(\mathcal{X}_\mathsf{G})$ with $\Omega((e_1, \ldots)) = e_1 \mathfrak{m}_1 + \ldots$, and in order to lift Ω to a G-equivariant U we have to find $(\mathfrak{n}_1, \ldots)^\tau \in \mathfrak{C}_{\infty}(\mathcal{Y}_{\mathsf{G}})$, with $\Delta_{\mathsf{G}}(\mathfrak{n}_\alpha) = \mathfrak{m}_\alpha$ for all α .

Note that the G-equivariant map Δ_{∞} is not necessarily bounded.

Corollary 3.12 Let *ℑ* be a non-unital G-*C ∗* -algebra. If *ℑ* equipped with the canonical *ℑ*-*V.I.P.* is a G-projective G-Hilbert *ℑ*-module in *B*G(*ℑ,* C), then each *τ ∈ LℜG*(*ℑ*) that induces a surjective G-equivariant $\Delta : \Im \longrightarrow \Im$ by $\Delta(e) = e\tau^*$, admits a right inverse which is an element of $\mathcal{L}\mathbb{R}_G(\Im)$, and the kernel of Δ is a topological summand of *ℑ*. In addition, each surjective bounded module mapping ∆ : *ℑ −→ ℑ* is achieved by multiplying by a left multiplication in the manner shown. If for the G-*C ∗* -algebra under consideration $\Re_G(\Im) = \mathcal{L}\Re_G(\Im)$, then these conditions are automatically fulfilled.

Proof. Set $\mathcal{Y}_\mathsf{G} = \mathcal{X}_\mathsf{G} = \Im$ and $\Omega = id_\Im$ by the diagram (3.1). Since \Im is assumed to be a G-projective G-Hilbert *ℑ*-module, there is a G-eqivariant ℧ : *ℑ −→ ℑ* that is enforced with rule $\mathfrak{O}(e) = e^{\mathfrak{s}^*}$ for some $\mathfrak{s} \in \mathcal{L}\Re(\mathfrak{S})$ by the existing canonical identification of *End*₃(\Im) with $\mathcal{L}\Re$ _G(\Im) [14]. Note that $\Delta \circ \Im = \Omega$ by selecting \Im . As a result, $1_{\Im} =$ $1_{\mathcal{LR}_G(\Im)} = \mathfrak{s}^* \tau^* = \tau \mathfrak{s}$ since $e = 1_{\Im}$ for the free variable, is a feasible selection. Thus, $\mathfrak{s}\tau\mathfrak{s}\tau = \mathfrak{s}(\tau\mathfrak{s})\tau = \mathfrak{s}\tau$ and $\mathfrak{p} = \mathfrak{s}\tau$ is an idempotent element of $\mathcal{L}\Re_{\mathsf{G}}(\mathfrak{F})$. Thus, $\mathfrak{s} \in \mathcal{L}\Re_{\mathsf{G}}(\mathfrak{F})$ is the right inverse of $\tau \in \mathcal{L}\Re(G(\mathcal{F}))$. Note that the idempotent $(1_{\mathcal{F}} - \mathfrak{p}) \in \mathcal{L}\Re(G(\mathcal{F}))$ maps *ℑ* onto the kernel of the [G](#page-14-21)-equivariant ∆ that becomes a topological summand of the G-Hilbert *ℑ*-module *ℑ*. The last sentences are derived from the canonical identification of *End*_{\Im}(\Im) with $\mathcal{L}\Re$ _G(\Im) and from spectral decomposition in \Re _G(\Im) ([14], Proposition 1.1 of [8]). $1.1 \text{ of } [8]$.

Finally, we show that finitely generated G-Hilbert *ℑ*-modules in all the categories of G-Hilbert *ℑ*-*ζ* bimodules are G-projective.

Th[e](#page-14-0)orem 3.13 Let \Im be a unital \Im -*C*^{*}-algebra. Then \mathcal{Z}_{\Im} finitely generated \Im -Hilbert *ℑ*-module is a G-projective object in the category that includes all G-*C ∗* -modules on a fixed G-C^{*}-algebra [∂] with morphisms being [∂]-linear G-equivariant maps. Also, \mathcal{Z}_G is an orthogonal summand of some G-Hilbert *S*-module \Im^n , where $n < \infty$, and in particular, \mathcal{Z}_{G} is **G**-projective in $B_{\mathsf{G}}(\mathfrak{F}, \zeta)$ and $B_{\mathsf{G}}^*(\mathfrak{F}, \zeta)$.

Proof. Fix an $\Im\mathcal{V}I\mathcal{I}\mathcal{P}\mathcal{I}$, $\langle \cdot, \cdot \rangle$ on \mathcal{Z}_G . By Corollary 15.4.8 of [22] and by the definition of G-projective G-Hilbert *S*-modules, \mathcal{Z}_G should be finitely generated, and each finitely generated G-Hilbert *ℑ*-module, in the purely algebraic meaning, is G-projective. Again, consider the diagram (2.1). By assumption there is an \Im -linear G-equivariant $\Im : \mathcal{Z}_{\mathsf{G}} \longrightarrow$ \mathcal{Y}_G such that $\Omega = \Delta \circ \mathcal{O}$. We show that \mathcal{O} is bounded. By [7], ther[e is](#page-14-11) a set of finite algebraic of generators $\{i_1, ..., i_n\}$ of \mathcal{Z}_G so that the reconstruction formula $\iota = \sum_{\alpha=1}^n \langle i, i_\alpha \rangle i_\alpha$ is valid for any $\iota \in \mathcal{Z}_G$. This $\{\iota_1, ..., \iota_n\}$ of generators is said that a normalized tight frame of \mathcal{Z}_{G} than the fixed $\Im\text{-}\mathcal{V}.\mathcal{I}.\mathcal{P}.\langle\cdot,\cdot\rangle$. Thus, $\Im(\iota) = \sum_{\alpha=1}^n \langle \iota, \iota_{\alpha} \rangle \Im(\iota_{\alpha})$ $\Im(\iota) = \sum_{\alpha=1}^n \langle \iota, \iota_{\alpha} \rangle \Im(\iota_{\alpha})$ $\Im(\iota) = \sum_{\alpha=1}^n \langle \iota, \iota_{\alpha} \rangle \Im(\iota_{\alpha})$ for every $\iota \in \mathcal{Z}_{\mathsf{G}}$. By

the Cauchy-Schwarz inequality for G-Hilbert *ℑ*-modules, we get the following inequality (e.g. Proposition 1.1 of [13])

$$
\|\mathbf{U}\| = \left\| \left\langle \sum_{\alpha=1}^{n} \langle \iota, \iota_{\alpha} \rangle \mathbf{U}(\iota_{\alpha}), \mathbf{U}(\iota) \right\rangle_{\mathcal{Y}_{\mathsf{G}}} \right\|
$$

\n
$$
= \left\| \sum_{\alpha=1}^{n} \langle \iota, \iota_{\alpha} \rangle \langle \mathbf{U}(\iota_{\alpha}), \mathbf{U}(\iota) \rangle_{\mathcal{Y}_{\mathsf{G}}} \right\|
$$

\n
$$
\leqslant \sum_{\alpha=1}^{n} \|\iota\|^{\frac{1}{2}} \|\iota_{\alpha}\|^{\frac{1}{2}} \|\mathbf{U}(\iota_{i})\|_{\mathcal{Y}_{\mathsf{G}}}^{\frac{1}{2}} \|\mathbf{U}(\iota)\|_{\mathcal{Y}_{\mathsf{G}}}^{\frac{1}{2}}
$$

\n
$$
= \left(\sum_{\alpha=1}^{n} \|\iota_{\alpha}\|^{\frac{1}{2}} \|\mathbf{U}(\iota_{\alpha})\|_{\mathcal{Y}_{\mathsf{G}}}^{\frac{1}{2}} \right) \|\iota\|^{\frac{1}{2}} \|\mathbf{U}(\iota)\|_{\mathcal{Y}_{\mathsf{G}}}^{\frac{1}{2}}
$$

.

■

References

- [1] D. Bakic ´*ϖ*, B. Guljaˇ*s*, Extensions of Hilbert *C∗*-modules I, Houston Math. J. 30 (2004), 537-558.
- [2] M. D. Choi, E. G. Effros, Injectivity and operator spaces, J. Func. Anal. 24 (1977), 156-209.
- [3] E. Feizi, J. Soleymani, Injectivity and projectivity of some classes of Fr´*e*chet algebras, UPB. Sci. Ser. A. 82 (3) (2020), 53-60.
- [4] M. Frank, Hahn-Banach type theorems for Hilbert *C∗*-modules, Inter. J. Math. 13 (2002), 675-693.
- [5] M. Frank, Geometrical aspects of Hilbert *C∗*-module, Positivity. 3 (1999), 215-243.
- [6] M. Frank, Self-duality and *C∗*-reflexivity of Hilbert *C∗*-modules, Zeitschr. Anal. Anwendungen. 9 (1990), 165-176.
- [7] M. Frank, D. R. Larson, Frames in Hilbert *C∗*-modules and *C∗*-algebras, J. Operator Theory. 48 (2002), 273-314.
- [8] M. Frank, V. I. Paulsen, Injective and Projective Hilbert *C∗*-module and *C∗*-algebras of Compact Operators, Preprint, 2008.
- [9] H. Gonshor, Injective hulls of *C∗*-algebras, Trans. Amer. Math. Soc. 131 (1968), 315-322.
- [10] H. Gonshor, Injective hulls of *C∗*-algebras II, Proc. Amer. Math. Soc. 24 (1970), 468-491.
- [11] D. Hadwin, V. I. Paulsen, Injectivity and projectivity in analysis and topology, Sci. China. Math. 59 (2011), 2347-2359.
- [12] F. Kasch, Module and Rings, B. G. Teubner, Stuttgart, 1977.
- [13] E. C. Lance, Hilbert *C∗*-modules a Toolkit for Operator Algebraists, Lecture Notes Series, Vol. 210, Cambridge University Press, England, 1995.
- [14] H. Lin, Bounded module maps and pure completely positive maps, J. Operator Theory. 26 (1991), 121-138.
- [15] H. Lin, Extensions of multipliers and injective Hilbert modules, Chinese Ann. Math. Ser. B. 14 (1993), 387-396.
- [16] H. Lin, Injective Hilbert C*-modules, Pacific J. Math. 154 (1992), 131-164.
- [17] A. Mahmoodi, M. R. Mardanbeigi, On injective envelopes of AF-algebras, Thai. J. Math. 19 (2021), 1661- 1669.
- [18] V. M. Manuilov, E. V. Troisky, Hilbert *C∗*-modules, American Mathematical Society, 2005.
- [19] T. Oikhberg, Injectivity and projectivity in *p*-multinormed spaces, Positivity. 22 (4) (2018), 1023-1037.
- [20] W. L. Paschke, Inner product module over *B∗*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
- [21] W. L. Paschke, The double *B*-dual of inner product module over a *C∗*-algebra, Canad. J. Math. 26 (1971), 1272-1280.
- [22] N. E. Wegge-Olsen, K-theory and *C∗*-algebras, a Frtendly Approach, Oxford University Press, Oxfored, 1993.
- [23] Z. T. Xu, Hilbert *C∗*-modules and *C∗*-algebras, I (Engl./Chin.), Nanjing University Journal, Mathematical Biquarterly. 13 (1) (1996), 101-108.