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1. Introduction and preliminaries

Consider a bounded domain @ C R™ (n > 3) with 0 € © and smooth boundary 9.
The problem we talk about is

(—div(]m\’“p]Vu\p’2Vu) = - j‘_ 5 '“’Tg;;f*“‘ﬁ A i,
il w9 = LM gt wa
u>0,v >0, in €,
u=1v=0, on 0,
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in which
1<p<n, —oo<a<%, a<b<a+1l, d=1+a—b,

p*:p(a)b):n]f;da p(a,a):m:?k, a+ﬂ:p*7 1<q<p*7

s<(1+a)t+n(1—%), 1<p0<n”—_’;), q<t<n”—_1’;?, pio-}-%zl,
(A€ R\{0},  f(z) € LP(Q,]z[7*), f* =max{£f,0}#0 (H),

where p* and 2* are the Hardy-Sobolev critical and the Sobolev critical exponents, re-
spectively.
Using Caffarelli-Kohn-Nirenberg inequality [R, 7], we have

P

(/RN \:L‘]_bp*\u]p*dxyj < Cmp/R |z| | VulPdx  for all u e Cy = (R"), (2)

where 1 < p < n, —oo<a<%,a<b<a+17p*=n7_n;d,d=1+a—bandca,b>0-

The completion of C;™*°((2) is written by T/VO1 P(Q, |#|~%) regarding the norm

1

i = ([ Jel=riupaz)”

f0r1<p<nand—oo<a<%.

Using the inequality (2) and the boundedness of 2, Xuan [I7] showed that there exists
C > 0 provided that

t 2 p
</ |u dx)t <C |Vul dx, forall ue W&’p(Q, |z|7P) (3)
Q

|z[* Q ||
in which 1 <t < %7 s < (a+ 1)t +n[l — (t/p)], saying Caffarelli-Kohn-Nirenberg’s
inequality. On the other hand, the embedding H{ (9, |z|~%) < L"(£, |z|~*) is continuous
when 1 <t < 2 and s < (a+ 1)t +n[l — (¢/p)]. Also, it is compact when 1 <t < &

n—p
and s < (a+ 1)t +n[l — (t/p)] (see [, Theorem 2.1] for v = 0). Moreover, consider the

2
space W = <W01’p((2, |x\*“p)) with the norm

1

ol = ([ Jol-rTupdo+ [ ja - Topds)”
Q Q
In addition, take the best constant Hardy-Sobolev constant S, ; as follows:

—ap |7y |Pd
C* = (C* (Q) — inf fﬂ‘$| | u| €z . (4)

a,p 1,p —ap p*
u€Wy P (€ |z =»)\{0} (fg ‘x’—bp*‘u’p*d$>

First, let’s define some notations. Take 2 a domain in R?, 0 € Q, 1 <p<n,0<a <
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(n—p)/p,a<b<a+1andp" = d,and set

S := inf { Jo lal 7P (Sl + |Vv|p)ja: : (u,v) € W\ {0}}. (5)

(ol fulfol ) ™

Then, we have

5= 5%+ &

)| cr = K, (6)
where K = K(«, 8,p*) ([1]). Moreover, we consider the space
W) = {ue LV (Q,|2[7") + |Vu| € LP(Q, || ")}

with the norm HUHI/V;:;’(Q) = |[ull e (@) -y + VU] Lo (0 2] -2r) - In addition, we take the

constant §a,p given by

x| 7P|\ Vu|Pdx

Sup = mf{ Je _ iue ’p(R”)\{O}}

(Je e i)

Further, we define Riz’g(ﬂ) ={ue Wif(Q) tu(x) = u(lz|)} with the norm [[ul| gLy ) =
[[ully#(q)- On the other hand, Horiuchi [I] proved that if a > 0, then

_ ) . || 7P| VulPdx n
Sap.R = mf{ fR — 1 uc ’p(R )\{0}} = Sap, (7)

(Fe e

and it is established by functions of the form y(x) := kqp(€)Uqp.(x) for all € > 0, in
which

n—pd
n—pd pd(n—p=ap) )* i

Fapl(€) = 375, and Uype(w) = (e -+ o 500

It follows from the Caffarelli-Kohn-Nirenberg’s inequality that VVO1 P(Q, |z| ) is a subset
of Walf(R”) and so S, < C*.

Lemma 1.1 [13] Let R; and ¢; be positive constants, where B(0,3R;) C Q and ¢ €
Cy>(B(0,3Ry)) with ¢ > 0 in B(0,3R;) and v = 1 in B(0,2R;). Then the function
given by

w(x)Ua,p7E(x)
’ W)Ua,p,e |LP* (Q,]z|~tP)

ue(z) :=

satisfies in the following conditions:

n—pd

Hu€||p£z>*(Q7|x‘—bp) =1 and ‘|VUEH§/P(Q7|m|*GP) < S apR+O(e 7 ),
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and
o) if g < o=l
1790l g+ = § O 72 [In(e))), ifg= G500, ()
O(E("wd)(p;lz)fl(&i;)f;;;7p7ap)q] ) if g > (nn_j;(_pa_pl)’

for all f € LP(Q, |z|~%) with f(z) > 0 for z inB(0,3R1) and infpgop) f > 0 for some
0 < R < R;y. Moreover, (B) is uniform in f € LP°(Q, |z|™*) satisfying f(z) > 0 with
x € B(0,3R;) and

_ (n=pd)q
pd(n—p—ap)

(1 + R(pdfimfpd)) " R™S inf f > ¢ for some R € (0, Ry).
B(0,2R)

Furthermore, we put

O = {(\ ) € B2\ {(0,0)} [0 < (IN[If1ls) 7" + (lullIflls) 7 < ¢},

where || f|[s = [|f]]Lro(0,[z|-)-
The main purpose of this paper is to prove two following theorems.

Theorem 1.2 Beside (#), suppose that Ry and ¢y are positive constants and
B(0,3Rp) C Q. Then there exists T > 0 provided that the problem (@) has a posi-
tive solution for each (A, u) € Oy and for each f € LPo(Q, |x|~*) satisfying f(z) > 0 for
all z € B(0,3Ry),

(n—pd)q
pd(n—p—ap) \ =~
(1 + R(P*l)(nfpd)> " R™S inf f > ¢ for some R € (0, Ry].
B(0,2R)

Theorem 1.3 Beside (#H), suppose that Ry and ¢y are positive constants and
B(0,3Rp) C . Then there exists T¢ > 0 provided that the problem () has at least two
positive solutions (ud,vd ) and (ug , vy ) for all (A, 1) € O, and for each f € LPo(Q, |z]|~%)
satisfying f(x) > 0 for all z € B(0,3Ry),

_ (n=pd)q
pd(n—p—ap)

(1 + RW) rd pnes B(iOI,l2fR) f = ¢o for some R € (0, Rp].
2. Nehari manifold

In the following, we introduce the corresponding energy functional of the problem ()
in W*:

1 ul*? 1
‘ | I‘) »J - *K)MM(’U,,’U),
a+pBJo |z|P q

1
I)\,,u(ua U) - Z;H(u’ ,U)Hp -
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for all (u,v) € W, where
Kolu,0) =X [ flalfultdo+ [ flaf ol
Q Q

Using the weighted Hardy-Sobolev inequality, I, € CY(W,R). Since the energy func-
tional Iy, isn’t bounded below on W, it’s useful to take the functional on the Nehari
manifold. Also, the solutions of system () are the critical points of the energy functional
I, ,.If I , is bounded below and has a minimizer on W, then this minimizer is a critical
point of I ,. Hence, it’s a solution of the corresponding elliptic equation. However, this
energy functional isn’t bounded below on the whole space W, but it’s bounded on an
appropriate subset, called Nehari manifold.

NA,H = {(uvv) ew \ {(0’0)}“[&,#(“’ U), (u,v)> = 0}7

where

ul®|v|Pdx — Ky . (u,v).

<HWWWLWW»=HWJNP—AJﬂ*¢

Note that N, contains each nonzero solution of (W). If we define ®, ,(u,v) =
(I3 (u.0). (1,0, then

(@) (u, ), (u, v)) ZPH(u,v)H”—p*/Q [ " ul o) d — KOy pu(u, v)

=(p— u,v)||P = (p* — | 7P ||| da
o=l ol =@ =) [ ol ol d
= (p — p)(w, V)|V = (g — p*) K u(u, v)

=@ﬁjéurwmwm%x@MKWme (9)

for (u,v) € Ny ,. Now, we break N, , in three parts:

Ny, = {(u,0), (u,v) € Nyt (@), (u,0), (u,v)) > 0},
Ng\)“u = {(u’ U) € N)\,M : <(I)/)\,u(u? U)v (u,v)> - 0}7
N;M = {(u, V) €Nyt (@&’“(u,v), (u,v)) < 0}.
To prove our main result, we now state some important properties of N /\+ uo Ng u and
Ny .
Al

Lemma 2.1 There exists a positive number T = Y(¢,n,, K, C,C*) > 0 so that (A, u) €
O~ implies that Ng,u = (.

Proof. Assume that

p

T () () e e
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Then there exists (A, u) with
0< (1) + (il 1) = < X
such that N/(\],u # (. Then, for (u,v) € N/(\],u and by (9), we get
0= () ,(u,v), (u,v))
= =l olP =" =a) [ ol fup ol da

= (= p)lI(w, 0)[[" = (g — ") K\ u(u; v). (10)

It follows from (H) and (M) that

P—q —bp* * 2 *
p*_qll(u,v)HPZ/Q!xI P Ju| o] da < (KC*) 7 || (u,0) [P,

Thus,

[|(u, )| > (;—_QQ(KC*)—",T)IJJ_;?. (11)

Also, using (Id), we have

*

pT—p
Pt —q

[|(u, )P = K\ pu(u, )

- / Ale| = ultde + / |~ o] dz
Q [9]

< CHOAAlllall? + 1l 17115 o)

b—q

< CH (OIS + Qulll 1)) 7 s o)l

implying that

[

w0l < (B=208) 7 [(MILA7S + w17 (12)

Using () and (), we deduce that (])\|Hf|\s)1’pfq + (|,u||\f||s)ﬁ > T, which is contra-

diction. Hence, there exists T > 0 so that for 0 < (|)\|\|f|\5)1’%¥ + (|,u||\f||5)ﬁ < 7T and
we have Nf\)# = (. ]

Lemma 2.2 The energy functional I , is coercive and bounded below on Ny ,.

Proof. Let (u,v) € ny,. Using Holder inequality and Caffarelli-Kohn-Nirenberg’s in-
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equality, we obtain

p q
Ixp(u,v) = (u, )| = ——= K u(u, )
p P4 15
(o)1 = LT [(INIA11) 7 + (all£11) 7] 7l o)1,
qp*
Since 1 < q < p, I, is coercive and bounded below on N} ,,. [ ]

Further, similar to the argument in Brown and Zhang [2, Theorem 2.3], we will have
following lemma.

Lemma 2.3 Let (ug,vg) € Ny, be a local minimizer of I, such that (ug,vo) ¢ Nf\)“.
Then I} ,(uo,v0) = 0 in WL, where W1 is the dual space of W.

Also, take To—( )P 1T <Y If (A, ) € Oy, then we gain Ny , = N;#UN)\_LL. If we
define

0y,= inf I , V),
ST (U, v)
9+ = inf I ,(u,v),

A (u,v)EN;"u )\,,u( )
0, = inf I, ,(u,v),
At (w,w)ENy , )\”u( )

then we will have the following lemma.

Lemma 2.4 For each (\, p) € Oy, there exists a positive number Y such that
(i) Orp <6y, <0
(ii) 0;# > 0, for some § = d(p, q,n, A\, u, K,C*) >0

Proof. (i) Let (u,v) € N;M. Using (9), we obtain

*

p*—p
Ky u(u,v) > _q||(u,v)|\p,

implying that

1 1 1 1
Iy u(u,v) (5 - E)H(U»U)Hp - (6 - E)K,\,u(u,v)

1 1 1 1. p*—p

< (== )Nwv)|lP = (=—-—= u,v)|P
(p p*)H( )|l (q p*)p* qH( )|l
pr—p,1 1

< = — )||(u,v)||P < 0.
p (p q)l!( il

Hence, it follows from the definition of 0, , and Gi L that 0, < Hj\L u < 0.
(i) Let (u,v) € Ny, and apply Lemma P71l Then we have

[|(u, v)|| = <(§":2))pl_p(KC*) Fe
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Moreover, by Lemma P72, we get

pr—p p_ P 2 215" q
Dyl ) > E o) P = F O (NI 7 + (A1) 77l o)l
_ a[P =P =g _ P Aot ([1£]]) 7 =N
I, o)l | F w0 O (M7 + (1) 7)™ ]

b—q p*qu —_ap” p* — P _ p* —q 4 P
2 _ KC* p(p*—p , p—q _ Cp /\ s)P
(=L ey 75 L2l - £ L0k (il

pP—gq

(1) 7).

Thus, if 0 < (AllIf[ls)7™" + (lulllflls)™" < To, then we obtain Iy, (u,0) > & =

d(p,q,n, K,C,\, i) > 0 for each (u,v) €Ny, [ ]

Now, set

tmaxz[(f’—q) [ (w, v)| [P ]

P =q’ fo |70 ulo|v|Pdx
for each (u,v) € W\ {(0,0)}. Then we have the following lemma.

Lemma 2.5 Let 0 < (|)\||\f||5)ﬁ + (|u|\|f|\s)1’%‘? < Yg. Then, for each (u,v) € W,
there exists tax > 0 provided that

(i) If K u(u,v) <0, then there is a unique ¢~ > tmax so that (¢7u,t7v) € Ny, and

I, (t"u,t”v) =sup Iy ,(tu, tv);
t>0

(ii) If Ky (u,v) > 0, then there are unique ¢+ and ¢t~ with 0 < t* < tmax < t~ so that
(ttu,ttov) € N;ru, (t"u,t"v) € N, , and

Lo(ttu,tt™o) = inf I ,(tu,tv)  and I ,(tu,t v) = sup Iy,(tu,tv).

0<t<tmax >t max

Proof. Fix (u,v) € W and for ¢ > 0, set
9(t) th_q\l(u,v)llptp*_q/gliﬂl_bp*wla!vlﬂdw-
Clearly, g(0) = 0 and lim;_, 40 g(t) = —00. As
gt = -t H|(w)|lP - (p* — )t 4 /Q ] " o) de,

we have ¢/(t) = 0 at a unique number t = tyax > 0, ¢'(t) > 0 for t € [0, tmax) and ¢'(t) < 0
for t € (tmax, +00). Hence, g(t) take its maximum at tpay, increasing for ¢ € [0, tpax)
and decreasing for ¢ € (tmax, +00). It’s clear that (tu,tv) € N;'# (or (tu,tv) € Ny ) iff
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g'(t) > 0 (or ¢’ < 0). Additionally,

9(tmax) = [(p_q) ||, v)||P b=

s DI
p*—q’ Jq |7t \UI“\vﬁdﬂf}

— u,v)|[P - Zbpt il o
. [(p Q) H( )H } /Q‘x‘ bp ‘u‘ "I}”Bd.%'

P —q fQ || =P [u|@|v|Pdx
TR (€ Eac § it Ay N U] A, L
e Jo Tl P ul o Pd

p*—q
pP—a\ELp —py 1 \oES
z <p*—q)p p(p*—q)(KC*>pp RGO

(i) If Ky ,(u,v) < 0, then there is a unique ¢~ > tyax provided that g(t7) = Ky ,(u,v)
and ¢'(t7) < 0. Now, we have

(0 — )Pl ()| — 5 — )™ /Q PR

ul*[o]?)dx = (t7)"g(t™) < 0

and
(I (7t 0), (w7 0)) = (£7)7[g(t7) = Kou(u,v)| = 0.
Thus, (t7u,t"v) € Ny ,. Since we have ¢'(t) < 0 and ¢"(t) < 0 for ¢ > tmax, then

I, (t"u,t”v) =sup I ,(tu, tv).
t=0

(i) Assume K, (u,v) > 0. For 0 < (M| f]ls) 7= + (Il f 1] oo z)-#)) 7* < To < T, we
obtain

9(0) =0 < K ,(u,v)

p—q

< (AN + (ull1)75) 7l o)l

p—gq p=q p* —p 1 p*(f:tz)
<) ) ()™l ol < gltma)

There are unique ¢+ and ¢~ so that 0 < t7 < tmax < t7, g(t1) = K ,(u,v) = g(t~) and
g () > 0> g (t7). Now, we have (tTu,ttv) € N;“M, (t"u,t7v) € Ny, and

Lot u,t™ o) = Iy (tu, to) = I, tho)

for all ¢ € [tT,¢7] and I ,(tTu, tTv) < Iy ,(tu, tv) for all ¢ € [0, tymax]. Thus, we have

Lo (ttu,tt™o) = inf I ,(tu, to)

S lmax

and Iy ,(t7u,t7v) = sup Iy ,(tu,tv).
t>tlnax
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3. Proof of main results

Before the proof of Theorem 2 and Theorem I3, we need the following results.
Lemma 3.1 [i6]

(i) Let (A u) € ©y. Then there exists a (PS)g, ,-sequence {(un,vy)} C Ny, in W for
I)\,m

(ii) Let (A, ) € Ox,. Then there exists a (PS)G;‘“—sequence {(un,vn)} C Ny, in W for
I .

Theorem 3.2 Let (A p) € ©y and (H) hold. Then I, , has a minimizer (uj,vj) in
N ;L u and satisfies the following conditions:

(i) Inu(ug,vg) = HIW
i) (u,v) is a solution of problem (M) provided that ud > 0 and v > 0 in Q.
0>Y 0 0

Proof. Using Lemma B(i), there exists a minimizing sequence {(u,,v,)} for Iy, on
Ny, provided that

Dy (U, vn) = Oy +0(1) and I}, (tn, v,) = o(1) in wL. (13)

Then, by Lemma P2 and the continuity of embedding theorem, there exists a subsequence
{(un,vn)} and (ud,vd)) € W provided that

Up = ud, vy — v, weakly in Wy (Q, |z|~%),
Up = ug, v = vy, strongly in L4(, |z|~*), (14)
un—>ug, vn—>v0+, a.e in €,

as n — 400, which implies that K ,(un, v) = Ky u(ug,vg) as n — +oo. By (I3) and
(), it’s easy to show that (ug,vy) is a weak solution of the problem (). As

11 P*—q P*—q
I/\,u(unavn) = (5 - E)H(umvnmp - " KA,u(umvn) z — " KA,u(umvn),

and by Lemma 2ZA(i), I ,(tun,vn) = 0y, < 0 as n — 4o00. Letting n — +oo, we have
K,\#(ug, var) > 0. Now, we show that

Up, — ug, strongly in Wy (9, |z]|~%),
vy — g, strongly in Wol’p(Q, |z|~P),

and I, ,(ud,vg) = 0. Applying Fatou’s lemma and (ug,vg) € Ny, we obtain

1 1
p p*

P —q
Y oDl = F K i)

Orp < fx,y(u[)*vvo*) = (

.. 1 1 Pt —q
<t (5= 2l - 0

< lﬁgig I)\,u(um Un) = 9)\,;u
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implying that

Do) = Ory and T ([, o) P = 110 I

Then, u, — ugj strongly in VV0 P(Q, |z|~%) and v, — v strongly in Wol’p(Q, |z|~9P).
In addition, we get (ud,vg) € NJr Indeed, if (ug,vy) € Ny by Lemma B3, there
are unique tO and ¢, provided that (to Uy ,tar UJ ) €N ;L s (to Uo .~ U(—)’— ) € Ny u and
td <ty =1.As

2

d d
I/\,u(to ud,tfod) =0and —

there exists t; < < t; provided that I, ,(tgul, tdvd) < I u(foug , fovg ). Using Lemma
3, we obtain

Dy(tgug st ug ) < Dnp(toug s foug) < Do ug s to vy ) = Inu(ug , vg)

which contradicts Iy, (ug,vg) = HLL. As I (ud,vg) Lou(lug ], lvg]) and

(Jug ], lvg]) € Ny ., and by Lemma P2, (ug,vg) is non-negative solution of problem
(m). [

The following two lemmas are similar to that are proved by Hsu [IT].

Lemma 3.3 If {(u,,v,)} € W is a (PS).-sequence for I , with (uy,v,) = (u,v) in W,
then I’ (u v) = 0 and there exists a positive constant T depending on p, ¢,n,C and C*

S0 that Ly,u(u,) > — (ML) 7 + (llI£11) 75 ) .

Lemma 3.4 If {(uy,v,)} € W is a (PS).-sequence for I ,, then {(u,,v,)} is bounded
in W.

Lemma 3.5 I, satisfies the (P.S). condition with ¢* satisfying

DY®EeF = (A1) 75+ (1175 ).

. 1

—00 < " < oo = (f -

p D

Proof. Let {(upn,v,)} € W be a (PS).--sequence for I ,, with ¢* € (—00, cs). It follows

from Lemma B3 that {(uy,v,)} is bounded in W, and then (u,,v,) — (u,v) up to a
subsequence, (u,v) is a critical point of I ,. Also, we may assume

Up — U, Vp —V, weakly in Wol’p(Q, |z|~P),
Up — U, Uy —> U, strongly in L4(Q, |x|~%)),
Up —> Uy, Uy —> U, a.e. on §).

Hence, we have I}  (u,v) =0 and

K, (un,vn) = Ky u(u,v) as n— +o0. (15)



190 A. Akhavan / J. Linear. Topological. Algebra. 12(03) (2023) 179-194.
Let @, = u, —u and v,, = v, — v. Then by Brezis-Lieb lemma [3], we obtain
(@, On) [P = [| (i, vn)[[P = [[(w, v) [P as n — +o0 (16)

and

/ PR
Q

adﬂmep»/ﬁx*fmﬂ%ww%x—/Wm*fmwwﬂm,asn-++m.
Q Q

(17)
As Iy pu(up,vn) = ¢* +0(1), I ,(un,vn) = o(1) and (IH)-(I7), we conlude that
Ly~ 1 —bp* |~ || (B *
[, 0[P = = [ {27 [un | on|"de = ¢ = Iy u(u, 0) + o(1), (18)
p P Ja
and
[, ) [7 —/Q\Jf|bp*\ﬁn\a!5n|’3df€ = o(1).
Thus, we can take
(G TP =1 and [ ol e > 1 (19)
Q

If | = 0, the proof is complete. Let [ > 0. It follows from () that

n—-+4o0o n—-+4o0o

ey = ) tim [ [ ol [ Glda] T <t I 5 IP =1,
Q

implying that { > (KC*)# —». Additionally, from Lemma B33, (I8) and (I9), we obtain

1

1 1 1 % p*
» p*)l—i—I,\,#(u,v) > (];—*)(KC )=

p*

¢ = P =T((AA) 77 + (ulll A1) 7).

which contradicts ¢* < (% - pi)(KC’*)

A5 = (A 77+ (ulllf1) 7).

Lemma 3.6 There exist a non-negative function (u,v) € W\ {(0,0)} and ¢, > 0 so that
sup I . (tu, tv) < KC* for 0 < (I\[|[f[s) >~ + (lll[ f[|s) 7~* < cs. Particularly, 8y , < co

=

for all 0 < (IM[[£11s) 77 + (1eall| 1] oo (@ a-5)) 77 < car

Proof. Fix the constants R = Ry and ¢; = ¢p in Lemma 1 and define the functional
I:W — R by

1 1 .
I(u,v) = =||(u,v)||P — */ 2| 7% |u|*|v|Pde for all (u,v) € W.
p P Ja



A. Akhavan / J. Linear. Topological. Algebra. 12(03) (2023) 179-194. 191

Set ug = aPu, vy = BYPu, for each (up,vp) € W. Then by Lemma [, we obtain

i 8 Jo !’“”\V Pd o
sup I (ferue, tegue) < <11? - pl* ) (aa/(z;;/p f{? ; » ypd:g;) ]
1 1 B/a a/B1ES T fo 2T VuelPd .

(R K e e
<= D))"+ O G 015
(D) e oy

< (; - pl*)(Kc*)p = 40> ), (20)

where the following fact has been used:
A= (- ) A

We can choose 61 > 0 so that

T <11? B ;J(KC*)‘;*" = (NI 75+ (all£11) 7)) T > 0.

for all 0 < (JA]||f]]s ) (|,uH\fHS)ﬁ < ¢01. Using the definitions I(u,v) and (ug, vo),
we have I ,(tug,tvg) < %|[(uo,uo)||P for all t > 0 and A, > 0, implying there exists
to € (0,1) satisfying

L
p

0212 Iy . (towo, touo) < coe for all 0 < (|A[||f|]s) 7= + (|ul|[fl]s) 7= < 1.

Using (20) and applying the definitions I(u,v) and (ug,vg), we have for o, 3 > 1 that

td
sup I,\,#(touo, toUo) = Sup (I(toUo, toUo) — 7K)\ “(’u,o, ’Uo))
t>to t>to q

n—pd

< (0 L) (ECHFS + 0

p D
tg / / —s
— L(at/rr+ §17) 2] uclda
q B(Z‘Q,Ro)
1 1 n—pd
< - — — * p*—p pd
< (p p*)(KC )i+ O )

tq
S0 [ el uftda, (21)
q B(Io,R())
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Also,
(n—pd)g _n—pd
. 22
Now, let ¢ < %. From (21), (22) and Lemma [T, we have
1 1 B n—pd tg (n—pd)q
sup Iy u(touo, too) < (= = = ) (KC)#5 +0(¢ ) = L+ woe H4) - (23)
t>to p P q

pd

Now, for all € = <(|)\H]f\|5)fq + (!uH|st)ﬁ> "7 € (0, Ry), we obtain

1 1 N s P _p_
sup I o tow) < (= =) (KO -+ O((IAL) 5 + (w117

t>to p*
t 2 2\
=L m (A1) 77 + ull1)77)

Thus, we can choose do > 0 so that

q

O ((A1£11:) 7

OC(AII )77 + (I 1ls) ) = 2

q

+ QL))" < =TI + (1) 7).

for all 0 < (IA[[£1ls) 77 + (Jull|flls) 7 < 8. Tf we set ¢, = min{6y, Ro,ds} and € =

P

(A1) 77 + (alll A1) 7)™, then

sup I . (touo, touo) < Coo- (24)
t>to

for 0 < (\)\H|fHS)ﬁ + (]umeS)ﬁ < 4. Similarly, let ¢ = %. It follows from
(21), (22) and Lemma [T that

1 1 _p* n—pd tq (n—pd)q
sup Ly u(touo, touo) < (- — =) (KC")#5 + O ") = DA + p)O(e " | Ine]).
t>to p p q
(25)
If ¢ > %, then
1 1 « _p* n—pd
sup Iy, (touo, toto) < (f - —*)(KC )7+ O )
t>to p p

g (n—pd)(p—1)[(n—B)p—(n—p—ap)a]

N t;(A + p)O(e pid(n-p-ap) )- (26)
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Now, by (£3) and (E8), we have

sup I . (touo, touo) < Coo- (27)
t>to

Ultimately, we prove 0 , < coo for all 0 < (|)\||\f\|5)ﬁ + (|,u||\f\|5)ﬁ < ¢x. Note that
(ug,v0) = (al/pue,ﬁl/pue). It is easy to see that

/ 2| =" Juo|*|vo|Pdz > 0.
Q

Now, using Lemma PH, definition 6, ,, (23) and (22), we there exists to > 0 so that
(toUo, tovo) € N):H and

05, < Ihu(touo, tovo) < sup Iy u(touo, touo) < coo,
t>t0

for all 0 < (IN[[|f1ls) 77 + (Il £11) 77 < e u

Theorem 3.7 Let 0 < (|A]]| f]]s )P “ 4 ([l f]s )P @ < d,, where ¢, = min{c, Yo} and
(#) holds. Then I, ;, has a minimizer (ug,v, ) in Ny, and satisfies

(i) Daulug,vg) = O\
(ii) (ug,vy ) is a solution of the problem (W) so that ug > 0 and vy = 0 in Q.
Proof. Using Lemma B(ii), there exists a minimizing sequence {(un,vn)} C Ny , in W
for I, and for all 0 < (|)\H]f\|s)ﬁ + (|u|\|f|]s)ﬁ < Yg. It follows from Lemmas B3,
B8 and P3(ii) that Iy, satisfies (PS)QX,M condition and 6} , > 0 for 0 < (\)\H]fHS)ﬁ +
(1l f1]s) "1 < c,. Since I, is coercive on N} ,,, we conclude that (uy,vy) is bounded in
W. Hence, there exist a subsequence still denote by (un, vy) and (ug vy ) € Ny, so that
(un, vn) = (ug , vy ) strongly in W and Iy . (ug , vy ) = 0y, > Oforall 0 < (\)\H]st)ﬁ +
([l f1]s) i< c,. Now, similar to the same arguments in proof of Theorem B, (u, , v, )
is a positive solution of problem () for all 0 < (!)\|\|f|\s)f’%q + (|,u||\f||s)ﬁ < d,. [
Now, we are ready to complete the proof of Theorem I and Theorem [=3. Applying

Theorem B2, we conclude that problem (1) has a positive solution (ug,vg) € € Ny + for all
0< (|)\|||]‘1\|5)ﬁ + (|,u|||f||s)f’%q < T. On the other hand, from Theorem B, we Obtam
the second positive solution (ug,vy) € Ny, for all 0 < (|Al[[f]]s) T (\,LLHL]”HS)ﬁ <

c, < Yp. Since N+u NNy, =0, (ug,vg) and (ug,vy ) are distinct. This completes the
proof of Theorem 2 and Theorem 3.

4. Conclusion

Although, a system of nonlinear, quasilinear, sublinear or semi-linear of elliptic equations
are solved by several authors [I-I3, I5, [6], a variational approach has been used to
solve quasilinear elliptic systems with critical Hardy-Sobolev and sign-changing function
exponents.
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