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Abstract. We introduce the Hausdorff measure of noncompactness in the sequence space
bvs and investigate the existence of solution of infinite systems of differential equations with
respect to Hausdorff measure of noncompactness. Finally, we present an example to defend
of theorem of existential.
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1. Introduction and preliminaries

Infinite systems define numerous real world questions which can be encountered in the
theory of nervous nets, the theory of separation of polymer and so on (see [9, [, I35,
19, 20, 24-26]). Also, Kuratowski [I7] defined the measure of noncompactness (MNC)
which used for solving the infinite systems of differential equations. In addition, you
can observe the further usages the MNC in kinds of integral equations and differential
equations ([, B, B, 00, 2, I3, 06, Z1-23]). Recently, Banas and Lecko [[] proved some
existence results for infinite systems of differential equations in the classical Banach
spaces /1 (absolutely summable series), ¢ (all convergent) and cp, (null sequences).

In this work, we study the solution of the following differential equations of order
n=2:

U§n) + fi(y,v(v)) =0
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with the boundary conditions given by v;(¢) = vi(r) = vi(v) = ... = ’UZ(n_2)(L) = 0 and
v;(¥) = 0, where v(y) = (vi(’y))zl, (v € [t,9]).

In this part, a few auxiliary facts are represented, that we can use in our paper. Let E
be a Banach space with the zero element 0, in addition, the elements x and r respectively
are indicated in the center and radius of the closed ball B(z,r) in E. Let § # Mg C E
the family of all bounded and ) # Mg C E subfamily of all relatively compact sets.
The symbols Conv(A) and A for the non-empty subsets convex and closure A in E,
respectively.

Definition 1.1 [?] The mapping /i : Mp — Ry = [0, +00) is measure of noncompactness
(MNCQC) in T if for all R, Y1, Y2 € My, we have

(i) The family @ # ker i ={R € Mp : i(R) = 0} C MNr;
(ii) If Y1 C Vo, then (1) < (d2);
(i77) (R) = (R) = p(ConvR);
(iv) for all 0°< 5 < 1, Ao + (1 — )¥s) < 1) + (1 — (D)
(v) f Ry =R, in Mp and Rp41 C Ry, for all n € N and JEEO[‘(R") =0, then 0 # R =

Ar.
n=1

Definition 1.2 [6] Let (Y, d) be a metric space and P € My . The Kuratowski MNC
i(P) is defined by

a(P) :inf{e >0:PC U K., K, CY,diam(K,) <e (k=1,...,m); m EN},
k=1
where diam(K,,) = sup{d(o,7) : 0,7 € K, }.
The Hausdorff MNC fi(P) is

[L(P):inf{€>0:77C UD(ZH,T,{),Z,{EY,T,{<€ (k=1,...,m); mEN}.

k=1

Lemma 1.3 [6] Suppose that (Y, d) is a metric space and P, P;, P2 € My. Then
(i) p(P) =0 iff P is totally bounded,
(43) P1 C Py implies that f(P1) < fi(P2),
(iii) a(P) = [u(P),
(iv) f(P1rUPy) = max{fi(P1), i(P2)}-
Definition 1.4 [d] Let I" be a Banach space and () # & C I'. Also, suppose that f is an
arbitrary MNC on I'. The operator @@ : & — & is Meir—Keeler condensing operator if for

each € > 0, there exists § > 0 such that ¢ < fi(lf) < € + ¢ implies that i(Q(U)) < ¢ for
all bounded U/ C &.

Theorem 1.5 [4] Let ) #® = D C I be bounded and convex, fi be a MNC on I' and
Q@ : D — D be a continuous Meir-Keeler condensing operator. Then () has a fixed point.

Let K =[0,s] and I" is a Banach space. Then C(K,T") is Banach space with norm

lzller) = supfllz(p)|l - p € K}, @ € C(K,T).
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Proposition 1.6 [6] Let Y C C'(K,TI") be bounded and equicontinuous. Then (Y (.)) is

continuous on K, i(Y) = sup a(Y(§)) and
{eK

O —m
O —wm

A fr()d¢) < [ a(T(¢))dC.
2. Sequence space bv..

Baser et al. [8] defined the following sequence space

buoo = {v = (1) € w:sup vk — vgp_1] < oo},
keN

by norm ||v||py.. = sup |vx — vg—1|, where w is space of all complex valued sequences.
keN

Lemma 2.1 [I8] Let F' be normed space and §) # G C F be bounded, where F' is ¢ or
lg (1 <g<o0). Also, let P, : F'— F be operator P, (v) = (v, v1,...,,0,0,...). Then

i(G) = lim {sup |(T = P)vll}.
n— o0 veg

Theorem 2.2 Let () # U C bvy, be bounded. Then the Huasdorff MNC [ in bvs, is
defined by

(i U)= lim [su (su Vi —Vi_ )} 1
fibo., (U) o xeg j>5| ] -1l (1)
Proof. Define the operator ¢, : bvee — bueo, qn(v) = (vo,v1,...,vp,0,0,...) for v =

(v1, 19, ...) € bus. Obviously
UcC QnU + (J - Qn)U- (2)
By (2) and the properties of fi, we get

ﬂ(U) < ﬂ(QnU) + ﬂ((‘] - Qn)U) - /1(('] - Qn)U) < dzam((J - Qn)U) = SEB H(J - QTL)VH7

where |(J — ¢n)v|| = sup;,, [v; — vj-1|, when n is large enough. So,

A(U) < lim sup [|(J — gn)v|. (3)

=00 Ly
Conversely, suppose that € > 0 and {z1, 29, ..., z;} be a [(U) + €]-net of U. Then
U C{z1,22,....2i} + [R(U) + €] B(bvoo),
where B(bvy) is the unite ball of bus. Hence,

sup [[(J = gn)v[l < sup [[(J = gn)zll + [(U) + €,

vel 1<5<i |
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which implies that

lim sup||(J — v < () +e. (4)
=0 yeU
Since € is arbitrary and by (B) and (@), (II) holds. [ |

3. Application

Now, we study the following infinite system in the sequence space bvy,.
o () + fil7.0() = 0 (n > 2) (5)
with the boundary conditions v;(¢) = v;(¢) = v, (1) = ... = UZ(”_2)(L) =0 and v;(9¥) = 0,
where v(y) = (vi(7))24 (v € [¢,9]). A solution of differential equation (8) is v € C™ (K, R)

iff v € C(K,R) (K = [1,7]) is a solution of the following infinite system of integral
equation

9
- / Gy, 0)fi(o,v(0))do

where f; € C(K x R R) and the Green’s function associated to (H) is (Duffy [I4])

. il e et Uit il et W 9)
G(w)z{ﬂ pmigm 9

g
@=oy (<r<o<y)

NN
//\ //\
//\ //\

(m—1)!

Then, we have

) 9 o . 9 am—2
w0 = [ GG oo " P = [ 600 e o))

Also, G(v,0) < % for all (y,0) € K2. Here, we consider assumption:
Let f; € C(K x R*,R), (i € N) be functions. The operator f : K X bvs — bus is

defined by (’Y’ U) - (fv)('}/) = (fl (77 U)’ f?(ya U)v f3(’77 U)a i ')7 the famlly of functions
((fv)(7))yer are equicontinuous at each point of the space bvs,. Also,

|fr(o,v) = fr—1(o,v)| < pr(o) + qi(o)|vi — ve—1],

where py, qi : [¢,Y] — Ry are continuous, the sequence {py(c)}72 ; convergence uniformly
to zero on K = [1,9] and the sequence {qgx(c)}?2 is equibounded on K. Let

P= sup {pg(o)} and Q= sup {qr(o)}.
o€ K, keN o€ K kEN

2Q(9 — )™
(m—1)!

Theorem 3.1 By having the condition above and < 1, (B) admits at least

one solution v(y) = (vi(7))2; € bu for all v € K.
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Proof. The real number M; > 0 can be chosen such that sup |vi(0) —vp_1(0)| < My <

. keN
1)l = 519 [01(1) = vi-1(7)|
keN
= sup | ’ G(v,0) [fk(a,v(a)) — fr_1 (U,U(J))] ‘da
keN Jo
9
< 225[ )G("}/,U)H [fk(a,v(o)) — fr_1 (a,v(a))] )da
< ilelg /L19 )G('y,a)‘{pk(a) + qr(o)|vk(o) — vk_l(a)‘}do
< M(P +Quup fui(o) - vk_l(a)‘)
< M(P + QMl)
Let
() = ()~

where v{(y) = 0 for all v € K. Also, let D = D(v°(v),7), is closed. Obviously, 0 # D =
D C bus is convex and bounded. We define the operator T' = (7;):2; on C(K, D) by

9
o) = (T} = { [ 6n0h(ov(e)do}
for all v € K, where v(7y) = (v;(7))%2; € D and v;(y) € R. Now, we can easily show that

1(T0) () v = 5P [(Th0)(7) = (Ti-10) (3)]
keN

G
/ G(v,0) [fk(a,v(a)) — fk_l(a,v(a))] ’da

= sup
keN

<r

< 00.
Therefore, (Tv)(7y) € bvs. Moreover, (T;v)(7y) satisfies boundary conditions given by
(T)(t) = (Tw) (1) = ... = (Ti0) "2 (1) = (Tw)() = 0.
Since

ST

bveo

|@o)() =)
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T : D — D. Also, by theorem’s hypothesis, T is continuous on C(K, D). Now, we show
that T' is a Meir—Keeler condensing operator. Hence,

A(T(D)) = lim - sup sup

G (v,0 fk; o, v(0)) _fk—l(a’v(a)))da‘}]

ny——roo k>n1 .
< lim sup sup / ‘G (v,0 ’fk o,v( — fr— 1(0 u( ‘daH
ny——r0o0 k>n1 L

< lim _ sup sup/L ‘G(fy,a)‘{pk(a)+qk(0)\vk(0)—vk,1(0)|}d0}

M=% Ly(y)eD kzm

2(19 - L)

<7 Y
Therefore, we obtain

iy o 20— )" = = (m—1)le

<7 7

ATD) < =) (Qa(D)) < e = (D) T

Now, assume
— 1) — — )"
5— (m—1)!—2Q(Y¥ —1) .
2Q(0 — 0"

Theorem 3 grantees that T has a fixed point in D. [ ]

Example 3.2 Consider the equation

k+1
52 1

©) (5
fz G+ +2)(G+3)

Uy,

) + sin(o + 5) cos (vk(0) + 1) =0, (6)

where o € [0,1]. Note that (B) is a special case of () when

k+1
o? 1

(o v(o)) \fz G+DG+2)(7+3)

) + sin(o + 5) cos (v (o) + 1),

60> 1

p’“(”)f(T) k(k+ 1)k +3)(k+4

) and qx(o) = 1.

Also, we have P = (2%132[) and @ = 1. Now, for o € [0,1] and v(v) = (vi('y))zl € buoo,

we have
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‘fk o,0(0)) = fr—1(oyv (U))‘

9 k41 1 k 1
<ﬁq;((ﬁ1)(J'+2)(j+3 gk:l (G +1)( J+2><J+3))D

—

—i—‘SlIl U+5)(COS(Uk( )+1)_COS vk-1(0 )+1))‘

1
<% G+ 2k +3)(+4d)  Fk+1

~—|

Gl
—I—‘ cos (vg(0) + 1) — cos (vg—1(0) + 1)‘

6
S Bl Dk +3)k+4)

‘+ (vk(a) —U,H(a)‘.

Also, klim {pr(o)}3Z, converges uniformly to zero on K and {gx(c)}72, equibounded on
—00

interval K. Hence, Theorem B implies that problem (B) has at least one solution in
bUso -
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