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Abstract. Let G be a discrete group acting on C∗-algebra ℑ. In this paper, we investi-
gate projectivity and injectivity of G-Hilbert ℑ-modules and study the equivalent conditions
characterizing G-C∗-subalgebras of the algebra of compact operators on G-Hilbert spaces in
terms of general properties of G-Hilbert ℑ-modules. In particular, we show that G-Hilbert
ℑ-(bi)modules on G-C∗-algebra of compact operators are both projective and injective.
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1. Introduction and preliminaries

The aim of this paper is to generalize the main results of [8, 16] for actions of discrete
groups on Hilbert C∗-modules. Accordingly, we investigate two specific problems:

(i) characterizations of G-C∗-algebras ℑ and ζ for each G-Hilbert ℑ-ζ-bimodule is
projective or injective, for appropriate morphisms and subobjects;

(ii) characterizations of injective or projective G-Hilbert ℑ-ζ-bimodules, for G-C∗-
algebras ℑ and ζ and appropriate morphisms.

Most of the existing work on injectivity for C∗-algebras are focused on (contractive)
completely positive maps. The work of Hamana [9, 10] on G-injective operator system and
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G-injective envelopes, gives the flavor of G-injectivity for operator system endowed with
G-actions. In the category of topological spaces with a G-action, Hadwin and Paulsen [11]
gave a characterization of G-projective and G-injective spaces. Most of these investigations
are restricted to the case of actions of discrete groups. In [3], it has been shown that
Fréchet algebra ∩n∈NL

∞(G, ω−1
n ) is projective if and only if G is finite and Fréchet algebra

∩n∈NC0(G, ω−1
n ) is projective (injective) if and only if G is compact (finite), where G is

a locally compact group. Oikhberg [19] proved that every p-multinormed space embeds
into (is a quotient of) an injective (resp. a projective) p-multinormed space. Mahmoodi
and Mardanbeigi [17] showed that an injective AF-algebra must be finite dimensional,
while the question is open for injective and projective G-AF-algebras.

In sections 2 and 3, we consider categories of G-Hilbert ℑ-modules XG on some fixed
G-C∗-algebra ℑ and specify another G-C∗-algebra ζ that using module-specific G-∗-
representations acts on XG as a set of adjointable bounded operators. This gives on
such a module XG the structure of a G-Hilbert ℑ-ζ-bimodule with ⟨eι1[, ι2⟩ = e⟨ι1, ι2⟩[∗
for each e ∈ ℑ, [ ∈ ζ, and ι1, ι2 ∈ XG. We call XG a G-Hilbert ℑ-ζ-bimodule. Note that
any G-Hilbert ℑ-ζ-module is automatically a G-Hilbert ℑ-C-bimodule. Then projective
and injective G-Hilbert ℑ-ζ-module on a fixed G-C∗-algebra are defined for morphisms
being bounded G-equivariant maps.

A method for generalizing Hilbert C∗-modules (HC∗-M) is to consider the category
whose objects are G-Hilbert ℑ-module on a fixed G-C∗-algebra ℑ, subobjects are G-
submodules and morphisms are the bounded ℑ-module G-equivariant maps. As in the
case of Banach spaces, if one considers the morphisms to be contractive module maps, the
theory of injective HC∗-M is nearly simpler and is large works out in (e.g. [15, 16, 23]).
In [15, 16], sometimes the morphisms are adjointable contractive module mappings, ob-
jects are HC∗-M and subobjects are HC∗-submodules. There are similar observations
about projectivity, which is a kind of dual theory of injectivity. In addition to specify-
ing morphisms, the coefficients must also be specified for projectivity. In Section 3, we
provide detailed definitions of it. The sets of morphisms in our study are either bounded
bimodule G-equivariant maps, or bimodule G-equivariant maps. We will show these two
categories with BG(ℑ, ζ) and B∗

G(ℑ, ζ) respectively. We show that for each G-C∗-algebra
ℑ, any G-Hilbert ℑ-ζ-bimodule in the category B∗

G(ℑ, ζ) is projective. When ℑ is a G-
C∗-algebra of compact operators, we show that any G-Hilbert ℑ-ζ-bimodule in BG(ℑ, ζ)
is projective, but we can not solve the question of whether these are the only G-C∗-
algebras with this property. Even the question of whether all G-Hilbert ℑ-modules are
projective remains open in the larger category. However, we show that all G-Hilbert
ℑ-ζ-bimodules on a G-C∗-algebra in these categories are projective iff the kernel of any
surjective bounded module map between G-Hilbert ℑ-module is a topological direct sum-
mand of the domain. Moreover, we identify a family of G-projective G-Hilbert ℑ-module
on unital G-C∗-algebras. We show that finitely generated G-Hilbert ℑ-module on uni-
tal G-C∗-algebras of both categories are projective objects. The G-C∗-algebras ℑ of the
form ℑ = $0-

∑
σ K(Hσ) are of particular importance, where K(Hσ) represents the G-

C∗-algebra of all compact operators on some G-Hilbert space Hσ, and when the group G
is said to have the fixed point property, the $0-sum is either a finite block-diagonal sum
or a block-diagonal sum with a $0-convergence condition.

2. G-injective Hilbert ℑ-modules

An operator system in the category of unital completely positive (U .C.P.) linear maps
and C∗-algebras, is a self-adjoint linear subspace Q of a unital C∗-algebra A containing
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the identity I of A move the references. An order isomorphim of two operator systems
Q and Q′ is a U .C.P. linear isomorphism Ω : Q −→ Q′ so that Ω−1 is also completely
positive. We say that Ω is an automorphism, ifQ′ = Q, also we denote the automorphisms
group of Q by Aut(Q). Any Ω ∈ Aut(Q) is automatically completely isometric, therefore,
if Q be a (unital) C∗-algebra, the definition of an automorphism coincides to the usual
concept of an automorphism of a C∗-algebra (e.g. [2]). We say that Q is a G-operator
system, if an action of discrete group G on an operator system Q be always assumed
by automorphisms. We say that Q is a G-C∗-algebra, if Q is a C∗-algebra. The image
of ι under %, for every % ∈ G and ι ∈ Q, is denoted by % · ι. A G-operator system is a
G-equivariant U .C.P. maps and G-projective object in the category of G-operator system.
Suppose that XG be a G-operator system, if CG is a G-operator system, then we say that
(CG,Υ) is a G-cover of XG and Υ : CG −→ XG is a G-equivariant U .C.P linear epimorphism
on XG. If (CG,Υ) be a G-cover, then we say that (CG,Υ) is G-essential cover of XG, and
whenever YG is a G-operator system; Γ : YG −→ CG is G-equivariant U .C.P map and
Υ(Γ(YG)) = XG, then Γ(YG) = CG. We say that (CG,Υ) is a G-rigid cover of XG, if there
exists a G-cover and G-equivariant U .C.P map Γ : CG −→ CG satisfying Υ(Γ($)) = Υ($)
for each $ ∈ CG is a complete isometric.

Entirely this section, we assume that G is a discrete group. A G-C∗-algebra, equipped
with the action of G by automorphisms is a C∗-algebra. In other words, a G-C∗-algebra
ℑ is a C∗-algebra and a left G-M. Given G-C∗-algebras ℑ and ζ, the U .C.P linear map
ϕ : ℑ −→ ζ is G- equivariant if ϕ(% · e) = % · ϕ(e), for any % ∈ G and e ∈ ℑ.

A G-C∗-algebra ℑ is said to be G-injective if for each G-C∗-algebras ζ and C, any G-
equivariant complete isometry π : ζ −→ C and any G-equivariant U .C.P map ϕ : ζ −→ ℑ,
there exists a G-equivariant U .C.P. map ϕ̃ : C −→ ℑ satisfying ϕ̃ ◦ π = ϕ.

Definition 2.1 A G-pre-Hilbert ℑ-module on a G-C∗-algebra ℑ is an ℑ-module XG
equipped with an ℑ-valued map ⟨·, ·⟩ : XG × XG −→ ℑ that in the first argument is
ℑ-linear and has the following properties:

⟨ι, ς⟩ = ⟨ς, ι⟩∗, ⟨ι, ι⟩ ⩾ 0 with equality if and only if ι = 0.

Then ⟨·, ·⟩ is said to be the ℑ-valued inner product (ℑ-V.I.P) in XG.

Example 2.2 Suppose that ℑ is a G-C∗-algebra and C is the set of all numbers of
complex. Then

(i) Each inner product space on action G is a left G-pre-Hilbert module on C;
(ii) If I is a (closed) right G-invariant ideal of ℑ, then I is a G-pre-Hilbert ℑ-module

if ⟨e, [⟩ := e[∗; especially ℑ is a G-pre-Hilbert ℑ-module;
(iii) Let {Mα}1⩽α⩽m be a finite family of G-pre-Hilbert ℑ-module. Then the vector

space direct sum
⊕m

α=1Mα is a G-pre-Hilbert ℑ-module if we define

(ι1, · · · , ιm)e = (ι1e, · · · , ιme), ⟨(ι1, · · · , ιm), (ς1, · · · , ςm)⟩ =
m∑

α=1

⟨ια, ςα⟩.

Definition 2.3 A G-pre-Hilbert ℑ-module {XG, ⟨·, ·⟩} is G-Hilbert ℑ-module iff it is

complete with respect to the norm ∥ · ∥ = ∥⟨·, ·⟩∥
1

2

ℑ.

Example 2.4 Suppose that {Xn} is a sequence of G-Hilbert ℑ-module. Then

∞⊕
α=1

ξn = {{ιn}|ιn ∈ Xn,

∞∑
n=1

⟨ιn, ιn⟩ converges in ν}
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with operations

{ιn}+ ν{ςn} = {ιn + νςn}, {ιn}e = {ιne}, ⟨{ιn}, {ςn}⟩ =
∞∑
α=1

⟨ιn, ςn⟩

is a G-Hilbert ℑ-module. Note that in
⊕q

n=pXn, we have

q∑
n=p

∥⟨ιn, ςn⟩∥ = ∥
q∑

n=p

⟨ιn, ιn⟩∥∥
q∑

n=p

⟨ςn, ςn⟩∥.

Hence, by the Cauchy criterion,
∑∞

n=1⟨ιn, ςn⟩ converges. For completeness, let {vπ}π be
a Cauchy sequence in

⊕∞
n=1Xn and for all π, vπ = {ιn,π}n. Applying

∥ιn,π − ιn,l∥ = ∥⟨ιn,π − ιn,l, ιn,π − ιn,l⟩∥ = ∥
∞∑
n=1

⟨ιn,π − ιn,l, ιn,π − ιn,l⟩∥ = ∥vπ − vl∥2,

we deduce that {ιn,π}π is Cauchy, for any n ∈ N. So for any n, there is un so that
limπ ιn,π = un. Now, we put u = {un}. Then limπ vπ = u.
G-Hilbert ℑ-module behaves like Hilbert spaces in some way, for example,

∥ι∥ = sup{∥⟨ι, ς⟩∥, ∥ς∥ = 1, ς ∈ XG}.

But there exists one fundamental method in which G-Hilbert ℑ-modules differs from
Hilbert spaces. Given a closed submodule YG of a G-Hilbert ℑ-module XG, we define

Y⊥
G = {ς ∈ XG | ⟨ι, ς⟩ = 0,∀ι ∈ YG}.

Then Y⊥
G is a closed submodule, but XG ̸= YG + YG and Y⊥⊥

G ̸= YG.

Example 2.5 Let ℑ = C([0, 1]), XG = ℑ and YG = {Υ ∈ ℑ|Υ(12) = 0}. Then Y⊥
G = {0}.

Also, for all % ∈ Y⊥
G , %(τ)|τ − 1

2 | = 0. Hence, by continuity, % ≡ 0. The equality of
Pythagoras stating E , γ ∈ H and E ⊥ γ imply ∥E + γ∥2 = ∥E∥2 + ∥γ∥2 does not hold,
in general, for G-Hilbert ℑ-modules. For example, consider ℑ = C([0, 1] ∪ [2, 3]) as a
G-Hilbert ℑ-module.

Υ(ι) =

{
1 ι ∈ [0, 1]
0 ι ∈ [2, 3]

and %(ι) =

{
0 ι ∈ [0, 1]
1 ι ∈ [2, 3]

.

Then ⟨Υ, %⟩ = Υ% = 0, ∥Υ+ %∥ = 1 and ∥Υ∥ = ∥%∥ = 1.

Two G-Hilbert ℑ-modules are G-isomorphic if as Banach ℑ-modules, they are G-
isometrically isomorphic on G.

Definition 2.6 The set of all bounded ℑ-module G-equivariant r : XG −→ ℑ forms a
G-Banach ℑ-module X ′

G. The G-Banach ℑ-module X ′
G is G-dual of XG. The action of

module ℑ on X ′
G for any ι ∈ XG, e ∈ ℑ, r, s ∈ X ′

G and ν ∈ C is defined as follows:

(i) (r+ s)(ι) = r(ι) + s(ι);
(ii) (νr)(ι) = ν(r(ι));
(iii) (e · r)(ι) = r(ι)e∗.
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The map ∧ : XG −→ X ′

G, ι −→ ι̂, where ι̂ : XG −→ ℑ, ι̂(ς) = ⟨ι, ς⟩ is a G-isometric

ℑ-linear map. We may identify XG with X̂G = {ι̂ : ι ∈ XG} as a submodule of XG.

Definition 2.7 A G-Hilbert ℑ-module {XG, ⟨·, ·⟩} on a G-C∗-algebra ℑ is called G-self
dual iff any bounded ℑ-module G-equivariant r : XG −→ ℑ, for some element ιr ∈ XG, is
of the form ⟨·, ιr⟩.

In fact, XG is called G-self dual if X̂G = X ′

G.

Example 2.8 Consider the G-C∗-algebra ℑ = $0 of all sequences that converge to zero
and put XG = $0 with the standard ℑ-V.I.P. Let XG both as a G-Hilbert ℑ-module and
a G-Hilbert ℜG(ℑ)-module. The G-multiplier G-C∗-algebra of ℑ = $0 is ℜG(ℑ) = l∞.
Then X ′

G, as a one-sided ℑ-module, is independent of choosing a set of coefficients equal
to l∞.

Theorem 2.9 XG is G-self dual, as a G-Hilbert ℑ-module, if and only if XG is unital.

Proof. Let XG be unital with unit 1 and τ ∈ X ′

G. Then

τ(e) = τ(1.ι) = τ(1).ι = ⟨τ(1)∗, ι⟩ = (τ(1)∗)∧(e)

for all ι ∈ XG. Hence, τ = (τ(1)∗)∧ ∈ X̂G ⊆ X ′

G. If XG = X ′
G, then α : XG −→ XG,

α(ς) = ς being bounded G-equivariant ℑ-linear, for some ι ∈ XG, is of the form ι̂. Hence
ς = α(ς) = ι̂(ς) = ⟨ι, ς⟩ = ι∗ς for all ς ∈ XG. Therefore, ι

∗ is the unit of XG. ■

Let XG be a G-Hilbert ℑ-module and {eν} be an approximate unit for ℑ. For ι ∈ ξG,
we have

⟨ι− ιeν , ι− ιeν⟩ = ⟨ι, ι⟩ − eν⟨ι, ι⟩ − ⟨ι, ι⟩eν + eν⟨ι, ι⟩eν −→ 0.

Then limν ιeν = ι. As a result, XGℑ, defined as the linear span of {ιe|ι ∈ XG, e ∈ ℑ}, is
dense in XG and if ℑ is unital, then ι · 1 = ι. Clearly, ⟨XG,XG⟩ = span{⟨ι, ς⟩|ι, ς ∈ XG} is
a ∗-G-bi-ideal of ℑ.

Definition 2.10 If ⟨XG,XG⟩ is dense in ℑ, then we say that XG is G-full.

ℑ as an ℑ-module is an example of G-full. Let XG and YG be G-Hilbert ℑ-modules and

B(XG,YG) = {τ : XG −→ YG : ∃τ∗ : YG −→ XG, ⟨τι, ς⟩ = ⟨ι, τ∗ς⟩},

where τ is G-equivariant. Then τ must be ℑ-linear, since ⟨τ(ιe), ς⟩ = ⟨ιe, τ∗ς⟩ =
e∗⟨ι, τ∗ς⟩ = e∗⟨τι, ς⟩ = ⟨(τι)e, ς⟩ for all ς. Hence ⟨τ(ιe) − (τι)e, ς⟩ = 0 and then
⟨τ(ιe)−(τι)e, τ(ιe)−(τι)e⟩ = 0. It concludes that τ(ιe)−(τι)e = 0. Similarly, τ(νι+ς) =
ντι+τς. Also, for every ι in the unit ball of XG, τ must be bounded, which Υι : XG −→ ℑ
is defined by Υι(ς) = ⟨τι, ς⟩ = ⟨ι, τ∗ς⟩. Then ∥Υι(ς)∥ = ∥ι∥∥τ∗ς∥ = ∥τ∗ς∥. Therefore,
{∥Υι∥ : ι ∈ X1} is bounded. This and ∥τι∥ = supς∈Y1

∥⟨τι, ς⟩∥ = supς∈Y1
∥Υι(ς)∥ = ∥Υι∥

indicate that τ is bounded. Then we say that B(XG,YG) is the space of adjointable
G-maps and we put B(XG) = B(XG,XG).

Example 2.11 Let YG = Λ = C([0, 1]), XG = {Υ −→ Λ,Υ(12) = 0} and α : XG −→ YG,
Υ −→ Υ be the inclusion map. If α is adjointable and 1 represents the identity element
of ℑ, then ⟨ι, α∗(1)⟩ = ⟨α(ι), 1⟩ = ⟨ι, 1⟩ for all ι ∈ XG. So α∗(1) = 1, but 1 /∈ EG and
therefore α cannot be adjointable.
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B(XG) is a G-C∗-algebra. If τ ∈ B(XG,YG), then τ∗ ∈ B(YG,XG). If ZG is a G-Hilbert
ℑ-module and s ∈ B(YG,ZG), then sτ ∈ B(XG,ZG). Therefore, B(XG) is a G-∗-algebra.
If τn −→ τ , then

∥τ∗nς − τ∗mς∥ = sup
ι∈XG

∥⟨ι, (τ∗n − τ∗m)ς⟩∥

= sup
ι∈XG

∥⟨(τn − τm)ι, ς⟩∥

= sup
ι∈XG

∥(τn − τm)ι∥∥ς∥

= ∥τn − τm∥∥ς∥.

It concludes that {τ∗nς} converges to sς (say). Hence

⟨τι, ς⟩ = lim
n
⟨τnι, ς⟩ = ⟨ι, lim

n
τ∗nς⟩ = ⟨ι, sς⟩.

Thus, τ ∈ B(XG) and B(XG) is a closed subset of

{∆ : XG −→ XG : ∆ is linear and bounded}.

Hence, B(XG) is a Banach algebra. Moreover,

∥τ∥2 = sup
ι∈XG

∥τι∥2 = sup
ι∈XG

∥⟨τι, τ ι⟩∥ = sup
ι∈XG

∥⟨τ∗τι, ι⟩∥ = ∥τ∗τ∥.

Hence, ∥τ∥2 = ∥τ∗τ∥. Thus, B(XG) is a G-C∗-algebra.
Let ℑ and ζ be G-C∗-algebras. Consider two categories. In both categories, the ob-

jects will be G-Hilbert ℑ-ζ-bimodules. We study the sets of morphisms that include
of either all bounded bimodule G-equivariant between the objects, or all bounded bi-
module G-equivariant, adjointable between them. In both states, norm closed subspaces
are invariant under the both module actions, that is, the subobjects will be the set of
all G-Hilbert ℑ-ζ-subbimodules. We will represent these two categories, along with the
specified sets of subobjects, with BG(ℑ, ζ) and B∗

G(ℑ, ζ), respectively. Note that any left
G-Hilbert ℑ-module is always equipped with a (right) action by C, and any G-C∗-algebra
is left G-module. Therefore, BG(ℑ,C) (resp. B∗

G(ℑ,C)) is just the category of bounded
(resp. adjointable, bounded) G-equivariant maps and left G-Hilbert ℑ-module.

Definition 2.12 A ξG is G-injective G-Hilbert ℑ-module in BG(ℑ, ζ), (resp. B∗
G(ℑ, ζ))

if and only if for every G-Hilbert ℑ-ζ-bimodule, XG of YG, and any bounded, (resp.
bounded, adjointable) bimodule G-equivariant Ω : XG −→ ξG, there exists a bounded
(resp. bounded, adjointable), bimodule G-equivariant ℧ : YG −→ ξG that extends Ω. In
other words, a G-Hilbert ℑ-ζ-bimodule ξG is G-injective Hilbert ℑ-module iff the diagram

YG

XG

∆

OO

Ω
// ξG

(2.1)
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can be completed to a commutative diagram by an ℑ-ζ-bimodule G-equivariant ℧ :
YG −→ ξG of the selected category.

End∗ℑ(XG) represents G-C∗-algebra of all bounded ℑ-linear adjointable operators on
G-Hilbert ℑ-module XG and Endℑ(XG) represents Banach algebra of all bounded ℑ-
linear operators on XG. In [16] was shown to be a G-Hilbert ℑ-module is injective iff it as
a G-Hilbert ℑ-module, be orthogonally comparable. Can be shown that expanding the
morphisms to ℑ-ζ-bimodule maps, rather significantly change the picture, but necessitate
the inclusion maps to be morphisms.

Theorem 2.13 Let ℑ be an arbitrary G-C∗-algebra, {ξG, ⟨·, ·⟩} be a G-Hilbert ℑ-module
and ζ be a G-C∗-algebra that admits a G-∗-representation in End∗ℑ(ξG). Then ξG is
a G-injective object in the category whose objects are the G-Hilbert ℑ-ζ-bimodules,
morphisms are either the (adjointable) bounded bimodoul G-equivariants or (adjointable)
contractive, subobjects are the ℑ-ζ-subbimodules and inclusion G-maps are adjointable.
As a result, any element of those categories is G-injective Hilbert ℑ-module.

Proof. By hypothesis, the inclusion ∆ : XG ↪→ YG is an A.B.ℑ-ζ-bimodule G-
equivariant, the G-equivariant ∆∗ is a surjective bounded ℑ-ζ-bimodule G-equivariant
and by Theorem 15.3.8 from [22], the image set ∆(XG) ⊆ YG is a subset orthogo-
nal summand of YG. Furthermore, the G-equivariant ∆−1 : ∆(XG) −→ XG defined by
∆−1(∆(ι)) = ι for ι ∈ XG is everywhere defined on ∆(XG) ⊆ YG and bijective. Thus, by
definition, it is bounded G-equivariant and ℑ-ζ-bilinear. It can be developed to a map
defined on YG simply placed on the zero maps in the orthogonal complement of ∆(XG)
in YG. By preserving the concept ∆−1 for this development, we put ℧ = Ω ◦ ∆−1 that
implies the desired development of Ω to YG. As a result, the G-Hilbert ℑ-ζ-bimodule ξG,
in the category under investigation, is automatically G-injective G-Hilbert ℑ–module. ■

Now, for further progress in identifying the G-injective G-Hilbert ℑ–module objects
of category BG(ℑ, ζ), we consider the results of the definition of G-injective G-Hilbert
ℑ–module.

The G-C∗-module of all bounded ℑ-module G-maps from X ′

G into ℑ, shown by X ′′

G . Let
ΩG be the G-map G-Hilbert ℑ-module ΩG : ξG −→ X ′′

G , ΩG(ι)(τ) = τ(ι)∗, ι ∈ XG, τ ∈ X ′

G.

Definition 2.14 A G-Hilbert ℑ-module XG is called G-ℑ-reflexive if ΩG is a G-
isomorphism of ℑ-modules.

Let XG and YG be a G-Hilbert ℑ-module. For ι ∈ XG and ς ∈ YG, define Θι,ς : YG −→ XG
by Θι,ς(ϑ) = ι⟨ς, ϑ⟩ for ϑ ∈ YG. Then

Θ∗
ι,ς = Θς,ιΘι,ςΘv,z = Θι⟨ς,v⟩,z, τΘι,ς = Θτι,ς (v ∈ XG, z ∈ YG).

Suppose that the set of ”compact” G-operators K(YG,XG) is the closed linear span of
{Θι,ς |ι ∈ XG, ς ∈ YG}. Let XG be a G-Hilbert ℑ-module and ι ∈ XG.

Θe,ϑ(ς) = e⟨ϑ, ς⟩ = ⟨ϑe∗, ς⟩ = (ϑe∗)∧(ς) (e ∈ ℑ) (∗)

and so ι̂ ∈ K(XG, ), where ι is of the form ϑe∗. Since MGℑ is dense in MG for every
ι ∈ MG there exists a sequence {ιn} in MGℑ so that limn ιn = ι. But MG −→ L(ξG,ℑ),
ι −→ ι̂ is continuous (isometry). Therefore, since K(MG,ℑ) is closed in L(MG,ℑ), then
ι̂ = limn ι̂n ∈ K(MG,ℑ).

Condition (∗) shows that each element of K(MG,ℑ) is of the from ι̂ = ⟨ι, ·⟩ a Riesz
theorem for G-Hilbert ℑ-modules, for some ι ∈ XG.
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Lemma 2.15 Let ℑ and ζ be G-C∗-algebras and {ξG, ⟨·, ·⟩} be a G-injective Hilbert
ℑ-ζ-bimodule in one of the two categories under investigation. If ξG ⊆ YG is an ℑ-ζ-
subbimodule, then the Hilbert ℑ-ζ-bimodule ξG is a topological summand of the Hilbert
ℑ-ζ-bimodule YG. Furthermore, ξG as a G-Hilbert ℑ-module is G-ℑ-reflexive and when ξG
is a G-Hℑ-submodule of another G-Hilbert ℑ-module XG with ξ⊥G = {0}, then ξG = ξ⊥⊥

G
in XG.

Proof. According to the definition of G-injectivity, let XG = ξG, ∆ : ξG ↪→ YG indicates
inclusion and Ω = idξG . By assumption there is an ℑ-ζ-bimodule G-equivariant ℧ :
YG −→ ξG so that ℧ ◦∆ = idξG . By Lemma 3.1.8(2) from [12], we have the set identities
YG = ℧−1(ξG) = Im(∆) +Ker(℧) and {0} = ∆(Ker(idξG)) = Im(∆) ∩Ker(℧). Thus,
YG = ∆(ξG) +Ker(℧), that is, ξG with topological complement Ker(℧) there, must be
a topological summand.

To extract the G-ℑ-reflexivity of G-injective G-Hilbert ℑ-module, consider the definition
of G-injectivity with XG = ξG, YG = ξ

′′

G and Ω = idξG . By Proposition 2.1 from [6], the ℑ-
V.I.P on ξG expands to an ℑ-V.I.P on its ℑ-bidual Banach ℑ-module ξ

′′

G. Furthermore,
since any bounded G-module operator on ξG expands to a bounded G-module operator
on ξ

′′

G in a unique method [21], the G-∗-representation of ζ on ξG turns into a G-∗-
representation of ζ on ξ

′′

G via the canonical isometric embedding ξG ⊆ ξ
′′

G. However, the
embedded copy of ξG is a topological summand of ξ

′′

G iff both they coincide. Actually, since
by [20, 21], we have ξG ⊆ ξ

′′

G ⊆ ξ′G as the chain of isometric embedding, the supposition
of ξG being a non-trivial topological summand of ξ

′′

G leads to the non-uniqueness of the
representation of the zero maps on ξG in ξ′G, which contradict the definition of this set.
The statement above is a result of the G-ℑ-reflexivity, G-injectivity of ξG and Lemma 3.1
from [4]. ■

By Lemma 2.15, if an object is complemented in any object that it is a subobject,
then it is injective. According to [8], this holds for G-injective.

Inspired by [8], we have the following proposition for G-Hilbert ℑ-module with the fact
that unital G-C∗-algebras ℑ, as G-Hilbert ℑ-modules, are ever orthogonally comparable.
The same is true for some non-unital G-C∗-algebras ℑ with the condition ℜG(ℑ) =
LℜG(ℑ).

Proposition 2.16 Let ℑ be a G-C∗-algebra and ℑN be the G-Hilbert ℑ-module of all
N-tuples of elements of ℑ for N ∈ N. The following conditions are equivalent:

(i) ℑN is G-injective in BG(ℑ,C) for N ∈ N;
(ii) ℑN is G-injective in BG(ℑ,C) for any N ∈ N;
(iii) ℑ is G-injective in BG(ℑ,C);
(iv) ℜG(ℑ) is a G-monotone complete (G-m.c.) G-C∗-algebra.

Proof. Let XG ⊆ YG be a subobject and Ω : XG −→ ℑN be a bounded ℑ-module map.
We have Ω = (Ω1, ...,ΩN), where Ωα : XG −→ ℑ are bounded ℑ-module maps. ℧ :
YG −→ ℑN that extends Ω exists iff there are bounded ℑ-module maps ℧α : YG −→ ℑ(α)

coinciding with Ωα on XG, the index (α) denotes α-th coordinate of ℑN. In this case,
(1), (2) and (3) are equivalence. We also see that such an expansion exists iff a generalized
Hahn-Banach theorem is credible for arbitrary pairs of G-Hilbert ℑ-modules XG ⊆ YG
and arbitrary bounded ℑ-linear functionals r : XG −→ ℑ. By, Theorem 2 from [4], this
happens iff ℜG(ℑ) is G-m.c. ■

Definition 2.17 A G-Hilbert ℑ-module XG is G-m.c. if underlying Hilbert ℑ-module ℑ
is a m.c.
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Definition 2.18 A G-Hilbert ℑ-module XG is G-simple when it has no non-trivial 2-sided
G-invariant ideals.

Proposition 2.19 Let ℑ be a unital G-C∗-algebra. If there is every G-full ℑ-module
that in BG(ℑ,C) is G-injective, then ℑ is G-m.c. Therefore, if ℑ is G-simple, not G-m.c
and unital, then there exists no non-zero injective G-Hilbert ℑ-module in BG(ℑ,C).

Proof. Let ξG be an injective G-full ℑ-module. By Lemma 2.4.3 from [18], there is a finite
positive integer n and a subset of elements {e1, ..., en} of E so that

∑n
α=1⟨eα, eα⟩ = 1ℑ

since the G-Hilbert ℑ-module ξG is full. Note that ξnG is G-injective Hilbert ℑ-module
whenever ξG is G-injective G-Hilbert ℑ-module and n is a finite. Hence, one has an iso-
metric left ℑ-module G-equivariant, Ω : ℑ −→ ξnG defined by Ω(e) =

∑n
α eeα=1. Because,

ℑ is orthogonally comparable by, Proposition 6.2 and Theorem 6.3 from [6], there is a
bounded ℑ-module G-equivariant, ℧ : ξnG −→ Ω(ℑ). So, we simply conclude that Ω(ℑ)
in BG(ℑ,C) is G-injective G-Hilbert ℑ-module. Therefore, by Proposition 3.3 from [8],
ℜG(ℑ) = ℑ is G-m.c. For the final claim, since ℑ is G-simple and unital, each non-zero
G-Hilbert ℑ-module is G-full, since the range of its ℑ-V.I.P. is norm-closed 2-sided ideal
in ℑ. ■

In the following example, we show that when ℑ is unital, not G-simple and G-m.c., it
may be G-injective in BG(ℑ,C). However, we show that when ℑ is unital but not G-m.c.,
in this case, there exist not enough G-injectives so that in a G-injection, any G-Hilbert
ℑ-module can be embedded.

Example 2.20 Let ℑ = C ⊕ ζ, where ζ be a unital G-C∗-algebra which is not G-m.c.
Therefore, ℑ is unital and not G-m.c. Note that any G-Hilbert space KG is a (non-full)
G-Hilbert ℑ-module with (0⊕ ζ)K = 0. We assert KG is an injective G-Hilbert ℑ-module
in BG(ℑ,C). Indeed, ξG is a G-Hilbert ℑ-module and HG = (C⊕0)ξG and ZG = (0⊕ ζ)ξG
are its submodules, then ξG = HG ⊕ ZG is an orthogonal direct sum decomposition. In
addition, each ℑ-module G-equivariant from ξG into KG is zero on ZG, and it is a linear
map on HG. Given the fact that KG in BG(ℑ,C) is G-injective, it is easy to conclude
that it is G-injective in the category of G-Hilbert space and bounded linear G-equivariant
maps.

The following theorem shows that G-C∗-algebras for which any G-Hilbert ℑ-module is
G-injective in BG(ℑ,C).

Theorem 2.21 Let ℑ be a compact operators G-C∗-algebra on some G-Hilbert space.
Let {ξG, ⟨·, ·⟩} be a G-Hilbert ℑ-module and ζ be another G-C∗-algebra admitting a G-
∗-representation on ξG. Then ξG is a G-injective G-Hilbert ℑ-module object in BG(ℑ, ζ).
Contrariwise, suppose that ℑ is a G-C∗-algebra. If any G-Hilbert ℑ-module is G-injective
in BG(ℑ,C), then ℑ is ∗-isomorphic to a compact operators G-C∗-algebra on some G-
Hilbert space.

Proof. By Theorem 2.1 and Proposition 2.2 from [8], we observe any bounded ℑ-linear
map between G-Hilbert ℑ-modules on a G-C∗-algebra ℑ of type $0 −

∑
α

⊕
K(Hα) has

an adjoint. Therefore, each inclusion map is adjointable and according to Theorem 2.13,
the first claim hold.

To illustrate the reverse, consider a maximal G-invariant left-sided IG of the G-C∗-
algebra ℑ. Put ξG = XG = IG, YG = ℑ, Ω = idIG and in the definition of G-injectivity,
take ℑ-linear embedding of IG into ℑ. Then the existence of an ℑ-module G-equivaraint
map ℧ : ℑ −→ IG expanding Ω is G-equivariant to the existence of PIG ∈ ℜG(ℑ) as
an orthogonal projection so that IG = ℑPIG . Therefore, by Proposition 2.2 of [6], the
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G-C∗-algebra ℑ has the form $0-
∑

α

⊕
K(Hα). ■

Theorem 2.22 Let ℑ be G-m.c. G-C∗-algebra and {XG, ⟨·, ·⟩} be a G-Hilbert ℑ-module.
Let ζ be a G-C∗-algebra admitting a G-∗-representation in End∗ℑ(XG). Then XG is G-
injective in BG(ℑ, ζ) iff XG, as G-Hilbert ℑ-module, is G-self-dual.

Proof. Assume that XG is G-injective in BG(ℑ, ζ), and let the canonical isometric embed-
ding of XG into its ℑ-dual G-Banach ℑ-module X ′

G. By Theorem 4.7 of [7], the ℑ-V.I.P.
on XG can be extended to an ℑ-V.I.P. on X ′

G in a manner compatible with XG ↪→ X ′

G, as
the canonical embedding. The G-∗-representation of ζ on XG on the right with the canon-
ical embedding induces a G-∗-representation of ζ on X ′

G, because any bounded module
operator on XG expands to a unique bounded module operator on X ′

G ([20]). Eventually,
the copy of XG in X ′

G is a topological summand of them iff both the sets coincide, because
otherwise, the zero functional on XG accepts multiple G-∗-representations in X ′

G. Thus,
XG should be G-self-dual. To create the inverse notion, consider the following diagram
with a bounded ℑ-ζ-bilinear map Ω and an isometric ℑ-ζ-bilinear embedding ∆:

LG

KG

∆

OO

Ω
// XG

(2.2)

In this diagram, Ω can be replaced with Ω
||Ω|| , a contractive map. Then, by Theorem 2.2

of [16], there is a bounded ℑ-linear G-equivariant ℧ : LG −→ XG so that ( Ω
||Ω||) = ℧ ◦∆.

The G-equivariant ℧ is also ζ-linear, because Ω and ∆ are ζ-linear. By multiplying the
constant ||Ω|| on both sides, we get the map ||Ω||℧, which completes the above diagram
to a commutative one. Therefore, in the selected category, XG is G-injective G-Hilbert
ℑ-module. ■

When the G-C∗-algebra of coefficients of a G-Hilbert ℑ-module ξG is not a unital G-
C∗-algebra and the G-Hilbert ℑ-module ξG is full, that is, its G-C∗-algebra of coefficients
ℑ is the minimal admissible one, so we can consider G-Hilbert ℑ-module ξG on larger
G-C∗-algebras, logically, as an ideal, on G-C∗-algebras containing the G-C∗-algebra of
coefficients ℑ and belonging to the multiplier algebra ℜG(ℑ) of ℑ. The construction
introduced in [1] gives us the opportunity to institute the necessary terms on those
G-Hilbert ℑ-modules to be G-injective in the G-Hilbert ℜG(ℑ)-module category.

Suppose that ℑ equipped with an ℑ-V.I.P. ⟨·, ·⟩ is a (non-unital) G-C∗-algebra and
XG is a full G-Hilbert ℑ-module. If ℑ is equipped with the standard ℑ-V.I.P. defined by
the rule ⟨e, [⟩ℑ = e[∗, then XGd

represents the G-Hilbert ℜG(ℑ)-module End∗ℑ(ℑ,XG) of
all ℑ-linear maps from ℑ to XG. The ℜG(ℑ)-V.I.P. on XGd

is defined by ⟨r, s⟩ = s∗ ◦ r
for every r, s ∈ XGd

. One of the significant features of this structure is the existence
of an isometric embedding Γ of XG into XGd

. It is defined by Γ(ι)(e) = eι for every
e ∈ ℑ, and ι ∈ XG. The image Γ(XG) ⊆ XGd

coincides with the subset ℑ · XGd
. Note

that the structure depends on the unitary equivalence classes of both the ℑ-V.I.P.
on ℑ and XG. In addition, XGd

can be specified topologically as the linear hull of the
completion of the unit ball of XG with respect to the strict topology, which is induced
by the set of semi-norms {∥⟨·, ι⟩∥ℑ : ι ∈ XG}

⋃
{∥ς · ∥XG : ς ∈ ℑ}. Thus, XGd

≡ XGdd
,

that is, the described extension is a closure operation for every G-Hilbert ℑ-module XG.
Eventually, (XG

⊕
YG)d = XGd

⊕
YGd

, that is, the closure operation obeys orthogonal
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decompositions, and the sets of all adjointable bounded module maps over XG and XGd

are always G-∗-isomorphic, by limiting operators over XGd
in the ℜG(ℑ)-invariant subset

Γ(XG) ⊆ XGd
which is isometrically isomorphic in XG. See [1] for more information.

Proposition 2.23 Suppose that ℑ is a non-unital G-C∗-algebra and ξG a full G-Hilbert
ℑ-module. Let ζ be another G-C∗-algebra that admits a G-∗-representation on ξG. If ξG
is G-injective in BG(ℜG(ℑ), ζ), then ξG ≡ ξd.

Proof. The isomorphism of the sets of all adjointable bounded module maps on both
the G-Hilbert ℑ-module and its strict closure turns the strict closure into a ℜG(ℑ)-
ζ-bimodule, too. Thus, ξd is included in the same category under consideration. By
definition of G-injectivity, set XG = ξG, YG = ξd, we specify ξG with its image, Γ(ξG) ⊆ ξd
and Ω = idξG . Because Γ(E) is G-injective, there exists a bounded ℜG(ℑ)-ζ-bimodule
map, ℧ : ξd −→ Γ(ξG) expanding the identity map. In addition, by [5, Theorem 6.4], we
have the canonical isometric inclusions ξG ↪→ ξd ↪→ ξ

′

G, and the ℜG(ℑ)-linear bounded
identity operator over ξG has a unique extension to the identity operator over ξ′ preserving
the norm. Also, the identity operator over ξG expands uniquely to the identity operator
over ξd. Hence, ξG ≡ ξd. ■

One has ξG ≡ ξd for a G-Hilbert ℑ-module ξG provided that either the G-C∗-algebra ℑ
of coefficients or the G-C∗-algebra Kℑ(ξG) is unital.

Corollary 2.24 Let ℑ be a G-C∗-algebra. If ℑ is G-injective in the category
BG(ℜG(ℑ),C), then ℑ should be unital (that is, ℑ = ℜG(ℑ)) and G-m.c. In addition,
if ℑN is G-injective for some N ∈ N, then ℑN is G-injective for every N ∈ N, in particu-
lar, for N = 1.

Proof. This is a result of the reality that ℑd = ℜG(ℑ) and (ℑN)d = ℜG(ℑ)N for every
N ∈ N according to the structure. Thus, ℑ = ℜG(ℑ) with the prior proposition. Moreover,
Proposition 3.3 and Theorem 3.9 enforce ℑ to be G-m.c. ■

3. G-projective G-Hilbert ℑ-modules

As in the pervious section, let ℑ and ζ be two fixed G-C∗-algebras, and suppose
BG(ℑ, ζ) (resp. B∗

G(ℑ, ζ)) is the sets of all bounded bimodule G-equivariant maps between
the G-Hilbert ℑ-ζ-bimodules, (resp. all adjointable, bounded bimodule G-equivariants
between them).

Definition 3.1 By definition, a G-Hilbert ℑ-ζ-bimodule ZG is G-projective G-Hilbert
ℑ-module in BG(ℑ, ζ) (resp. B∗

G(ℑ, ζ)) iff the following diagram

ZG

∆
��

YG
Ω

// XG

(3.1)

where ∆ is a surjective ℑ-ζ-bimodule (resp. adjointable) morphism and Ω is a (resp.
adjointable) ℑ-ζ-bimodule morphism among G-Hilbert ℑ-ζ-bimodules, can be completed
to a commutative diagram by an ℑ-ζ-bimodule (resp. adjointable) morphism ℧ : ZG −→
YG.
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The proof is relatively easy (and we do) that any object is G-projective in B∗
G(ℑ, ζ). We

do not know that this holds for BG(ℑ, ζ), but we will identify a family of G-C∗-algebras
that holds in BG(ℑ, ζ).

Theorem 3.2 Let ℑ be an arbitrary G-C∗-algebra, {FG, ⟨·, ·⟩} a G-Hilbert ℑ-module
and ζ another G-C∗-algebra that admits a G-∗-representation in End∗ℑ(ZG). Then ZG is
a G-projective object in B∗

G(ℑ, ζ).

Proof. Let ∆ : YG −→ XG, where XG and YG are G-Hilbert ℑ-ζ-bimodules, be an ad-
jointable surjective bounded ℑ-ζ-bimodule map. By definition, since ∆ has closed range,
the range of ∆∗ : XG −→ YG in YG is closed and an orthogonal summand by Proposition
1.1 of [8]. Since ∆ is surjective, ∆∗ should be G-injective, and one has the decomposi-
tion YG = ∆∗(XG)

⊕
Ker(∆). By construction, both these orthogonal summands are

ℑ-ζ-invariant. Each element ι ∈ XG has a unique G-pre-image ∆−1(ι) ∈ ∆∗(XG). The
operator ∆−1 : XG −→ ∆∗(XG) ⊆ YG defined as this is defined everywhere on XG and has
a closed range, so it is bounded. In addition, it is ℑ-ζ-linear. If ℧ : ZG −→ YG is defined
with the rule ℧(Υ) = ∆−1(Ω(z)) ∈ ∆∗(XG) ⊆ YG for z ∈ ZG, then we obtain a bounded
ℑ-ζ-bilinear map ℧ that completes diagram (3.1) to the commutative diagram. ■

The following theorem shows a way to find non G-projective G-Hilbert ℑ-module if
such G-Hilbert ℑ-modules are available.

Theorem 3.3 Let ℑ and ζ be arbitrary G-C∗-algebras and {ZG, ⟨·, ·⟩} be a G-Hilbert
ℑ-ζ-bimodule. Then the following equivalent conditions hold:

(i) ZG is G-projective in BG(ℑ, ζ);
(ii) each surjective, bounded bimodule G-equivariant, ∆ : YG −→ ZG has a right

inverse, Q : ZG −→ XG which is a bounded bimodule G-equivariant;
(iii) if ∆ : YG −→ ZG is a surjective, bounded bimodule G-equivariant, then Ker(∆)

is a topological bimodule summand.

Proof. (ii) = (iii) is clear. We show that (i) ⇒ (iii). Suppose that ZG is G-projective
G-Hilbert ℑ-module. By definition, there exists an ℑ-ζ-bimodule G-equivariant map ℧ :
ZG −→ YG so that ∆ ◦ ℧ = idZG . Using [12, Lemma 3.1.8(2)], we have the set identities
YG = ∆−1(ZG) = Im(℧)+Ker(∆) and {0} = ℧(Ker(idZG)) = Im(℧)

⋂
Ker(∆). Hence,

the G-Hilbert ℑ-ζ-bimodule Ker(∆) ⊆ YG is a topological summand with topological
complement Im(℧) there, that is, YG = ℧(ZG) + Ker(∆). The invariance of Ker(∆)
under the action of ζ is due to the ℑ-ζ-bilinearity of the operator ∆.

To show (iii)⇒ (i), suppose that (ii) holds and according to the diagram (2.1), let LG =
{(z, ς) ∈ ZG

⊕
YG : Ω(z) = ∆(ς)}, that is an ℑ-ζ-submodule of ZG

⊕
YG. Q : LG −→ ZG

defined by Q((z, ς)) = z is a bounded bimodule surjection G-equivariant and so has a
right inverse, Q : ZG −→ LG. Assume that P : LG −→ YG is defined by P((z, ς)) = ς,
therefore P is a bounded bimodule G-equivariant map and ℧ = P ◦ Q : QG −→ YG is
the desired lifting of Ω. ■

Theorem 3.4 Let ℑ be a G-C∗-algebra of type $0 −
∑

α

⊕
K(Hα), that is, a compact

operators G-C∗-algebra on a G-Hilbert space. Let {ZG, ⟨·, ·⟩} be a G-Hilbert ℑ-module
and ζ be another G-C∗-algebra admitting a G-∗-representation in End∗ℑ(ZG). Then ZG
is a G-projective G-Hilbert ℑ-module in BG(ℑ, ζ).

Proof. By Theorem 2.1 and Proposition 2.2 of [8], we can complete the proof. ■

Corollary 3.5 Let ℑ be G-C∗-algebra. Each G-Hilbert ℑ-module is G-projective G-
Hilbert ℑ-module in the category BG(ℑ,C) iff the kernel of any surjective bounded
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ℑ-linear G-equivariant maps between G-Hilbert ℑ-modules is a topological summand.

Proof. Apply condition (iii) of 3.3. ■

Now, we investigate the relationship between G-projectivity of G-Hilbert ℑ-modules in
the case of unital G-C∗-algebras and Kasparovs stabilization theorem.

Proposition 3.6 Let ℑ be a unital G-C∗-algebra. Then, for any N ∈ N the G-Hilbert
ℑ-module, ℑN is G-projective G-Hilbert ℑ-module in BG(ℑ,C).

Proof. Let YG be a G-Hilbert ℑ-module and ∆ : YG −→ ℑN a bounded surjective G-
equivariant, we select elements ιβ ∈ YG so that ∆(ιβ) = νj , where νj represents the
element that in the β-th component, is 1ℑ and elsewhere 0. The mapping Q : ℑN −→ YG
defined by Q((e1, ...., eN)) = Σβeβιβ is a right inverse for ∆. ■

The respective infinite dimensional version of ℑN is

l2(ℑ) = {(e1, e2, ...) : Σ∞
n=1ene

∗
n ∈ ℑ},

where the convergence is meaning the norm.

Definition 3.7 A closed submodule YG of a G-Hilbert ℑ-module XG is topologically
complementable if there exists a closed submodule HG so that YG + HG = XG and
YG ∩HG = {0}. We say that YG is G-O.C. (G-orthogonally complemented) if we have the
condition YG ⊥ HG.

Example 3.8 Let ℑ = C([0, 1]), ∂ = {Υ ∈ ℑ|Υ(0) = 0} ≃ C0((0, 1]) and XG = ℑ ⊕ ∂ as
a G-Hilbert ℑ-module. If YG = {(Υ,Υ)|Υ ∈ ∂}, then Y⊥

G = {(%,−%)|% ∈ ∂}, YG + Y⊥
G =

∂+∂ ̸= YG and HG = {(Υ, 0)|Υ ∈ ℑ} is a topological complement for YG. Therefore, not
each topologically complemented is G-O.C.

Proposition 3.9 If l2(ℑ) is G-projective G-Hilbert ℑ-module in BG(ℑ,C), then each
countably generated G-Hilbert ℑ-module is G-projective G-Hilbert ℑ-module in BG(ℑ,C).

Proof. If XG is countably generated then XG
⊕

l2(ℑ) is ℑ-module G-isomorphic to l2(ℑ)
by Kasparov’s stabilization theorem [13]. Therefore, XG is G-isomorphic to a G-O.C. sub-
module of l2(ℑ). Therefore an elementary diagram chase presents that a G-O.C. submod-
ule of a G-projective G-Hilbert ℑ-module is G-projective G-Hilbert ℑ-module. ■

Given every G-Hilbert ℑ-module XG, we can represent it on G-Hilbert spaces as op-
erators. This gives us the idea that we can imagine the norms of matrices on G-Hilbert
ℑ-modules, and that these norms depend only on the internal product, in other words,
they are canonical. We denote the set of ∞ × ∞ matrices on ℑ by M∞(ℑ), that are
bounded, that is, ||(eα,β)|| ≡ supn ||(eα,β)nα,β=1|| < +∞ and C∞(XG) = {(m1,m2, ...)

τ :

(⟨mα,mβ⟩) ∈ M∞(ℑ)}.

Proposition 3.10 Let Ω : l2(ℑ) −→ XG be defined by Ω((e1, e2, ...)) =
∑

n enmn. Then
Ω defines a bounded ℑ-module G-equivariant map iff ||(⟨mα,mβ⟩)|| is finite. Furthermore,
||Ω|| = ||(⟨mα,mβ⟩)||.

Proof. For each finitely supported tuple, one has

||Ω((e1, ..., en, 0, 0...))|| = ||
n∑

α,β=1

eα⟨mα,mβ⟩e∗β||.
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But for each (pα,β) ∈ Mn(ℑ), one has

||(pα,β)|| = sup{||
∑n

α,β=1 eαpα,βe
∗
β|| :

∑n
β=1 eβe

∗
β ⩽ 1ℑ}.

Thus, the result is obtained. ■

Theorem 3.11 Let ℑ be a unital G-C∗-algebra. Then l2(ℑ) is G-projective G-Hilbert ℑ-
module in XG(ℑ,C) iff for each G-Hilbert ℑ-modules YG,XG and each surjective, bounded
module G-equivariant, ∆ : YG −→ XG, the induced G-equivariant ∆∞ : C∞(YG) −→
C∞(XG), is surjective.

Proof. Suppose we are setting of diagram (2.1). Since the G-equivariant Ω : l2(ℑ) −→ XG
is bounded, one has (m1,m2, ...)

τ ∈ C∞(XG) with Ω((e1, ...)) = e1m1 + ..., and in order
to lift Ω to a G-equivariant ℧ we have to find (n1, ...)

τ ∈ C∞(YG), with ∆G(nα) = mα for
all α. ■

Note that the G-equivariant map ∆∞ is not necessarily bounded.

Corollary 3.12 Let ℑ be a non-unital G-C∗-algebra. If ℑ equipped with the canonical
ℑ-V.I.P. is a G-projective G-Hilbert ℑ-module in BG(ℑ,C), then each τ ∈ LℜG(ℑ)
that induces a surjective G-equivariant ∆ : ℑ −→ ℑ by ∆(e) = eτ∗, admits a right
inverse which is an element of LℜG(ℑ), and the kernel of ∆ is a topological summand
of ℑ. In addition, each surjective bounded module mapping ∆ : ℑ −→ ℑ is achieved by
multiplying by a left multiplication in the manner shown. If for the G-C∗-algebra under
consideration ℜG(ℑ) = LℜG(ℑ), then these conditions are automatically fulfilled.

Proof. Set YG = XG = ℑ and Ω = idℑ by the diagram (3.1). Since ℑ is assumed to be
a G-projective G-Hilbert ℑ-module, there is a G-eqivariant ℧ : ℑ −→ ℑ that is enforced
with rule ℧(e) = es∗ for some s ∈ LℜG(ℑ) by the existing canonical identification of
Endℑ(ℑ) with LℜG(ℑ) [14]. Note that ∆ ◦ ℧ = Ω by selecting ℧. As a result, 1ℑ =
1LℜG(ℑ) = s∗τ∗ = τs since e = 1ℑ for the free variable, is a feasible selection. Thus,
sτsτ = s(τs)τ = sτ and p = sτ is an idempotent element of LℜG(ℑ). Thus, s ∈ LℜG(ℑ)
is the right inverse of τ ∈ LℜG(ℑ). Note that the idempotent (1ℑ − p) ∈ LℜG(ℑ) maps
ℑ onto the kernel of the G-equivariant ∆ that becomes a topological summand of the
G-Hilbert ℑ-module ℑ. The last sentences are derived from the canonical identification
of Endℑ(ℑ) with LℜG(ℑ) and from spectral decomposition in ℜG(ℑ) ([14], Proposition
1.1 of [8]). ■

Finally, we show that finitely generated G-Hilbert ℑ-modules in all the categories of
G-Hilbert ℑ-ζ bimodules are G-projective.

Theorem 3.13 Let ℑ be a unital G-C∗-algebra. Then ZG finitely generated G-Hilbert
ℑ-module is a G-projective object in the category that includes all G-C∗-modules on a
fixed G-C∗-algebra ℑ with morphisms being ℑ-linear G-equivariant maps. Also, ZG is an
orthogonal summand of some G-Hilbert ℑ-module ℑn, where n < ∞, and in particular,
ZG is G-projective in BG(ℑ, ζ) and B∗

G(ℑ, ζ).

Proof. Fix an ℑ-V.I.P. ⟨·, ·⟩ on ZG. By Corollary 15.4.8 of [22] and by the definition
of G-projective G-Hilbert ℑ-modules, ZG should be finitely generated, and each finitely
generated G-Hilbert ℑ-module, in the purely algebraic meaning, is G-projective. Again,
consider the diagram (2.1). By assumption there is an ℑ-linear G-equivariant ℧ : ZG −→
YG such that Ω = ∆◦℧. We show that ℧ is bounded. By [7], there is a set of finite algebraic
of generators {ι1, ..., ιn} of ZG so that the reconstruction formula ι =

∑n
α=1⟨ι, ια⟩ια is

valid for any ι ∈ ZG. This {ι1, ..., ιn} of generators is said that a normalized tight frame
of ZG than the fixed ℑ-V.I.P. ⟨·, ·⟩. Thus, ℧(ι) =

∑n
α=1⟨ι, ια⟩℧(ια) for every ι ∈ ZG. By
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the Cauchy-Schwarz inequality for G-Hilbert ℑ-modules, we get the following inequality
(e.g. Proposition 1.1 of [13])

∥℧∥ =

∥∥∥∥∥∥
〈

n∑
α=1

⟨ι, ια⟩℧(ια),℧(ι)

〉
YG

∥∥∥∥∥∥
=

∥∥∥∥∥
n∑

α=1

⟨ι, ια⟩⟨℧(ια),℧(ι)⟩YG

∥∥∥∥∥
⩽

n∑
α=1

∥ι∥
1

2 ∥ια∥
1

2 ∥℧(ιi)∥
1

2

YG
∥℧(ι)∥

1

2

YG

=

(
n∑

α=1

∥ια∥
1

2 ∥℧(ια)
1

2

YG

)
∥ι∥

1

2 ∥℧(ι)∥
1

2

YG
.

■
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(3) (2020), 53-60.
[4] M. Frank, Hahn-Banach type theorems for Hilbert C∗-modules, Inter. J. Math. 13 (2002), 675-693.
[5] M. Frank, Geometrical aspects of Hilbert C∗-module, Positivity. 3 (1999), 215-243.
[6] M. Frank, Self-duality and C∗-reflexivity of Hilbert C∗-modules, Zeitschr. Anal. Anwendungen. 9 (1990),

165-176.
[7] M. Frank, D. R. Larson, Frames in Hilbert C∗-modules and C∗-algebras, J. Operator Theory. 48 (2002),

273-314.
[8] M. Frank, V. I. Paulsen, Injective and Projective Hilbert C∗-module and C∗-algebras of Compact Operators,

Preprint, 2008.
[9] H. Gonshor, Injective hulls of C∗-algebras, Trans. Amer. Math. Soc. 131 (1968), 315-322.

[10] H. Gonshor, Injective hulls of C∗-algebras II, Proc. Amer. Math. Soc. 24 (1970), 468-491.
[11] D. Hadwin, V. I. Paulsen, Injectivity and projectivity in analysis and topology, Sci. China. Math. 59 (2011),

2347-2359.
[12] F. Kasch, Module and Rings, B. G. Teubner, Stuttgart, 1977.
[13] E. C. Lance, Hilbert C∗-modules a Toolkit for Operator Algebraists, Lecture Notes Series, Vol. 210, Cam-

bridge University Press, England, 1995.
[14] H. Lin, Bounded module maps and pure completely positive maps, J. Operator Theory. 26 (1991), 121-138.
[15] H. Lin, Extensions of multipliers and injective Hilbert modules, Chinese Ann. Math. Ser. B. 14 (1993),

387-396.
[16] H. Lin, Injective Hilbert C*-modules, Pacific J. Math. 154 (1992), 131-164.
[17] A. Mahmoodi, M. R. Mardanbeigi, On injective envelopes of AF-algebras, Thai. J. Math. 19 (2021), 1661-

1669.
[18] V. M. Manuilov, E. V. Troisky, Hilbert C∗-modules, American Mathematical Society, 2005.
[19] T. Oikhberg, Injectivity and projectivity in p-multinormed spaces, Positivity. 22 (4) (2018), 1023-1037.
[20] W. L. Paschke, Inner product module over B∗-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[21] W. L. Paschke, The double B-dual of inner product module over a C∗-algebra, Canad. J. Math. 26 (1971),

1272-1280.
[22] N. E. Wegge-Olsen, K-theory and C∗-algebras, a Frtendly Approach, Oxford University Press, Oxfored, 1993.
[23] Z. T. Xu, Hilbert C∗-modules and C∗-algebras, I (Engl./Chin.), Nanjing University Journal, Mathematical

Biquarterly. 13 (1) (1996), 101-108.


