Journal of Linear and Topological Algebra Vol. 12, No. 03, 2023, 179-194 DOR: 20.1001.1.22520201.2023.12.03.3.5 DOI: 10.30495/jlta.2023.1995617.1587



# A variational approach to quasilinear elliptic systems with critical Hardy-Sobolev and sign-changing function exponents

A. Akhavan<sup>a,b</sup>

<sup>a</sup>Department of Mathematics, Shahid Beheshti Higher Education Center of Tehran, Tehran, Iran. <sup>b</sup>Education System of Shahriar, Shahriar, Iran.

Received 31 August 2023; Revised 25 September 2023; Accepted 29 September 2023. Communicated by Hamidreza Rahimi

**Abstract.** The main aim of the present work is to review and study a variational method in existence and multiplicity of positive solutions for quasilinear elliptic systems with critical Hardy-Sobolev and sign-changing function exponents.

**Keywords:** Multiple positive solutions, Nehari manifold, critical Hardy-Sobolev exponent, sign-changing function exponent.

2010 AMS Subject Classification: 35A15, 35B33, 35J70.

# 1. Introduction and preliminaries

Consider a bounded domain  $\Omega \subset \mathbb{R}^n$   $(n \ge 3)$  with  $0 \in \Omega$  and smooth boundary  $\partial \Omega$ . The problem we talk about is

$$\begin{cases} -\operatorname{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u) = \frac{\alpha}{\alpha+\beta} \frac{|u|^{\alpha-2}u|v|^{\beta}}{|x|^{bp^*}} + \lambda f(x) \frac{|u|^{q-2}u}{|x|^s}, & \text{in } \Omega, \\ -\operatorname{div}(|x|^{-ap}|\nabla v|^{p-2}\nabla v) = \frac{\beta}{\alpha+\beta} \frac{|u|^{\alpha}|v|^{\beta-2}v}{|x|^{bp^*}} + \mu f(x) \frac{|v|^{q-2}v}{|x|^s}, & \text{in } \Omega, \\ u > 0, v > 0, & \text{in } \Omega, \\ u = v = 0, & \text{on } \partial\Omega, \end{cases}$$
(1)

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2023 IAUCTB. http://jlta.ctb.iau.ir

E-mail address: akramakhavan@yahoo.com (A. Akhavan).

in which

$$\begin{cases} 1$$

where  $p^*$  and  $2^*$  are the Hardy-Sobolev critical and the Sobolev critical exponents, respectively.

Using Caffarelli-Kohn-Nirenberg inequality [8, 17], we have

$$\left(\int_{\mathbb{R}^N} |x|^{-bp^*} |u|^{p^*} dx\right)^{\frac{p}{p^*}} \leqslant C_{a,p} \int_{\mathbb{R}^n} |x|^{-ap} |\nabla u|^p dx \quad \text{for all} \quad u \in C_0^{+\infty}(\mathbb{R}^n),$$
(2)

where  $1 and <math>C_{a,b} > 0$ . The completion of  $C_0^{+\infty}(\Omega)$  is written by  $W_0^{1,p}(\Omega, |x|^{-ap})$  regarding the norm

$$||u|| = \left(\int_{\Omega} |x|^{-ap} |\nabla u|^p dx\right)^{\frac{1}{p}}$$

for  $1 and <math>-\infty < a < \frac{n-p}{p}$ . Using the inequality (2) and the boundedness of  $\Omega$ , Xuan [17] showed that there exists C > 0 provided that

$$\left(\int_{\Omega} \frac{|u|^t}{|x|^s} dx\right)^{\frac{p}{t}} \leqslant C \int_{\Omega} \frac{|\nabla u|^p}{|x|^{ap}} dx, \quad \text{for all} \quad u \in W_0^{1,p}(\Omega, |x|^{-ap})$$
(3)

in which  $1 \leq t \leq \frac{np}{n-p}$ ,  $s \leq (a+1)t + n[1-(t/p)]$ , saying Caffarelli-Kohn-Nirenberg's inequality. On the other hand, the embedding  $H_0^1(\Omega, |x|^{-ap}) \hookrightarrow L^r(\Omega, |x|^{-s})$  is continuous when  $1 \leq t \leq \frac{np}{n-p}$  and  $s \leq (a+1)t + n[1-(t/p)]$ . Also, it is compact when  $1 \leq t \leq \frac{np}{n-p}$ and  $s \leq (a+1)t + n[1-(t/p)]$  (see [17, Theorem 2.1] for  $\nu = 0$ ). Moreover, consider the space  $W = \left(W_0^{1,p}(\Omega, |x|^{-ap})\right)^2$  with the norm

$$||(u,v)|| = \left(\int_{\Omega} |x|^{-ap} |\nabla u|^p dx + \int_{\Omega} |x|^{-ap} |\nabla v|^p dx\right)^{\frac{1}{p}}$$

In addition, take the best constant Hardy-Sobolev constant  $S_{a,b}$  as follows:

$$C^* = C^*_{a,p}(\Omega) = \inf_{u \in W^{1,p}_0(\Omega, |x|^{-ap}) \setminus \{0\}} \frac{\int_{\Omega} |x|^{-ap} |\nabla u|^p dx}{\left(\int_{\Omega} |x|^{-bp^*} |u|^{p^*} dx\right)^{\frac{p}{p^*}}}.$$
(4)

First, let's define some notations. Take  $\Omega$  a domain in  $\mathbb{R}^n$ ,  $0 \in \Omega$ ,  $1 , <math>0 \leq a < \infty$ 

 $(n-p)/p, a \leq b < a+1 \text{ and } p^* = \frac{pn}{n-pd}, \text{ and set}$ 

$$S := \inf \left\{ \frac{\int_{\Omega} |x|^{-ap} \left( |\nabla u|^{p} + |\nabla v|^{p} \right) dx}{\left( \int_{\Omega} |x|^{-bp^{*}} |u|^{\alpha} |v|^{\beta} dx \right)^{\frac{p}{p^{*}}}} : (u, v) \in W \setminus \{0\} \right\}.$$
(5)

Then, we have

$$S := \left[ \left(\frac{\alpha}{\beta}\right)^{\frac{\beta}{p^*}} + \left(\frac{\beta}{\alpha}\right)^{\frac{\alpha}{p^*}} \right] C^* = KC^*, \tag{6}$$

where  $K = K(\alpha, \beta, p^*)$  ([1]). Moreover, we consider the space

$$W_{a,b}^{1,p}(\Omega) = \{ u \in L^{p^*}(\Omega, |x|^{-bp^*}) : |\nabla u| \in L^p(\Omega, |x|^{-ap}) \}$$

with the norm  $||u||_{W^{1,p}_{a,b}(\Omega)} := ||u||_{L^{p^*}(\Omega,|x|^{-bp^*})} + ||\nabla u||_{L^p(\Omega,|x|^{-ap})}$ . In addition, we take the constant  $\widetilde{S}_{a,p}$  given by

$$\widetilde{S}_{a,p} := \inf \Big\{ \frac{\int_{\mathbb{R}^n} |x|^{-ap} |\nabla u|^p dx}{\Big( \int_{\mathbb{R}^n} |x|^{-bp^*} |u|^{p^*} dx \Big)^{\frac{p}{p^*}}} : u \in W^{1,p}_{a,b}(\mathbb{R}^n) \setminus \{0\} \Big\}.$$

Further, we define  $R_{a,b}^{1,p}(\Omega) = \{u \in W_{a,b}^{1,p}(\Omega) : u(x) = u(|x|)\}$  with the norm  $||u||_{R_{a,b}^{1,p}(\Omega)} = ||u||_{W_{a,b}^{1,p}(\Omega)}$ . On the other hand, Horiuchi [10] proved that if  $a \ge 0$ , then

$$\widetilde{S}_{a,p,R} := \inf\left\{\frac{\int_{\mathbb{R}^n} |x|^{-ap} |\nabla u|^p dx}{\left(\int_{\mathbb{R}^n} |x|^{-bp^*} |u|^{p^*} dx\right)^{\frac{p}{p^*}}} : u \in R^{1,p}_{a,b}(\mathbb{R}^n) \setminus \{0\}\right\} = \widetilde{S}_{a,p},\tag{7}$$

and it is established by functions of the form  $y_{\epsilon}(x) := k_{a,p}(\epsilon)U_{a,p,\epsilon}(x)$  for all  $\epsilon > 0$ , in which

$$k_{a,p}(\epsilon) = \widetilde{c}\epsilon^{\frac{n-pd}{p^2d}}$$
, and  $U_{a,p,\epsilon}(x) = \left(\epsilon + |x|^{\frac{pd(n-p-ap)}{(p-1)(n-pd)}}\right)^{-\frac{n-pd}{pd}}$ 

It follows from the Caffarelli-Kohn-Nirenberg's inequality that  $W_0^{1,p}(\Omega, |x|^{-ap})$  is a subset of  $W_{a,e}^{1,p}(\mathbb{R}^n)$  and so  $\widetilde{S}_{a,p} \leq C^*$ .

**Lemma 1.1** [13] Let  $R_1$  and  $c_1$  be positive constants, where  $B(0, 3R_1) \subset \Omega$  and  $\psi \in C_0^{+\infty}(B(0, 3R_1))$  with  $\psi \ge 0$  in  $B(0, 3R_1)$  and  $\psi = 1$  in  $B(0, 2R_1)$ . Then the function given by

$$u_{\epsilon}(x) := \frac{\psi(x)U_{a,p,\epsilon}(x)}{||\psi U_{a,p,\epsilon}||_{L^{p^*}(\Omega,|x|^{-bp})}}$$

satisfies in the following conditions:

$$||u_{\epsilon}||_{L^{p^*}(\Omega,|x|^{-bp})}^{p^*} = 1 \quad \text{and} \quad ||\nabla u_{\epsilon}||_{L^p(\Omega,|x|^{-ap})}^p \leqslant \widetilde{S}_{a,p,R} + O(\epsilon^{\frac{n-pd}{pd}}),$$

and

$$||f^{1/q}u_{\epsilon}||_{L^{q}(\Omega,|x|^{-s})}^{q} \geqslant \begin{cases} O(\epsilon^{\frac{(n-pd)q}{p^{2}d}}), & \text{if } q < \frac{(n-s)(p-1)}{n-p-ap}, \\ O(\epsilon^{\frac{(n-pd)q}{p^{2}d}}|\ln(\epsilon)|), & \text{if } q = \frac{(n-s)(p-1)}{n-p-ap}, \\ O(\epsilon^{\frac{(n-pd)(p-1)[(n-s)p-(n-p-ap)q]}{p^{2}d(n-p-ap)}}), & \text{if } q > \frac{(n-s)(p-1)}{n-p-ap}, \end{cases}$$
(8)

for all  $f \in L^{p_0}(\Omega, |x|^{-s})$  with  $f(x) \ge 0$  for x in  $B(0, 3R_1)$  and  $\inf_{B(0,2R)} f > 0$  for some  $0 < R \le R_1$ . Moreover, (8) is uniform in  $f \in L^{p_0}(\Omega, |x|^{-s})$  satisfying  $f(x) \ge 0$  with  $x \in B(0, 3R_1)$  and

$$\left(1+R^{\frac{pd(n-p-ap)}{(p-1)(n-pd)}}\right)^{-\frac{(n-pd)q}{pd}}R^{n-s}\inf_{B(0,2R)}f \ge c_0 \text{ for some } R \in (0,R_0].$$

Furthermore, we put

$$\Theta_t = \left\{ (\lambda, \mu) \in \mathbb{R}^2 \setminus \{ (0, 0) \} \mid 0 < \left( |\lambda| ||f||_s \right)^{\frac{p}{p-q}} + \left( |\mu| ||f||_s \right)^{\frac{p}{p-q}} < t \right\},$$

where  $||f||_s = ||f||_{L^{p_0}(\Omega, |x|^{-s})}$ .

The main purpose of this paper is to prove two following theorems.

**Theorem 1.2** Beside  $(\mathcal{H})$ , suppose that  $R_0$  and  $c_0$  are positive constants and  $B(0, 3R_0) \subset \Omega$ . Then there exists  $\Upsilon > 0$  provided that the problem (1) has a positive solution for each  $(\lambda, \mu) \in \Theta_{\Upsilon}$  and for each  $f \in L^{p_0}(\Omega, |x|^{-s})$  satisfying  $f(x) \ge 0$  for all  $x \in B(0, 3R_0)$ ,

$$\left(1+R^{\frac{pd(n-p-ap)}{(p-1)(n-pd)}}\right)^{-\frac{(n-pd)q}{pd}}R^{n-s}\inf_{B(0,2R)}f \ge c_0 \text{ for some } R \in (0,R_0].$$

**Theorem 1.3** Beside  $(\mathcal{H})$ , suppose that  $R_0$  and  $c_0$  are positive constants and  $B(0, 3R_0) \subset \Omega$ . Then there exists  $\Upsilon_0 > 0$  provided that the problem (1) has at least two positive solutions  $(u_0^+, v_0^+)$  and  $(u_0^-, v_0^-)$  for all  $(\lambda, \mu) \in \Theta_{\Upsilon_0}$  and for each  $f \in L^{p_0}(\Omega, |x|^{-s})$  satisfying  $f(x) \ge 0$  for all  $x \in B(0, 3R_0)$ ,

$$\left(1 + R^{\frac{pd(n-p-ap)}{(p-1)(n-pd)}}\right)^{-\frac{(n-pd)q}{pd}} R^{n-s} \inf_{B(0,2R)} f \ge c_0 \text{ for some } R \in (0, R_0].$$

#### 2. Nehari manifold

In the following, we introduce the corresponding energy functional of the problem (1) in  $W^*$ :

$$I_{\lambda,\mu}(u,v) = \frac{1}{p} ||(u,v)||^p - \frac{1}{\alpha+\beta} \int_{\Omega} \frac{|u|^{\alpha}|v|^{\beta}}{|x|^{bp^*}} - \frac{1}{q} K_{\lambda,\mu}(u,v),$$

182

for all  $(u, v) \in W$ , where

$$K_{\lambda,\mu}(u,v) = \lambda \int_{\Omega} f|x|^{-s} |u|^q dx + \mu \int_{\Omega} f|x|^{-s} |v|^q dx.$$

Using the weighted Hardy-Sobolev inequality,  $I_{\lambda,\mu} \in C^1(W, \mathbb{R})$ . Since the energy functional  $I_{\lambda,\mu}$  isn't bounded below on W, it's useful to take the functional on the Nehari manifold. Also, the solutions of system (1) are the critical points of the energy functional  $I_{\lambda,\mu}$ . If  $I_{\lambda,\mu}$  is bounded below and has a minimizer on W, then this minimizer is a critical point of  $I_{\lambda,\mu}$ . Hence, it's a solution of the corresponding elliptic equation. However, this energy functional isn't bounded below on the whole space W, but it's bounded on an appropriate subset, called Nehari manifold.

$$N_{\lambda,\mu} = \{(u,v) \in W \setminus \{(0,0)\} | \langle I'_{\lambda,\mu}(u,v), (u,v) \rangle = 0 \},\$$

where

$$\langle I'_{\lambda,\mu}(u,v),(u,v)\rangle = ||(u,v)||^p - \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx - K_{\lambda,\mu}(u,v).$$

Note that  $N_{\lambda,\mu}$  contains each nonzero solution of (1). If we define  $\Phi_{\lambda,\mu}(u,v) = \langle I'_{\lambda,\mu}(u,v), (u,v) \rangle$ , then

$$\langle \Phi_{\lambda,\mu}'(u,v), (u,v) \rangle = p ||(u,v)||^p - p^* \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx - q K_{\lambda,\mu}(u,v)$$

$$= (p-q) ||(u,v)||^p - (p^*-q) \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx$$

$$= (p-p^*) ||(u,v)||^p - (q-p^*) K_{\lambda,\mu}(u,v)$$

$$= (p-p^*) \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx - (q-p) K_{\lambda,\mu}(u,v).$$
(9)

for  $(u, v) \in N_{\lambda, \mu}$ . Now, we break  $N_{\lambda, \mu}$  in three parts:

$$N_{\lambda,\mu}^{+} = \left\{ (u,v), (u,v) \in N_{\lambda,\mu} : \langle \Phi_{\lambda,\mu}'(u,v), (u,v) \rangle > 0 \right\},$$
  

$$N_{\lambda,\mu}^{0} = \left\{ (u,v) \in N_{\lambda,\mu} : \langle \Phi_{\lambda,\mu}'(u,v), (u,v) \rangle = 0 \right\},$$
  

$$N_{\lambda,\mu}^{-} = \left\{ (u,v) \in n_{\lambda,\mu} : \langle \Phi_{\lambda,\mu}'(u,v), (u,v) \rangle < 0 \right\}.$$

To prove our main result, we now state some important properties of  $N^+_{\lambda,\mu}$ ,  $N^0_{\lambda,\mu}$  and  $N^-_{\lambda,\mu}$ .

**Lemma 2.1** There exists a positive number  $\Upsilon = \Upsilon(q, n, K, C, C^*) > 0$  so that  $(\lambda, \mu) \in \Theta_{\Upsilon}$  implies that  $N^0_{\lambda,\mu} = \emptyset$ .

**Proof.** Assume that

$$\Upsilon = \left(\frac{p-q}{(p^*-q)}\right)^{\frac{p}{p^*-p}} \left(\frac{p^*-p}{p^*-q}\right)^{\frac{p}{p-q}} (KC^*)^{-\frac{p^*}{p^*-p}} C^{-\frac{q}{p-q}}.$$

Then there exists  $(\lambda, \mu)$  with

$$0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \Upsilon$$

such that  $N^0_{\lambda,\mu} \neq \emptyset$ . Then, for  $(u,v) \in N^0_{\lambda,\mu}$  and by (9), we get

$$0 = \langle \Phi'_{\lambda,\mu}(u,v), (u,v) \rangle$$
  
=  $(p-q)||(u,v)||^p - (p^* - q) \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx$   
=  $(p-p^*)||(u,v)||^p - (q-p^*)K_{\lambda,\mu}(u,v).$  (10)

It follows from (5) and (10) that

$$\frac{p-q}{p^*-q}||(u,v)||^p = \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx \leq (KC^*)^{\frac{p^*}{p}} ||(u,v)||^{p^*}.$$

Thus,

$$||(u,v)|| \ge \left(\frac{p-q}{p^*-q}(KC^*)^{-\frac{p^*}{p}}\right)^{\frac{1}{p^*-p}}.$$
(11)

Also, using (10), we have

$$\begin{aligned} \frac{p^* - p}{p^* - q} ||(u, v)||^p &= K_{\lambda, \mu}(u, v) \\ &= \int_{\Omega} \lambda f |x|^{-s} |u|^q dx + \int_{\Omega} \mu f |x|^{-s} |v|^q dx \\ &\leqslant C^{\frac{q}{p}}(|\lambda|||f||_s)|u||^q + |\mu|||f||_s||v||^q) \\ &\leqslant C^{\frac{q}{p}}\Big((|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}}\Big)^{\frac{p-q}{p}} ||(u, v)||^q, \end{aligned}$$

implying that

$$||(u,v)|| \leq \left(\frac{p^* - q}{p^* - p}C^{\frac{q}{p}}\right)^{\frac{1}{p-q}} \left[ (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} \right]^{\frac{1}{p}}.$$
 (12)

Using (11) and (12), we deduce that  $(|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} \ge \Upsilon$ , which is contradiction. Hence, there exists  $\Upsilon > 0$  so that for  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \Upsilon$  and we have  $N^0_{\lambda,\mu} = \emptyset$ .

**Lemma 2.2** The energy functional  $I_{\lambda,\mu}$  is coercive and bounded below on  $N_{\lambda,\mu}$ .

**Proof.** Let  $(u, v) \in n_{\lambda, \mu}$ . Using Hölder inequality and Caffarelli-Kohn-Nirenberg's in-

equality, we obtain

$$\begin{split} I_{\lambda,\mu}(u,v) &= \frac{p^* - p}{pp^*} ||(u,v)||^p - \frac{p^* - q}{qp^*} K_{\lambda,\mu}(u,v) \\ &\geqslant \frac{p^* - p}{pp^*} ||(u,v)||^p - \frac{p^* - q}{qp^*} C^{\frac{q}{p}} \Big[ \left( |\lambda|||f||_s \right)^{\frac{p}{p-q}} + \left( |\mu|||f||_s \right)^{\frac{p}{p-q}} \Big]^{\frac{p-q}{p}} ||(u,v)||^q. \end{split}$$

Since 1 < q < p,  $I_{\lambda,\mu}$  is coercive and bounded below on  $N_{\lambda,\mu}$ .

Further, similar to the argument in Brown and Zhang [2, Theorem 2.3], we will have following lemma.

**Lemma 2.3** Let  $(u_0, v_0) \in N_{\lambda,\mu}$  be a local minimizer of  $I_{\lambda,\mu}$  such that  $(u_0, v_0) \notin N^0_{\lambda,\mu}$ . Then  $I'_{\lambda,\mu}(u_0, v_0) = 0$  in  $W^{-1}$ , where  $W^{-1}$  is the dual space of W.

Also, take  $\Upsilon_0 = \left(\frac{q}{p}\right)^{\frac{p}{p-q}} \Upsilon < \Upsilon$ . If  $(\lambda, \mu) \in \Theta_{\Upsilon_0}$ , then we gain  $N_{\lambda,\mu} = N^+_{\lambda,\mu} \cup N^-_{\lambda,\mu}$ . If we define

$$\begin{split} \theta_{\lambda,\mu} &= \inf_{(u,v) \in N_{\lambda,\mu}} I_{\lambda,\mu}(u,v), \\ \theta^+_{\lambda,\mu} &= \inf_{(u,v) \in N^+_{\lambda,\mu}} I_{\lambda,\mu}(u,v), \\ \theta^-_{\lambda,\mu} &= \inf_{(u,v) \in N^-_{\lambda,\mu}} I_{\lambda,\mu}(u,v), \end{split}$$

then we will have the following lemma.

**Lemma 2.4** For each  $(\lambda, \mu) \in \Theta_{\Upsilon_0}$  there exists a positive number  $\Upsilon_0$  such that (i)  $\theta_{\lambda,\mu} < \theta^+_{\lambda,\mu} < 0$ ;

(ii)  $\theta^-_{\lambda,\mu} > \delta$ , for some  $\delta = \delta(p,q,n,\lambda,\mu,K,C^*) > 0$ 

**Proof.** (i) Let  $(u, v) \in N^+_{\lambda,\mu}$ . Using (9), we obtain

$$K_{\lambda,\mu}(u,v) \ge \frac{p^* - p}{p^* - q} ||(u,v)||^p$$

implying that

$$\begin{split} I_{\lambda,\mu}(u,v) &= \left(\frac{1}{p} - \frac{1}{p^*}\right) ||(u,v)||^p - \left(\frac{1}{q} - \frac{1}{p^*}\right) K_{\lambda,\mu}(u,v) \\ &\leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) ||(u,v)||^p - \left(\frac{1}{q} - \frac{1}{p^*}\right) \frac{p^* - p}{p^* - q} ||(u,v)||^p \\ &\leqslant \frac{p^* - p}{p^*} \left(\frac{1}{p} - \frac{1}{q}\right) ||(u,v)||^p < 0. \end{split}$$

Hence, it follows from the definition of  $\theta_{\lambda,\mu}$  and  $\theta^+_{\lambda,\mu}$  that  $\theta_{\lambda,\mu} < \theta^+_{\lambda,\mu} < 0$ . (ii) Let  $(u,v) \in N^-_{\lambda,\mu}$  and apply Lemma 2.1. Then we have

$$||(u,v)|| \ge \left(\frac{p-q}{(p^*-q)}\right)^{\frac{1}{p^*-p}} (KC^*)^{-\frac{p^*}{p(p^*-p)}}.$$

Moreover, by Lemma 2.2, we get

$$\begin{split} I_{\lambda,\mu}(u,v) &\geq \frac{p^* - p}{pp^*} ||(u,v)||^p - \frac{p^* - q}{qp^*} C^{\frac{q}{p}} \Big[ \left( |\lambda|||f||_s \right)^{\frac{p}{p-q}} + \left( |\mu|||f||_s \right)^{\frac{p}{p-q}} \Big]^{\frac{p-q}{p}} ||(u,v)||^q \\ &= ||(u,v)||^q \Big[ \frac{p^* - p}{pp^*} ||(u,v)||^{p-q} - \frac{p^* - q}{qp^*} C^{\frac{q}{p}} \Big( \left( |\lambda|||f||_s \right)^{\frac{p}{p-q}} + \left( |\mu|||f||_s \right)^{\frac{p}{p-q}} \Big)^{\frac{p-q}{p}} \Big] \\ &\geq \Big( \frac{p-q}{(p^*-q)} \Big)^{\frac{q}{p^*-p}} (KC^*)^{-\frac{qp^*}{p(p^*-p)}} \Big[ \frac{p^* - p}{pp^*} ||(u,v)||^{p-q} - \frac{p^* - q}{qp^*} C^{\frac{q}{p}} \Big( \left( |\lambda|||f||_s \right)^{\frac{p}{p-q}} \\ &+ \left( |\mu|||f||_s \right)^{\frac{p}{p-q}} \Big]. \end{split}$$

Thus, if  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \Upsilon_0$ , then we obtain  $I_{\lambda,\mu}(u,v) \ge \delta = \delta(p,q,n,K,C,\lambda,\mu) > 0$  for each  $(u,v) \in N_{\lambda,\mu}^-$ .

Now, set

$$t_{\max} = \left[ \left( \frac{p-q}{p^*-q} \right) \frac{||(u,v)||^p}{\int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx} \right]^{\frac{1}{p^*-p}}$$

for each  $(u, v) \in W \setminus \{(0, 0)\}$ . Then we have the following lemma.

**Lemma 2.5** Let  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \Upsilon_0$ . Then, for each  $(u, v) \in W$ , there exists  $t_{\max} > 0$  provided that

(i) If  $K_{\lambda,\mu}(u,v) \leq 0$ , then there is a unique  $t^- > t_{\max}$  so that  $(t^-u, t^-v) \in N^-_{\lambda,\mu}$  and

$$I_{\lambda,\mu}(t^-u,t^-v) = \sup_{t \ge 0} I_{\lambda,\mu}(tu,tv);$$

(ii) If  $K_{\lambda,\mu}(u,v) > 0$ , then there are unique  $t^+$  and  $t^-$  with  $0 < t^+ < t_{\max} < t^-$  so that  $(t^+u, t^+v) \in N^+_{\lambda,\mu}, (t^-u, t^-v) \in N^-_{\lambda,\mu}$  and

$$I_{\lambda,\mu}(t^+u,t^+v) = \inf_{0 \leqslant t \leqslant t_{\max}} I_{\lambda,\mu}(tu,tv) \quad \text{and} \quad I_{\lambda,\mu}(t^-u,t^-v) = \sup_{t \geqslant t_{\max}} I_{\lambda,\mu}(tu,tv).$$

**Proof.** Fix  $(u, v) \in W$  and for  $t \ge 0$ , set

$$g(t) = t^{p-q} ||(u,v)||^p - t^{p^*-q} \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx$$

Clearly, g(0) = 0 and  $\lim_{t \to +\infty} g(t) = -\infty$ . As

$$g'(t) = (p-q)t^{p-q-1}||(u,v)||^p - (p^*-q)t^{p^*-q-1}\int_{\Omega}|x|^{-bp^*}|u|^{\alpha}|v|^{\beta}dx,$$

we have g'(t) = 0 at a unique number  $t = t_{\max} > 0$ , g'(t) > 0 for  $t \in [0, t_{\max})$  and g'(t) < 0for  $t \in (t_{\max}, +\infty)$ . Hence, g(t) take its maximum at  $t_{\max}$ , increasing for  $t \in [0, t_{\max})$ and decreasing for  $t \in (t_{\max}, +\infty)$ . It's clear that  $(tu, tv) \in N^+_{\lambda,\mu}$  (or  $(tu, tv) \in N^-_{\lambda,\mu}$ ) iff g'(t) > 0 (or g' < 0). Additionally,

$$\begin{split} g(t_{\max}) &= \Big[ \Big( \frac{p-q}{p^*-q} \Big) \frac{||(u,v)||^p}{\int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx} \Big]^{\frac{p-q}{p^*-p}} ||(u,v)||^p \\ &- \Big[ \Big( \frac{p-q}{p^*-q} \Big) \frac{||(u,v)||^p}{\int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx} \Big]^{\frac{p^*-q}{p^*-p}} \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx \\ &= ||(u,v)||^q \Big[ \Big( \frac{p-q}{p^*-q} \Big)^{\frac{p-q}{p^*-p}} - \Big( \frac{p-q}{p^*-q} \Big)^{\frac{p^*-q}{p^*-p}} \Big] \Big( \frac{||(u,v)||^{p^*}}{\int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx} \Big)^{\frac{p-q}{p^*-p}} \\ &\geqslant \Big( \frac{p-q}{p^*-q} \Big)^{\frac{p-q}{p^*-p}} \Big( \frac{p^*-p}{p^*-q} \Big) \Big( \frac{1}{KC^*} \Big)^{\frac{p^*(p-q)}{p(p^*-p)}} ||(u,v)||^q. \end{split}$$

(i) If  $K_{\lambda,\mu}(u,v) \leq 0$ , then there is a unique  $t^- > t_{\max}$  provided that  $g(t^-) = K_{\lambda,\mu}(u,v)$ and  $g'(t^-) < 0$ . Now, we have

$$(p-q)(t^{-})^{p}||(u,v)||^{p} - (p^{*}-q)(t^{-})^{p^{*}} \int_{\Omega} |x|^{-bp^{*}} |u|^{\alpha} |v|^{\beta}) dx = (t^{-})^{q+1}g(t^{-}) < 0$$

and

$$\langle I'_{\lambda,\mu}(t^-u, t^-v), (t^-u, t^-v) \rangle = (t^-)^q \Big[ g(t^-) - K_{\lambda,\mu}(u, v) \Big] = 0.$$

Thus,  $(t^-u, t^-v) \in N^-_{\lambda,\mu}$ . Since we have g'(t) < 0 and g''(t) < 0 for  $t > t_{\max}$ , then

$$I_{\lambda,\mu}(t^-u,t^-v) = \sup_{t \ge 0} I_{\lambda,\mu}(tu,tv).$$

(ii) Assume  $K_{\lambda,\mu}(u,v) > 0$ . For  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_{L^{p_0}(\Omega,|x|^{-\beta})})^{\frac{p}{p-q}} < \Upsilon_0 < \Upsilon$ , we obtain

$$g(0) = 0 < K_{\lambda,\mu}(u,v)$$
  
$$\leqslant C^{\frac{q}{p}} \Big( \big(|\lambda|||f||_s \big)^{\frac{p}{p-q}} + \big(|\mu|||f||_s \big)^{\frac{p}{p-q}} \Big)^{\frac{p-q}{p}} ||(u,v)||^q$$
  
$$\leqslant \Big(\frac{p-q}{p^*-q} \Big)^{\frac{p-q}{p^*-p}} \Big(\frac{p^*-p}{p^*-q} \Big) \Big(\frac{1}{KC^*} \Big)^{\frac{p^*(p-q)}{p(p^*-p)}} ||(u,v)||^q \leqslant g(t_{\max}).$$

There are unique  $t^+$  and  $t^-$  so that  $0 < t^+ < t_{\max} < t^-$ ,  $g(t^+) = K_{\lambda,\mu}(u,v) = g(t^-)$  and  $g'(t^+) > 0 > g'(t^-)$ . Now, we have  $(t^+u, t^+v) \in N^+_{\lambda,\mu}$ ,  $(t^-u, t^-v) \in N^-_{\lambda,\mu}$  and

$$I_{\lambda,\mu}(t^-u, t^-v) \ge I_{\lambda,\mu}(tu, tv) \ge I_{\lambda,\mu}(t^+u, t^+v)$$

for all  $t \in [t^+, t^-]$  and  $I_{\lambda,\mu}(t^+u, t^+v) \leq I_{\lambda,\mu}(tu, tv)$  for all  $t \in [0, t_{\max}]$ . Thus, we have

$$I_{\lambda,\mu}(t^+u,t^+v) = \inf_{0 \leqslant t \leqslant t_{\max}} I_{\lambda,\mu}(tu,tv) \quad \text{and} \quad I_{\lambda,\mu}(t^-u,t^-v) = \sup_{t \geqslant t_{\max}} I_{\lambda,\mu}(tu,tv)$$

### 3. Proof of main results

Before the proof of Theorem 1.2 and Theorem 1.3, we need the following results.

# Lemma 3.1 [16]

- (i) Let  $(\lambda,\mu) \in \Theta_{\Upsilon}$ . Then there exists a  $(PS)_{\theta_{\lambda,\mu}}$ -sequence  $\{(u_n,v_n)\} \subset N_{\lambda,\mu}$  in W for  $I_{\lambda,\mu}$ ;
- (ii) Let  $(\lambda, \mu) \in \Theta_{\Upsilon_0}$ . Then there exists a  $(PS)_{\theta_{\lambda,\mu}^-}$ -sequence  $\{(u_n, v_n)\} \subset N_{\lambda,\mu}^-$  in W for  $I_{\lambda,\mu}$ .

**Theorem 3.2** Let  $(\lambda, \mu) \in \Theta_{\Upsilon}$  and  $(\mathcal{H})$  hold. Then  $I_{\lambda,\mu}$  has a minimizer  $(u_0^+, v_0^+)$  in  $N_{\lambda,\mu}^+$  and satisfies the following conditions:

- (i)  $I_{\lambda,\mu}(u_0^+, v_0^+) = \theta_{\lambda,\mu}^+,$
- (ii)  $(u_0^+, v_0^+)$  is a solution of problem (1) provided that  $u_0^+ \ge 0$  and  $v_0^+ \ge 0$  in  $\Omega$ .

**Proof.** Using Lemma 3.1(i), there exists a minimizing sequence  $\{(u_n, v_n)\}$  for  $I_{\lambda,\mu}$  on  $N_{\lambda,\mu}$  provided that

$$I_{\lambda,\mu}(u_n, v_n) = \theta_{\lambda,\mu} + o(1) \text{ and } I'_{\lambda,\mu}(u_n, v_n) = o(1) \text{ in } W^{-1}.$$
 (13)

Then, by Lemma 2.2 and the continuity of embedding theorem, there exists a subsequence  $\{(u_n, v_n)\}$  and  $(u_0^+, v_0^+)) \in W$  provided that

$$\begin{cases} u_n \to u_0^+, \ v_n \to v_0^+, & \text{weakly in } W_0^{1,p}(\Omega, |x|^{-ap}), \\ u_n \to u_0^+, \ v_n \to v_0^+, & \text{strongly in } L^q(\Omega, |x|^{-s}), \\ u_n \to u_0^+, \ v_n \to v_0^+, & \text{a.e in } \Omega, \end{cases}$$
(14)

as  $n \to +\infty$ , which implies that  $K_{\lambda,\mu}(u_n, v_n) \to K_{\lambda,\mu}(u_0^+, v_0^+)$  as  $n \to +\infty$ . By (13) and (14), it's easy to show that  $(u_0^+, v_0^+)$  is a weak solution of the problem (1). As

$$I_{\lambda,\mu}(u_n, v_n) = \left(\frac{1}{p} - \frac{1}{p^*}\right) ||(u_n, v_n)||^p - \frac{p^* - q}{qp^*} K_{\lambda,\mu}(u_n, v_n) \ge -\frac{p^* - q}{qp^*} K_{\lambda,\mu}(u_n, v_n),$$

and by Lemma 2.2(i),  $I_{\lambda,\mu}(u_n, v_n) \to \theta_{\lambda,\mu} < 0$  as  $n \to +\infty$ . Letting  $n \to +\infty$ , we have  $K_{\lambda,\mu}(u_0^+, v_0^+) > 0$ . Now, we show that

$$\begin{cases} u_n \to u_0^+, & \text{strongly in } W_0^{1,p}(\Omega, |x|^{-ap}), \\ v_n \to v_0^+, & \text{strongly in } W_0^{1,p}(\Omega, |x|^{-ap}), \end{cases}$$

and  $I_{\lambda,\mu}(u_0^+, v_0^+) = \theta_{\lambda,\mu}$ . Applying Fatou's lemma and  $(u_0^+, v_0^+) \in N_{\lambda,\mu}$ , we obtain

$$\begin{aligned} \theta_{\lambda,\mu} &\leqslant I_{\lambda,\mu}(u_0^+, v_0^+) = \left(\frac{1}{p} - \frac{1}{p^*}\right) ||(u_0^+, v_0^+)||^p - \frac{p^* - q}{qp^*} K_{\lambda,\mu}(u_0^+, v_0^+) \\ &\leqslant \liminf_{n \to +\infty} \left[ \left(\frac{1}{p} - \frac{1}{p^*}\right) ||(u_n, v_n)||^p - \frac{p^* - q}{qp^*} K_{\lambda,\mu}(u_n, v_n) \right] \\ &\leqslant \liminf_{n \to +\infty} I_{\lambda,\mu}(u_n, v_n) = \theta_{\lambda,\mu}, \end{aligned}$$

implying that

$$I_{\lambda,\mu}(u_0^+, v_0^+) = \theta_{\lambda,\mu} \quad \text{ and } \quad \lim_{n \to +\infty} ||(u_n, v_n)||^p = ||(u_0^+, v_0^+)||^p.$$

Then,  $u_n \to u_0^+$  strongly in  $W_0^{1,p}(\Omega, |x|^{-ap})$  and  $v_n \to v_0^+$  strongly in  $W_0^{1,p}(\Omega, |x|^{-ap})$ . In addition, we get  $(u_0^+, v_0^+) \in N_{\lambda,\mu}^+$ . Indeed, if  $(u_0^+, v_0^+) \in N_{\lambda,\mu}^-$ , by Lemma 2.5, there are unique  $t_0^+$  and  $t_0^-$  provided that  $(t_0^+ u_0^+, t_0^+ v_0^+) \in N_{\lambda,\mu}^+$ ,  $(t_0^- u_0^+, t_0^- v_0^+) \in N_{\lambda,\mu}^-$  and  $t_0^+ < t_0^- = 1$ . As

$$\frac{d}{dt}I_{\lambda,\mu}(t_0^+u_0^+,t_0^+v_0^+) = 0 \text{ and } \frac{d^2}{dt^2}I_{\lambda,\mu}(t_0^+u_0^+,t_0^+v_0^+) > 0,$$

there exists  $t_0^+ < \overline{t} \leq t_0^-$  provided that  $I_{\lambda,\mu}(t_0^+u_.^+, t_0^+v_0^+) < I_{\lambda,\mu}(\overline{t}_0u_0^+, \overline{t}_0v_0^+)$ . Using Lemma 2.5, we obtain

$$I_{\lambda,\mu}(t_0^+u_0^+, t_0^+u_0^+) < I_{\lambda,\mu}(\bar{t}_0u_0^+, \bar{t}_0u_0^+) \leqslant I_{\lambda,\mu}(t_0^-u_0^+, t_0^-v_0^+) = I_{\lambda,\mu}(u_0^+, v_0^+)$$

which contradicts  $I_{\lambda,\mu}(u_0^+, v_0^+) = \theta_{\lambda,\mu}^+$ . As  $I_{\lambda,\mu}(u_0^+, v_0^+) = I_{\lambda,\mu}(|u_0^+|, |v_0^+|)$  and  $(|u_0^+|, |v_0^+|) \in N_{\lambda,\mu}^+$  and by Lemma 2.2,  $(u_0^+, v_0^+)$  is non-negative solution of problem (1).

The following two lemmas are similar to that are proved by Hsu [11].

**Lemma 3.3** If  $\{(u_n, v_n)\} \in W$  is a  $(PS)_c$ -sequence for  $I_{\lambda,\mu}$  with  $(u_n, v_n) \rightharpoonup (u, v)$  in W, then  $I'_{\lambda,\mu}(u, v) = 0$  and there exists a positive constant  $\Upsilon$  depending on p, q, n, C and  $C^*$  so that  $I_{\lambda,\mu}(u, v) \ge -\left(\left(|\lambda|||f||_s\right)^{\frac{p}{p-q}} + \left(|\mu|||f||_s\right)^{\frac{p}{p-q}}\right)\Upsilon$ .

**Lemma 3.4** If  $\{(u_n, v_n)\} \in W$  is a  $(PS)_c$ -sequence for  $I_{\lambda,\mu}$ , then  $\{(u_n, v_n)\}$  is bounded in W.

**Lemma 3.5**  $I_{\lambda,\mu}$  satisfies the  $(PS)_{c^*}$  condition with  $c^*$  satisfying

$$-\infty < c^* < c_{\infty} = \left(\frac{1}{p} - \frac{1}{p^*}\right) (KC^*)^{\frac{p^*}{p^* - p}} - \Upsilon\left(\left(|\lambda|||f||_s\right)^{\frac{p}{p-q}} + \left(|\mu|||f||_s\right)^{\frac{p}{p-q}}\right).$$

**Proof.** Let  $\{(u_n, v_n)\} \in W$  be a  $(PS)_{c^*}$ -sequence for  $I_{\lambda,\mu}$  with  $c^* \in (-\infty, c_\infty)$ . It follows from Lemma 3.4 that  $\{(u_n, v_n)\}$  is bounded in W, and then  $(u_n, v_n) \rightharpoonup (u, v)$  up to a subsequence, (u, v) is a critical point of  $I_{\lambda,\mu}$ . Also, we may assume

|   | $u_n \rightharpoonup u,$ | $v_n \rightharpoonup v,$ | weakly in $W_0^{1,p}(\Omega,  x ^{-ap})$ , |
|---|--------------------------|--------------------------|--------------------------------------------|
| { | $u_n \to u$ ,            | $u_n \to u,$             | strongly in $L^q(\Omega,  x ^{-s}))$ ,     |
|   | $u_n \to u,$             |                          | a.e. on $\Omega$ .                         |

Hence, we have  $I'_{\lambda,\mu}(u,v) = 0$  and

$$K_{\lambda,\mu}(u_n, v_n) \to K_{\lambda,\mu}(u, v) \text{ as } n \to +\infty.$$
 (15)

A. Akhavan / J. Linear. Topological. Algebra. 12(03) (2023) 179-194.

Let  $\widetilde{u}_n = u_n - u$  and  $\widetilde{v}_n = v_n - v$ . Then by Brèzis-Lieb lemma [3], we obtain

$$||(\widetilde{u}_n, \widetilde{v}_n)||^p \to ||(u_n, v_n)||^p - ||(u, v)||^p \text{ as } n \to +\infty$$
(16)

and

$$\int_{\Omega} |x|^{-bp^*} |\widetilde{u}_n|^{\alpha} |\widetilde{v}_n|^{\beta} dx \to \int_{\Omega} |x|^{-bp^*} |u_n|^{\alpha}, |v_n|^{\beta} dx - \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx, \quad \text{as} \quad n \to +\infty.$$
(17)

As  $I_{\lambda,\mu}(u_n, v_n) = c^* + o(1)$ ,  $I'_{\lambda,\mu}(u_n, v_n) = o(1)$  and (15)-(17), we conclude that

$$\frac{1}{p}||(\widetilde{u}_n,\widetilde{v}_n)||^p - \frac{1}{p^*} \int_{\Omega} |x|^{-bp^*} |\widetilde{u}_n|^{\alpha} |\widetilde{v}_n|^{\beta} dx = c^* - I_{\lambda,\mu}(u,v) + o(1),$$
(18)

and

$$||(\widetilde{u}_n,\widetilde{v}_n)||^p - \int_{\Omega} |x|^{-bp^*} |\widetilde{u}_n|^{\alpha} |\widetilde{v}_n|^{\beta} dx = o(1).$$

Thus, we can take

$$||(\widetilde{u}_n, \widetilde{v}_n)||^p \to l \text{ and } \int_{\Omega} |x|^{-bp^*} |\widetilde{u}_n|^{\alpha} |\widetilde{v}_n|^{\beta} dx \to l.$$
 (19)

If l = 0, the proof is complete. Let l > 0. It follows from (19) that

$$(KC^*)^{\frac{p}{p^*}} = (KC^*) \lim_{n \to +\infty} \left[ \int_{\Omega} |x|^{-bp^*} |\widetilde{u}_n|^{\alpha} |\widetilde{v}_n|^{\beta} dx \right]^{\frac{p}{p^*}} \leq \lim_{n \to +\infty} ||(\widetilde{u}_n, \widetilde{v}_n)||^p = l,$$

implying that  $l \ge (KC^*)^{\frac{p^*}{p^*-p}}$ . Additionally, from Lemma 3.3, (18) and (19), we obtain

$$c^* = \left(\frac{1}{p} - \frac{1}{p^*}\right)l + I_{\lambda,\mu}(u,v) \ge \left(\frac{1}{p} - \frac{1}{p^*}\right)(KC^*)^{\frac{p^*}{p^* - p}} - \Upsilon\left(\left(|\lambda|||f||_s\right)^{\frac{p}{p-q}} + \left(|\mu|||f||_s\right)^{\frac{p}{p-q}}\right),$$

which contradicts  $c^* < (\frac{1}{p} - \frac{1}{p^*})(KC^*)^{\frac{p^*}{p^* - p}} - \Upsilon\Big((|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}}\Big).$ 

Lemma 3.6 There exist a non-negative function  $(u, v) \in W \setminus \{(0, 0)\}$  and  $c_* > 0$  so that  $\sup_{t \ge 0} I_{\lambda,\mu}(tu, tv) < KC^* \text{ for } 0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < c_*. \text{ Particularly, } \theta_{\lambda,\mu}^- < c_{\infty}$ for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_{L^{p_0}(\Omega,|x|^{-\beta})})^{\frac{p}{p-q}} < c_*.$ 

**Proof.** Fix the constants  $R_1 = R_0$  and  $c_1 = c_0$  in Lemma 1.1 and define the functional  $I: W \to \mathbb{R}$  by

$$I(u,v) = \frac{1}{p} ||(u,v)||^p - \frac{1}{p^*} \int_{\Omega} |x|^{-bp^*} |u|^{\alpha} |v|^{\beta} dx \text{ for all } (u,v) \in W.$$

190

Set  $u_0 = \alpha^{1/p} u_{\epsilon}$ ,  $v_0 = \beta^{1/p} u_{\epsilon}$  for each  $(u_0, v_0) \in W$ . Then by Lemma 1.1, we obtain

$$\sup_{t \ge 0} I(te_1 u_{\epsilon}, te_2 u_{\epsilon}) \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) \left[\frac{(\alpha + \beta) \int_{\Omega} |x|^{-ap} |\nabla u_{\epsilon}|^p dx}{(\alpha^{\alpha/p} \beta^{\beta/p} \int_{\Omega} |x|^{-bp^*} |\nabla u_{\epsilon}|^p dx)^{\frac{p}{p^*}}}\right]^{\frac{p^*}{p^* - p}} \\ \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) \left[\left(\frac{\alpha}{\beta}\right)^{\beta/\alpha} + \left(\frac{\beta}{\alpha}\right)^{\alpha/\beta}\right]^{\frac{p^*}{p^* - p}} \left[\frac{\int_{\Omega} |x|^{-ap} |\nabla u_{\epsilon}|^p dx}{(\int_{\Omega} |x|^{-bp^*} |u_{\epsilon}|^{p^*} dx)^{\frac{p}{p^*}}}\right]^{\frac{p^*}{p^* - p}} \\ \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) \left[\left(\frac{\alpha}{\beta}\right)^{\beta/\alpha} + \left(\frac{\beta}{\alpha}\right)^{\alpha/\beta}\right]^{\frac{p^*}{p^* - p}} (S_{a,p,R} + O(\epsilon^{\frac{n-pd}{pd}}))^{\frac{p^*}{p^* - p}} \\ \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) \left[\left(\frac{\alpha}{\beta}\right)^{\beta/\alpha} + \left(\frac{\beta}{\alpha}\right)^{\alpha/\beta}\right]^{\frac{p^*}{p^* - p}} (C^* + O(\epsilon^{\frac{n-pd}{pd}}))^{\frac{p^*}{p^* - p}} \\ \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) (KC^*)^{\frac{p^*}{p^* - p}} + O(\epsilon^{\frac{n-pd}{pd}}),$$

$$(20)$$

where the following fact has been used:

$$\sup_{t \ge 0} \left(\frac{t^p}{p}A - \frac{t^{p^*}}{p^*}B\right) = \left(\frac{1}{p} - \frac{1}{p^*}\right) \left(\frac{A}{B^{\frac{p}{p^*}}}\right)^{\frac{p^*}{p^*-p}}, \quad A, B > 0.$$

We can choose  $\delta_1 > 0$  so that

$$c_{\infty} = \left(\frac{1}{p} - \frac{1}{p^*}\right) (KC^*)^{\frac{p^*}{p^* - p}} - \left(\left(|\lambda|||f||_s\right)^{\frac{p}{p-q}} + \left(|\mu|||f||_s\right)^{\frac{p}{p-q}}\right) \Upsilon > 0.$$

for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \delta_1$ . Using the definitions I(u,v) and  $(u_0,v_0)$ , we have  $I_{\lambda,\mu}(tu_0,tv_0) \leq \frac{t^p}{p} ||(u_0,u_0)||^p$  for all  $t \geq 0$  and  $\lambda, \mu > 0$ , implying there exists  $t_0 \in (0,1)$  satisfying

$$\sup_{0 \leq t \leq t_0} I_{\lambda,\mu}(t_0 u_0, t_0 u_0) < c_{\infty} \text{ for all } 0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \delta_1.$$

Using (20) and applying the definitions I(u, v) and  $(u_0, v_0)$ , we have for  $\alpha, \beta > 1$  that

$$\sup_{t \ge t_0} I_{\lambda,\mu}(t_0 u_0, t_0 u_0) = \sup_{t \ge t_0} \left( I(t_0 u_0, t_0 u_0) - \frac{t^q}{q} K_{\lambda,\mu}(u_0, v_0) \right) \\ \leqslant \left( \frac{1}{p} - \frac{1}{p^*} \right) (KC^*)^{\frac{p^*}{p^* - p}} + O(\epsilon^{\frac{n - pd}{pd}}) \\ - \frac{t_0^q}{q} (\alpha^{q/p} \lambda + \beta^{q/p} \mu) \int_{B(x_0, R_0)} |x|^{-s} |u_{\epsilon}|^q dx \\ \leqslant \left( \frac{1}{p} - \frac{1}{p^*} \right) (KC^*)^{\frac{p^*}{p^* - p}} + O(\epsilon^{\frac{n - pd}{pd}}) \\ - \frac{t_0^q}{q} (\lambda + \mu) \int_{B(x_0, R_0)} |x|^{-s} |u_{\epsilon}|^q dx.$$
(21)

Also,

$$\frac{(n-pd)q}{p^2d} < \frac{n-pd}{pd}.$$
(22)

Now, let  $q < \frac{(n-s)(p-1)}{n-p-ap}$ . From (21), (22) and Lemma 1.1, we have

$$\sup_{t \ge t_0} I_{\lambda,\mu}(t_0 u_0, t_0 u_0) \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) (KC^*)^{\frac{p^*}{p^* - p}} + O(\epsilon^{\frac{n - pd}{pd}}) - \frac{t_0^q}{q} (\lambda + \mu) O(\epsilon^{\frac{(n - pd)q}{p^2d}})$$
(23)

Now, for all  $\epsilon = \left( \left( |\lambda| ||f||_s \right)^{\frac{p}{p-q}} + \left( |\mu| ||f||_s \right)^{\frac{p}{p-q}} \right)^{\frac{pd}{n-pd}} \in (0, R_0)$ , we obtain

$$\sup_{t \ge t_0} I_{\lambda,\mu}(t_0 u_0, t_0 v_0) \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) (KC^*)^{\frac{p^*}{p^* - p}} + O(\left(|\lambda|||f||_s\right)^{\frac{p}{p-q}} + \left(|\mu|||f||_s\right)^{\frac{p}{p-q}}) - \frac{t_0^q}{q} (\lambda + \mu) \left(\left(|\lambda|||f||_s\right)^{\frac{p}{p-q}} + \left(|\mu|||f||_s\right)^{\frac{p}{p-q}}\right)^{\frac{q}{p}}.$$

Thus, we can choose  $\delta_2 > 0$  so that

$$O((|\lambda|||f||_{s})^{\frac{p}{p-q}} + (|\mu|||f||_{s})^{\frac{p}{p-q}}) - \frac{t_{0}^{q}}{q}(\lambda + \mu)((|\lambda|||f||_{s})^{\frac{p}{p-q}} + (|\mu|||f||_{s})^{\frac{p}{p-q}})$$

for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \delta_2$ . If we set  $c_* = \min\{\delta_1, R_0, \delta_2\}$  and  $\epsilon = ((|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}})^{\frac{pd}{n-pd}}$ , then

$$\sup_{t \ge t_0} I_{\lambda,\mu}(t_0 u_0, t_0 u_0) \leqslant c_{\infty}.$$
(24)

for  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < c_*$ . Similarly, let  $q = \frac{(n-s)(p-1)}{n-p-ap}$ . It follows from (21), (22) and Lemma 1.1 that

$$\sup_{t \ge t_0} I_{\lambda,\mu}(t_0 u_0, t_0 u_0) \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) (KC^*)^{\frac{p^*}{p^* - p}} + O(\epsilon^{\frac{n - pd}{pd}}) - \frac{t_0^q}{q} (\lambda + \mu) O(\epsilon^{\frac{(n - pd)q}{p^2 d}} |\ln \epsilon|).$$
(25)

If  $q > \frac{(n-s)(p-1)}{n-p-ap}$ , then

$$\sup_{t \ge t_0} I_{\lambda,\mu}(t_0 u_0, t_0 u_0) \leqslant \left(\frac{1}{p} - \frac{1}{p^*}\right) (KC^*)^{\frac{p^*}{p^* - p}} + O(\epsilon^{\frac{n - pd}{pd}}) - \frac{t_0^q}{q} (\lambda + \mu) O(\epsilon^{\frac{(n - pd)(p - 1)[(n - \beta)p - (n - p - ap)q]}{p^2 d(n - p - ap)}}).$$
(26)

192

Now, by (25) and (26), we have

$$\sup_{t \ge t_0} I_{\lambda,\mu}(t_0 u_0, t_0 u_0) \leqslant c_{\infty}.$$
(27)

Ultimately, we prove  $\theta_{\lambda,\mu}^- < c_{\infty}$  for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < c_*$ . Note that  $(u_0, v_0) = (\alpha^{1/p} u_{\epsilon}, \beta^{1/p} u_{\epsilon})$ . It is easy to see that

$$\int_{\Omega} |x|^{-bp^*} |u_0|^{\alpha} |v_0|^{\beta} dx > 0.$$

Now, using Lemma 2.5, definition  $\theta_{\lambda,\mu}^-$ , (24) and (27), we there exists  $t_0 > 0$  so that  $(t_0 u_0, t_0 v_0) \in N_{\lambda,\mu}^-$  and

$$\theta_{\lambda,\mu}^{-} \leqslant I_{\lambda,\mu}(t_0 u_0, t_0 v_0) \leqslant \sup_{t \geqslant t_0} I_{\lambda,\mu}(t_0 u_0, t_0 u_0) < c_{\infty},$$

for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < c_*.$ 

**Theorem 3.7** Let  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu||f||_s)^{\frac{p}{p-q}} < c'_*$ , where  $c'_* = \min\{c_*, \Upsilon_0\}$  and  $(\mathcal{H})$  holds. Then  $I_{\lambda,\mu}$  has a minimizer  $(u_0^-, v_0^-)$  in  $N_{\lambda,\mu}^-$  and satisfies

(i)  $I_{\lambda,\mu}(u_0^-, v_0^-) = \theta_{\lambda,\mu}^-,$ 

(ii)  $(u_0^-, v_0^-)$  is a solution of the problem (1) so that  $u_0^- \ge 0$  and  $v_0^- \ge 0$  in  $\Omega$ .

**Proof.** Using Lemma 3.1(ii), there exists a minimizing sequence  $\{(u_n, v_n)\} \subset N_{\lambda,\mu}^-$  in W for  $I_{\lambda,\mu}$  and for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \Upsilon_0$ . It follows from Lemmas 3.5, 3.6 and 2.3(ii) that  $I_{\lambda,\mu}$  satisfies  $(PS)_{\theta_{\lambda,\mu}^-}$  condition and  $\theta_{\lambda,\mu}^- > 0$  for  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < c_*$ . Since  $I_{\lambda,\mu}$  is coercive on  $N_{\lambda,\mu}$ , we conclude that  $(u_n, v_n)$  is bounded in W. Hence, there exist a subsequence still denote by  $(u_n, v_n)$  and  $(u_0^-, v_0^-) \in N_{\lambda,\mu}^-$  so that  $(u_n, v_n) \to (u_0^-, v_0^-)$  strongly in W and  $I_{\lambda,\mu}(u_0^-, v_0^-) = \theta_{\lambda,\mu}^- > 0$  for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < c'_*$ . Now, similar to the same arguments in proof of Theorem 3.2,  $(u_0^-, v_0^-)$  is a positive solution of problem (1) for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < c'_*$ .

Now, we are ready to complete the proof of Theorem 1.2 and Theorem 1.3. Applying Theorem 3.2, we conclude that problem (1) has a positive solution  $(u_0^+, v_0^+) \in N_{\lambda,\mu}^+$  for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < \Upsilon$ . On the other hand, from Theorem 3.7, we obtain the second positive solution  $(u_0^-, v_0^-) \in N_{\lambda,\mu}^-$  for all  $0 < (|\lambda|||f||_s)^{\frac{p}{p-q}} + (|\mu|||f||_s)^{\frac{p}{p-q}} < c'_* < \Upsilon_0$ . Since  $N_{\lambda,\mu}^+ \cap N_{\lambda,\mu}^- = \emptyset$ ,  $(u_0^+, v_0^+)$  and  $(u_0^-, v_0^-)$  are distinct. This completes the proof of Theorem 1.2 and Theorem 1.3.

#### 4. Conclusion

Although, a system of nonlinear, quasilinear, sublinear or semi-linear of elliptic equations are solved by several authors [1–13, 15, 16], a variational approach has been used to solve quasilinear elliptic systems with critical Hardy-Sobolev and sign-changing function exponents.

### References

- C. O. Alves, D. C. De Morais Filho, M. A. S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal. 42 (2000), 771-787.
- [2] P. A. Binding, P. Drabek, Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electron. J. Differential Equations. 5 (1997), 1-11.
- H. Brèzis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
- [4] K. J. Brown, The Nehari manifold for a semilinear elliptic equation involving a sublinear term, Calc. Var. 22 (2005), 483-494.
- [5] K. J. Brown, T. F. Wu, A semilinear elliptic system involving nonlinear boundary condition and sign changing weight function, J. Math. Anal. Appl. 337 (2008), 1326-1336.
- [6] K. J. Brown, T. F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and signchanging weight function, J. Math. Anal. Appl. 318 (2006), 253-270.
- [7] K. J. Brown, Y. Zhang, The Nehari manifold for a semilinear elliptic problem with a sign changing weight function, J. Differential Equations. 193 (2003), 481-499.
- [8] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compos. Math. 53 (1984), 259-275.
- [9] P. Drabek, S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A. 127 (1997), 721-747.
- [10] T. Horiuchi, Best constant in weighted Sobolev inequality with weights being powers of distance from origin, J. Inequal. Appl. 1 (1997), 275-292.
- [11] T. S. Hsu, Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities, Nonlinear Anal. 71 (2009), 2688-2698.
- [12] D. Kang, Nontrivial solutions to semilinear elliptic problems involving two critical Hardy-Sobolev exponents, Nonlinear Anal. 72 (2010), 4230-4243.
- [13] O. H. Miyagaki, R. S. Rodrigues, On multiple solutions for a singular quasilinear elliptic system involving critical Hardy-Sobolev exponents, Houston J. Math. 34 (2008), 1271-1293.
- [14] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123.
- [15] V. Todorčević, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Cham, 2019.
- [16] T. F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign changing weight function, J. Math. Anal. Appl. 318 (2006), 253-270.
- [17] B. Xuan, The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights, Nonlinear Anal. 62 (2005), 703-725.