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Abstract. The underlying aim of this paper is first to state the cyclic version of J -integral
Banach type contractive mappings introduced by Fallahi, Ghahramani and Soleimani Rad
[Integral type contractions in partially ordered metric spaces and best proximity point, Iran.
J. Sci. Technol. Trans. Sci. 44 (2020), 177-183] and second to show the existence of best
proximity points for such contractive mappings in a metric space with a graph, which can
entail a large number of former best proximity point results. One fundamental issue that can
be distinguished between this work and previous researches is that it can also involve all of
results stated by taking comparable and ϑ-close elements.
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1. Preliminaries

Since 1922, metric fixed point (fp) theory and contractions have became an important
tools in nonlinear analysis and many researchers have applied them in many nonlinear
functions problems and engineering (see [4, 16] and their references). For instance, in
2004, Ran and Reurings [15] considered a partial order set (POS) on a metric space
(MS) and discussed the existence of fp(s) of contractive mappings and their uniqueness
for comparable elements.
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Theorem 1.1 [15] Consider a POS (W,⪯), a complete MS (W,D) and a nondecreasing
mapping K : W → W so that D(Kp,Kq) ⩽ θD(p, q) for any p, q ∈ W with p ⪯ q, where
θ ∈ [0, 1). Also, assume

• either K is continuous;

• or if a nondecreasing sequence pn converges to a p ∈ W, then pn ⪯ p.

If there is p0 ∈ W satisfying p0 ⪯ Kp0, then K has a fp. Further, if each two fp(s) are
comparable, then the fp is unique.

Note that we say K in Theorem 1.1 is nondecreasing when p ⪯ q implies Kp ⪯ Kq
for all p, q ∈ W. Also, we say p and q are comparable whenever p ⪯ q or q ⪯ p. In
2005, Nieto and Rodrıguez-López [13] used this definition and fp result to solve some
differential equations. Moreover, in 2011, Abkar and Gabeleh [1] fused Theorems 1.1 and
the definition of cyclic mappings introduced by Kirk et al. [12] and established an fp
result.

Theorem 1.2 [1] Take a POS (W,⪯), two subsets H,F ̸= ∅ of a complete MS (W,D)
and a cyclic mapping K : H ∪ F → H ∪ F so that D(Kp,K2q) ⩽ θD(p,Kq) for each
(p, q) ∈ H×H with q ⪯ p, where θ ∈ (0, 1) and K2 is nondecreasing on H. Also, presume
that

• either K is continuous;

• or if a nondecreasing sequence pn converges to a p ∈ W, then pn ⪯ p.

If there is p0 ∈ W satisfying p0 ⪯ K2p0, then H ∩ F ̸= ∅ and K has a fp in H ∩ F .
Further, if pn+1 = K(pn), then p2n → p.

It should be noted that a mapping K : H ∪ F → H ∪ F is named cyclic if K(H) ⊆ F
and K(F) ⊆ H.

Presume H,F ̸= ∅ are subsets of a MS, dist(H,F) = inf{D(p, q) : p ∈ H, q ∈ F}
and K : H → F is a non-self mapping. The bpp(s) of K is all p ∈ H with D(p,Kp) =
dist(H,F). In the sequel, Eldred and Veeremani [6] and Suzuki et al. [18] presented the
existence of bpp(s) of cyclic contractive mappings on various metric spaces regarding
some properties like unconditionally Cauchy (UC) property.

Definition 1.3 [18] Taking H,F ̸= ∅ two subsets of a MS (W,D), we say the pair
(H,F) has UC property whenever for two sequences {pn} and {p′n} in H and a sequence
{qn} in F , lim

n→∞
D(pn, qn) = lim

n→∞
D(p′n, qn) = dist(H,F) implies lim

n→∞
D(p, p′n) = 0.

Lemma 1.4 [18] Let H,F ̸= ∅ be subsets of a MS (W,D) and the pair (H,F) has the
UC property. Also, presume that {pn} and {qn} are sequences in H and F , respectively,
provided that

either lim
m→∞

sup
n⩾m

D(pm, qn) = dist(H,F) or lim
n→∞

sup
m⩾n

D(pm, qn) = dist(H,F).

Then {pn} is a Cauchy sequence.

The theory of bpp of various mappings in different type of MS(s) has been continued
by many researchers (see also [8, 10, 14, 17] and references therein). On the other hand,
if H ∩ F = ∅ in Theorem 1.2, then Kp = p has no solution. Hence, we may think about
an approximate solution p ∈ H ∪ F so that the error dist(p,Kp) is minimum. As K is
cyclic on H∪F , we obtain D(p,Kp) ⩾ dist(H,F). Hence, Abkar and Gabele introduced
some useful tools for finding bpp of cyclic contractive and cyclic φ-contractive mapping,
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respectively.

Theorem 1.5 [2] Let (W,⪯) be a PO set, H,F ̸= ∅ be two closed subsets of a complete
MS (W,D) and K : H ∪ F → H ∪ F be a cyclic mapping fulfilling

D(Kp,K2q) ⩽ D(p,Kq)− φ
(
D(p,Kq)

)
+ φ

(
dist(H,F)

)
for each (p, q) ∈ H×H with q ⪯ p, where φ : R⩾0 → R⩾0 is a strictly increasing function
and K2 is nondecreasing on H. Also, presume that the following condition is held:

• If a nondecreasing sequence pn converges to a p in W, then pn ⪯ p.

If there is p0 ∈ W satisfying p0 ⪯ K2p0, pn+1 = Kpn for n ⩾ 0 and {p2n} possesses a
convergent subsequence in H, then K has a bpp in H.

To follow POS and fp subjects, in 2008, Jachymski [11] stated a graphical MS and
introduced several concepts and fp theorems. After that, many researchers working on
both fP theory and bpp theorems extended Jachymski’s idea in different directions re-
garding different spaces and various contraction (also, see [7]). Note that the results of
these references can well expand the results regarding a PO relationship. Presume J is a
graph. A link is an edge of J in which its ends is different. Also, a loop is an edge of J ,
where its ends is identical. Parallel edges of J are two or more links of J with same pairs
of ends. Suppose (W,D) is a MS and J is a directed graph, where V(J ) is vertex set
coinciding with W and E(J ) is edge set containing all loops and J has no parallel edges.
Then, (W,D) is named a MS with the graph J (or GMS). Additionally, suppose J −1

is a directed graph obtained from J by reversing the directions of the edges of J and J̃
is the undirected graph gotten from J by removing the directions of the edges J . It’s
clear that V(J −1) = V(J̃ ) = V(J ) = W, E(J −1) = {(p, q) ∈ W × W : (q, p) ∈ E(J )}
and E(J̃ ) = E(J ) ∪ E(J −1).

To show main results, some symbols and definitions, which is introduced, are also
required in next section. Presume that H,F ̸= ∅ are two subset of a GMS (W,D).

dist(H,F) = inf
{
D(p, q) : p ∈ H, q ∈ F

}
.

• Assume that K : W → W is a mapping. We mean CK by the set of all points p ∈ W
provided that (Kmp,Knp) is an edge of J̃ for each m,n ∈ N ∪ {0}; that is,

CK =
{
p ∈ W : (Kmp,Knp) ∈ E(J̃ ) m,n = 0, 1, · · ·

}
.

Notice that CK may become an empty set. For example, take R along with the usual
Euclidean metric and a graph G given by V(J ) = R and E(J ) = {(p, p) : p ∈ R}. If
K : R → R is defined by Kp = p+ 1 for any p ∈ R, clearly CK = ∅.

Definition 1.6 [11] Presume that (W,D) is a GMS. A mapping K : W → W is known
as an orbitally J -continuous mapping on W whenever Kqnp → q implies K(Kqnp) → Kq
for all p, q ∈ W and sequences {qn} of natural numbers so that (Kqnp,Kqn+1p) ∈ E(J )
for every n ∈ N.

Definition 1.7 [11] Taking (W,D) is a GMS, we say J is a C-graph on W if p ∈ W
and {pn} is a sequence in W so that pn → p and (pn+1, pn) ∈ E(J ) for each n ∈ N, then
there is a subsequence {p2ni

} of {pn} such that (p2ni
, p) ∈ E(J ) for every i ∈ N.

In the sequel, we assume that (X, d) is a metric space endowed with graph. We denote
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by λ the Lebesgue measure on the Borel σ-algebra of [0,+∞). For a Borel set F = [p, q],
we will use the notation

∫ q
p
χ(t)dt to show the Lebesgue integral of a function χ on F .

We employ a class Υ consisting of all functions χ : [0,+∞) → [0,+∞) satisfying the
following properties:

(Υ1) χ is Lebesgue-integrable on [0,+∞);
(Υ2) The value of the Lebesgue integral

∫ ν
0 χ(t)dt is positive and finite for all ν > 0.

The next lemma embodies some important properties of functions of the class Υ which
we need in the sequel.

Lemma 1.8 [3] Let χ : [0,+∞) → [0,+∞) be a function in the class Υ and {pn} be a
sequence of nonnegative real numbers. Then the following statements hold:

1. If
∫ pn

0 χ(t)dt → 0 as n → ∞, then pn → 0 as n → ∞;

2. If {pn} is monotone and converges to some p ⩾ 0, then
∫ pn

0 χ(t)dt →
∫ p
0 χ(t)dt as

n → ∞.

2. Best proximity points

In the sequel, note that (H,F) will be a pair of nonempty subsets of W. Now, we are
ready to give the definition of J -integral Banach type contractions in metric spaces with
a graph which is motivated by [[5], Theorem 2.1].

Definition 2.1 Assume (W,D) is a GMS. A mapping K : H ∪ F → H ∪ F is known
as cyclic J -integral Banach type contractions on H if K is cyclic and there exists χ ∈ Υ
and constant η ∈ (0, 1) such that contractive condition

∫ D(Kp,K2q)

0
χ(t)dt ⩽ η

∫ D(p,Kq)

0
χ(t)dt (1)

is hold for all (p, q) ∈ H ×H with (p, q) ∈ E(J ).

Now, we are ready to state and prove first fundamental theorem of this section.

Theorem 2.2 Assume (W,D) is a GMS, H and F are closed subsets and K : H∪F →
H ∪ F is a cyclic J -integral Banach type contractions, where K2 preserves the edges of
J on H, CK|H ̸= ∅ and pn+1 = Kpn. If J is C-graph on H and {p2n} has a convergent
subsequence in H, then K has a bpp p∗ ∈ H.

Proof. As CK|H ̸= ∅, assume p0 ∈ CK with p0 ∈ H. We have (p0,K2p0) ∈ E(J ) and
since K2 preserves the edges of J on H, (p2n, p2n+2) ∈ E(J ) for n = 0, 1, · · · . Since
(p2n, p2n+2) ∈ E(J ) for every n ∈ N ∪ {0} and by (1) on H, we get

∫ D(p2n,p2n+1)

0
χ(t)dt =

∫ D(Kp2n,K2p2n−2)

0
χ(t)dt

= η

∫ D(p2n,Kp2n−2)

0
χ(t)dt

⩽ η

∫ D(p2n,p2n−1)

0
χ(t)dt.
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Since integral is nondecreasing, then {D(p2n−2, p2n−1} is a decreasing sequence. Consider
D(p2n−2, p2n−1) → u. Since for all n = 1, 2, · · · , D(H,F) ⩽ D(p2n−2, p2n−1), we have
D(p2n−2, p2n−1) → D(H,F).

Now, suppose {p2nj
} is a subsequence of {p2n} converging to p∗ ∈ H. Then

D(H,F) ⩽ D(p∗, p2nj−1)

⩽ D(p∗, p2nj
) +D(p2nj

, p2nj−1).

Next, taking limit, we get lim
j→∞

D(p∗, p2nj−1) = D(H,F). As K2 keeps the edges of J and

J is a C-graph, (p2nj
, p∗) ∈ E(J ) for all j ∈ N. Using (1), we obtain∫ D(p2nj+1,Kp∗)

0
χ(t)dt =

∫ D(Kp∗,K2p2nj−1)

0
χ(t)dt

⩽ η

∫ D(p∗,Kp2nj−1)

0
χ(t)dt

= η

∫ D(p∗,p2nj)

0
χ(t)dt.

So {p2nj+1} possesses a subsequence converging to Kp∗, which concludes

D(p∗,Kp∗) = lim
j→∞

D(p2nj
, p2nj+1) = D(H,F).

■

Theorem 2.3 Assume (W,D) is a GMS, H is complete and (H,F) and (F ,H) have
the UC propert. In addition, assume K : H ∪ F → H ∪ F is a cyclic J -integral Banach
type contractions on H (and F) in which K and K2 preserve the edges of J on H. If K
is orbitally J -continuous on H or J is a C-graph on H, K has a bpp p∗ ∈ H whenever
there is p0 ∈ H with p0 ∈ CK.

Proof. Assume p0 ∈ CK with p0 ∈ H. Since K and K2 preserve the edges of J on H
and (p0,K2p0) ∈ E(J ) on H, we have (p2n, p2n+2) ∈ E(J ) and (p2n+1, p2n+3) ∈ E(J ) for
n = 0, 1, · · · . As the similar proof is done in Theorem 2.2, we will have D(p2n, p2n+1) →
D(H,F) and D(p2n+2, p2n+1) → D(H,F). From the property UC for (H,F), we ob-
tain D(p2n, p2n+2) → 0. Also, since (F ,H) has the property UC we conclude that
D(p2n+1, p2n+3) → 0. Now, we show that for all µ > 0, there is a N ∈ N so that for
every m > n ⩾ N

D∗(p2m, p2n+1) < µ, (2)

where D∗(p, q) = D(p, q)−D(H,F) for all (p, q) ∈ H × F . To contrary, assume there is
µ0 > 0 such that for each j ⩾ 1, there is mj > nj ⩾ j satisfying D∗(p2mj

, p2nj+1) ⩾ µ0

and D∗(p2mj−2, p2nj+1) < µ0. Then

µ0 ⩽ D∗(p2mj
, p2nj+1)

⩽ D(p2mj−2, p2mj
) +D∗(p2mj−2, p2nj+1)

⩽ D(p2mj−2, p2mj
) + µ0,
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so lim
k→∞

D∗(p2mj
, p2nj+1) = µ0. Since K and K2 preserve the edges of J on H,

lim
j→∞

∫ D(p2mj+2,p2nj+3)

0
χ(t)dt = lim

j→∞

∫ D(Kp2mj+1,K2p2nj+1)

0
χ(t)dt (3)

⩽ η lim
j→∞

∫ D(p2mj+1,Kp2nj+1)

0
χ(t)dt

⩽ η lim
j→∞

∫ D(p2mj+1,p2nj+2)

0
χ(t)dt

⩽ lim
j→∞

∫ D(p2mj+1,p2nj+2)

0
χ(t)dt

= lim
j→∞

∫ D(Kp2mj
,K2p2nj

)

0
χ(t)dt

⩽ η lim
j→∞

∫ D(p2mj
,p2nj+1)

0
χ(t)dt

⩽ lim
j→∞

∫ D(p2mj
,p2nj+1)

0
χ(t)dt.

Since integral is nondecreasing, we get lim
j→∞

D(p2mj+2, p2nj+3) ⩽ lim
j→∞

D(p2mj
, p2nj+1),

and so by (3), we obtain

lim
j→∞

D∗(p2mj
, p2nj+1)︸ ︷︷ ︸

=µ0

⩽ lim
j→∞

D(p2mj
, p2mj+2)︸ ︷︷ ︸

=0

+ lim
j→∞

D∗(p2mj+2, p2nj+3)

+ lim
j→∞

D(p2nj+1, p2nj+3)︸ ︷︷ ︸
=0

⩽ lim
j→∞

D(p2mj
, p2mj+2)︸ ︷︷ ︸

=0

+ lim
j→∞

D∗(p2mj
, p2nj+1)︸ ︷︷ ︸

µ0

+ lim
j→∞

D(p2nj+1, p2nj+3)︸ ︷︷ ︸
=0

.

This implies that

lim
j→∞

D∗(p2mj+2, p2nj+3) = µ0 and lim
j→∞

D(p2mj+2, p2nj+3) = µ0 +D(H,F).
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Now, ∫ µ0+D(H,F)

0
χ(t)dt = lim

j→∞

∫ D(p2mj+2,p2nj+3)

0
χ(t)dt

= lim
j→∞

∫ D(Kp2mj+1,K2p2nj+1)

0
χ(t)dt

⩽ η lim
j→∞

∫ D(p2mj+1,p2nj+2)

0
χ(t)dt

= η lim
j→∞

∫ D(Kp2mj
,K2p2nj

)

0
χ(t)dt

⩽ η2 lim
j→∞

∫ D(p2mj
,Kp2nj

)

0
χ(t)dt

= η2 lim
j→∞

∫ D(p2mj
,p2nj+1)

0
χ(t)dt

= η2
∫ µ0+D(H,F)

0
χ(t)dt,

concluding µ0 + D(H,F) ⩽ η2
(
µ0 + D(H,F)

)
, which is impossible as η ∈ (0, 1), so (2)

holds and

lim
m→∞

sup
n⩾m

D∗(p2m, p2n+1) = 0.

Since (H,F) has the property UC and by Lemma 1.8, {p2n} is a Cauchy sequence in H.
Because H is complete, {p2n} converges to some point p∗ ∈ H.

To continue, note first that from p ∈ CK, we get (p2n, p2n+1) ∈ E(J ) for every n ∈ N.
When K is orbitally J -continuous on H, p2n → p∗ implies K(p2n) → Kp∗. Thus,

D(p∗,Kp∗) = lim
n→∞

D(p2n, p2n+1) = D(H,F),

i.e. p∗ is a bpp. Second, let J be a C-graph. Since p2n → p∗, there is a strictly increasing
sequence {nj} of positive integers such that (p2nj

, p∗) ∈ E(J ) for all k ∈ N. As K satisfies
(1) for the graph J , we get

lim
j→∞

∫ D(p2nj+1,Kp∗)

0
χ(t)dt ⩽ lim

j→∞

∫ D(Kp∗,K2p2nj−1)

0
χ(t)dt

⩽ η lim
j→∞

∫ D(p∗,p2nj
)

0
χ(t)dt.

Thus, {p2nj+1} has a subsequence converging to Kp∗. This implies that

D(p∗,Kp∗) = lim
n→∞

D(p2nj
, p2nj+1) = D(H,F).

■
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Example 2.4 Take W = R2 and usual metric

D
(
(p1, q1), (p2, q2)

)
=

√
(p1 − p2)2 + (q1 − q2)2

for (p1, q1), (p2, q2) ∈ R2 and set

H =
{
(p, 1) : p ∈ [0, 1]

}
, F =

{
(q, 0) : q ∈ [0, 1]

}
.

Define the function χ : [0,+∞) → [0,+∞) by the rule χ(t) = tα for all t > 0 where α ⩾ 0

is constant. It is clear that χ is Lebesgue integrable on [0,+∞) and
∫ ν
0 χ(t)dt = να+1

α+1
which is positive and finite for all ν > 0, that is, χ ∈ Υ. Also, define K : H∪F → H∪F
by

K(p, 1) =


(0, 0), 0 ⩽ p < 1

(
1

6
, 0), p = 1

for (p, 1) ∈ H and

K(q, 0) =


(0, 1), 0 ⩽ q < 1

(
1

6
, 1), q = 1

.

for (q, 0) ∈ F . Note that for (1, 1), (23 , 1) ∈ R2, by (1), we have

∫ D
(
K( 2

3
,1),K2(1,1)

)
0

χ(t)dt =
1

α+ 1
> η · 1

α+ 1
= η

∫ D
(
( 2

3
,1),K(1,1)

)
0

χ(t)dt

for all η ∈ [0, 1).
Consequently, (1) is not true for the mapping K when we take an usual metric (non a

GMS) on H.
Now, take a graph J by V(J ) = R2 and

E(J ) =
{(

(p1, p2), (p1, p2)
)
: (p1, p2) ∈ R2

}
∪
{(

(0, 1), (1, 1)
)
,
(
(1, 1), (0, 1)

)
,(

(0, 0), (1, 0)
)
,
(
(1, 0), (0, 0)

)}
Then (R2,D) is a complete GMS endowed by J . Evidently, K is orbitally J -continuous.
Also, it’s clear for p, q ∈ [0, 1) we have

∫ D
(
K(p,1),K2(p,1)

)
0

χ(t)dt =
1

α+ 1
⩽ 1√

2

(
√

p2 + 1)α+1

α+ 1
=

1√
2

∫ D
(
(p,1),K(p,1)

)
0

χ(t)dt

and

∫ D
(
K(q,0),K2(q,0)

)
0

χ(t)dt =
1

α+ 1
⩽ 1√

10
11

(
√
q2 + 1)α+1

α+ 1
=

1√
10
11

∫ D
(
(q,0),K(q,0)

)
0

χ(t)dt
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Moreover, for p, q = 1,

∫ D
(
K(1,1),K2(1,1)

)
0

χ(t)dt =
(
√
37
6 )α+1

α+ 1
⩽ 1√

10
11

(
√
61
6 )α+1

α+ 1
=

1√
10
11

∫ D
(
(1,1),K(1,1)

)
0

χ(t)dt

and∫ D
(
K(q,0),K2(q,0)

)
0

χ(t)dt =
1

α+ 1
⩽ 1√

10
11

(
√

q2 + 1)α+1

α+ 1
=

1√
10
11

∫ D
(
(q,0),K(q,0)

)
0

χ(t)dt.

Also, we have

∫ D
(
K(0,1),K2(1,1)

)
0

χ(t)dt =
1

α+ 1
⩽ 1√

10
11

(
√
37
6 )α+1

α+ 1
=

1√
10
11

∫ D
(
(0,1),K(1,1)

)
0

χ(t)dt

and∫ D
(
K(0,0),K2(1,0)

)
0

χ(t)dt =
1

α+ 1
⩽ 1√

10
11

(
√
37
6 )α+1

α+ 1
=

1√
10
11

∫ D
(
(0,0),K(1,0)

)
0

χ(t)dt,

where η =
√

10
11 . Thus, (1) is valid for the mapping K on H (and F). Therefore, all

hypotheses of Theorem 2.3 fulfill and K has a bpp, being ϑ = (0, 1) and γ = (0, 0).

Taking only the condition orbitally J -continuity version of the mapping K from Theo-
rem2.3, we can extract some attractive corollaries as follows: First, take J = J0 in which
J0 is a complete graph, i.e. J0 is a graph with V(J0) = W and E(J0) = W ×W.

Corollary 2.5 Let (W,D) be a GMS, H be complete and (H,F) and (F ,H) satisfy the
property UC. Assume K : H∪F → H∪F is a cyclic integral Banach type contractions
on H (and F). Then whenever K is continuous on H, K has a bpp p∗ ∈ H.

Second, presume (W,⪯) is a POS and J1 is a graph on W in which V(J1) = W and
E(J1) = {(p, q) ∈ W ×W : p ⪯ q}. If J = J1 in Theorem 2.3, then we gain the second
corollary.

Corollary 2.6 Let (W,D) be a partially ordered MS, H be complete and (H,F) and
(F ,H) satisfy the property UC. Assume that K : H∪F → H∪F is a cyclic J1-integral
Banach type contractions on H (and F) such that K and K2 are nondecersing on H.

Then whenever K is orbitally J1-continuous on H or J1 is a C-graph on H, K has a
bpp p∗ ∈ H if there exists p0 ∈ H with p0 ⪯ K2p0.

For our next consequence, presume (W,⪯) is a POS and J2 is a graph on W in which
V(J2) = W and E(J2) = {(p, q) ∈ W × W : p ⪯ q ∨ q ⪯ p}. If we set J = J2 in
Theorem 2.3, then the following version of our bpp theorem in metric spaces endowed
with endowed with graph J2.

Corollary 2.7 Presume (W,⪯) is POS, (W,D) is a MS such that H is complete and
(H,F) and (F ,H) satisfy the property UC. Let K : H∪F → H∪F be a cyclic J2-integral
Banach type contractions on H (and F) and for p, q ∈ H, if p and q are comparable we
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have K2p and K2q ( also Kp and Kq) are comparable. Then whenever K is orbitally
J2-continuous on H or J2 is a C-graph on H, K has a bpp p∗ ∈ H if there exists p0 ∈ H
where p0 and K2p0 are comparable.

At last, consider a fixed value ϑ > 0. Recall that p, q ∈ W are said to be ϑ-close if
D(p, q) ⪯ ϑ. Taking Jϑ by V(Jϑ) = W and E(Jϑ) = {(p, q) ∈ W ×W : D(p, q) ⪯ ϑ}, we
get the latest corollary of this section regarding J = Jϑ in Theorem 2.2.

Corollary 2.8 Let (W,D) be a GMS endowed with graph Jϑ and H be complete.
Assume K : H∪F → H∪F is a cyclic Jϑ-integral Banach type contractions on H (and
F) and if p and q are ϑ-close for p, q ∈ H, we have K2p and K2q (also Kp and Kq) are
ϑ-close. Then whenever K is orbitally Jϑ-continuous on H or Jϑ is a C-graph on H, K
has a bpp p∗ ∈ H if there exists p0 ∈ H where p0 and K2p0 are ϑ-close.

Similarly, all corollaries stated above hold for Theorem 2.2.
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