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Abstract. In this paper, we first generalized the weighted versions of determinants, perma-
nents and the generalized inverses of rectangular matrices. We also investigate some of their
algebraic properties. As a by product of the above investigation, we then present a deter-
minantal representation for the general and Moore-Penrose inverses which satisfy on certain
conditions. Finally, we give a general algorithm for determining the inverse of some certain
class of the rectangular matrices defined based on weighted determinants.
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1. Introduction and preliminaries

The generalized inverses of matrices play an essential role in both theoretical and prac-
tical applications. In particular, the Moore-Penrose inverse of a matrix and its weighted
versions have many interesting applications in various fields of science and engineering
including optimization problems, machine learning regularization problems, singularity
of matrices in data science and statistical problems. Here, we will consider a more gener-
alized version of this problem on the class of rectangular matrices. Next, we will quickly
review some important research works in this respect.

Next, we introduce some notations that we need throughout this paper. Let Cn be
the vector space over the complex field C. We also let Cm×n be the set of all m by n
matrices with complex entries and Cm×n

r is the subclass of these matrices with the rank
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exactly equal to r. We reserve the notations A,AT and A∗ for the conjugate, transpose
and conjugate transpose of the matrix A, respectively. The determinant of a square ma-
trix A is denoted by det(A) or |A|. The submatrix of A ∈ Cm×n containing rows set

I = {α1, . . . , αt} and columns J = {β1, . . . , βt} is denoted by A
[
I
J

]
. Moreover, its corre-

sponding minor will be denoted by A
(
I
J

)
, while its algebraic complement corresponding

to the element ai,j is defined by

Ai,j

(
α1 · · · αp−1 i αp+1 · · · αt

β1 · · · βq−1 j βq+1 · · · βt

)
= (−1)p+qA

(
α1 · · · αp−1 αp+1 · · · αt

β1 · · · βq−1 βq+1 · · · βt

)
.

In [10], Penrose showed the existence and uniqueness of a solution X ∈ Cn×m of the
following system of equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

For simplicity of presentation and arguments, we will use the notations introduced in [16].
For a given subset S of {1, 2, 3, 4}, the collection of matrices X satisfying the conditions
represented in S will be denoted by A(S). For example, if S = {1, 2}, then

A{1, 2} =
{
X ∈ Cn×m : AXA = A,XAX = X

}
.

A matrix X ∈ A(S) is called an S-inverse of A and is denoted by A(S). In particular,
for any A ∈ Cm×n, the set A{1, 2, 3, 4} which consists of a onlyone element is called the
Moore-Penrose inverse of A, will be denoted by A† (see [10]).

The main motivation behind of this paper originates from the determinantal represen-
tation of Moore-Penrose inverse, which is the next theorem:

Theorem 1.1 [2, 4, 6] The element a†ij in the ith row and the jth column of the Moore-

Penrose pseudoinverse of a matrix A ∈ Cm×n
r is given by

a†ij =
A

(†,r)
ji

Nr(A)
=

∑
1⩽β1<···<βr⩽n

1⩽α1<···<αr⩽m

A

(
α1 · · · j · · · αr

β1 · · · i · · · βr

)
Aji

(
α1 · · · j · · · αr

β1 · · · i · · · βr

)
∑

1⩽δ1<···<δr⩽n

1⩽γ1<···<γr⩽m

A

(
γ1 · · · γr
δ1 · · · δr

)
A

(
γ1 · · · γr
δ1 · · · δr

) .

We recall that the (i, j)th entry of adjoint matrix adj(†,r)(A), with be defined by A
(†,r)
ji .

The next theorem describes the {i, j, k}-inverse of a rectangular matrix.

Theorem 1.2 [14] If A ∈ Cm×n
r has a full-rank factorization A = PQ,P ∈ Cm×r

r , Q ∈
Cr×n
r , W1 ∈ Cn×r and W2 ∈ Cr×m are some matrices such that rank(QW1) =

rank(W2P ) = rank(A), then A† = Q†P † = Q∗(QQ∗)−1(P ∗P )−1P ∗; and also,
the generalized solution of the equations (1) and (2) is given by

A{1, 2} =
{
W1(QW1)

−1(W2P )−1W2

}
;
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the generalized solution of the equations (1), (2) and (3) is given by

A{1, 2, 3} =
{
W1(QW1)

−1(P ∗P )−1P ∗
}
;

the generalized solution of the equations (1), (2) and (4) is given by

A{1, 2, 4} =
{
Q∗(QQ∗)−1(W2P )−1W2

}
.

Theorem 1.3 [2] Let A ∈ Cm×n be a full-rank matrix. If rank(A) = m ⩽ n, then the
system

AX = Im; (XA)∗ = XA

has a unique solution X = A†. Similarly, if m > n = rank(A), then the system

XA = In; (AX)∗ = AX.

has a unique solution X = A†.

In this paper, we present a generalization of the weighted determinant and the perma-
nent of rectangular matrices. We first need some definitions and notations.
Let V be a vector space over a field C. The p-th exterior power V , denoted

∧p(V )
is the vector subspace of the exterior algebra

∧
(V ) spanned by elements of the form

v1 ∧ · · · ∧ vp, vi ∈ V, i = 1, . . . , p. If the dimension of V is n and {e1, . . . , en} is a basis of
V , then the set {ei1 ∧ · · · ∧ eip : 1 ⩽ p ⩽ n, 1 ⩽ i1 < · · · < ip ⩽ n} is a basis for

∧p(V )
and dim

∧p(V ) =
(
n
p

)
.

2. Rectangular determinants and induced generalized inverses

In recent years, some researchers have been investigated new versions of the determinant
of a rectangular matrices [1, 3, 5, 7, 9, 11–13, 15–17].

Definition 2.1 Suppose A ∈ Cm×n is a rectangular matrix with n ⩽ m. A weighted
determinant of A is a function det

(ε̃,p)
: Cm×n −→ C is defined, as follows:

det
(ε̃,p)

(A) =



∑
1⩽i1<···<ip⩽m

1⩽j1<···<jp⩽n

εi1,...,ip;j1,...,jp

〈 p∧
l=1

Ajl ,
p∧

l=1

eil

〉
, if 1 ⩽ p ⩽ n ⩽ m,

0 if p > min{m,n},

1 if p = 0,

(1)

where ⟨. , .⟩ is the inner product, Ajl is the jl-th column of the matrix A and

ε̃ =
{
εi1,...,ip;j1,...,jp : 1 ⩽ i1 < · · · < ip ⩽ m, 1 ⩽ j1 < · · · < jp ⩽ n

}
,
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which εi1,...,ip;j1,...,jp is an arbitrary constant coefficient. For n > m ⩾ p ⩾ 1, we set

det
(ε̃,p)

(A) = det
(ε̃,p)

(AT ).

From now on, for simplicity of presentation, we will assume A ∈ Cm×n with n ⩽ m and
the inner product ⟨. , .⟩ will be considered as the Euclidean inner product over

∧p(Cm).
Now, in the following lemma, we express the generalized determinant based on its square
minors.

Lemma 2.2 Let A ∈ Cm×n, where 1 ⩽ p ⩽ n ⩽ m. Then

det
(ε̃,p)

(A) =
∑

1⩽i1<···<ip⩽m

1⩽j1<···<jp⩽n

εi1,...,ip;j1,...,jpA

(
i1 · · · ip
j1 · · · jp

)
. (2)

Proof. According to (1) for 1 ⩽ j1 < · · · < jp ⩽ n, we obtain

p∧
l=1

Ajl =

p∧
l=1

m∑
i=1

ai,jlei

=
∑

i1,...,ip

p∧
l=1

ail,jleil

=
∑

i1,...,ip

p∏
l=1

ail,jl

p∧
l=1

eil

=
∑

1⩽i1<···<ip⩽m

∑
σ∈Sp

(
p∏

l=1

aiσ(l),jl

p∧
l=1

eiσ(l)

)

=
∑

1⩽i1<···<ip⩽m

∑
σ∈Sp

sgn(σ)

p∏
l=1

aiσ(l),jl

 p∧
l=1

eil

=
∑

1⩽i1<···<ip⩽m

A

(
i1 · · · ip
j1 · · · jp

) p∧
l=1

eil .

Using (1), we obtain the formula (2). ■

Example 2.3 For p = 2 and A = (ai,j)3×2, we have

det
(ε̃,2)

a11 a12a21 a22
a31 a32

 = ε1,2;1,2

∣∣∣∣a11 a12a21 a22

∣∣∣∣+ ε1,3;1,2

∣∣∣∣a11 a12a31 a32

∣∣∣∣+ ε2,3;1,2

∣∣∣∣a21 a22a31 a32

∣∣∣∣ .
For p = m, the determinant det

(ε̃,m)
(A) is an alternating multilinear mapping of the

column vectors of A. In case of m = n = p and εi1,··· ,ip;j1,··· ,jp = 1, we obtain the classical
determinant of the square matrix A.
In (2), for εi1,...,ip;j1,...,jp = 1, we get the Stojaković determinant [17], which we will

denote by det
(S,p)

(A). Similarly, for εi1,...,ip;j1,...,jp = (−1)(i1+···+ip)+(j1+···+jp), one can obtain
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the determinant introduced by Radić [11–13] which we denote it det
(R,p)

(A). Now, let ε be an

arbitrary but a constant number, for εi1,...,ip;j1,...,jp = ε(i1+···+ip)+(j1+···+jp), we will obtain
the determinant introduced by Stanimirović [16], which we denote by det

(ε,p)
(A). Moreover,

we can also consider some generalized versions of the Stanimirović’s determinant by
letting εi1,...,ip;j1,...,jp = ε(i1+···+ip)+(j1+···+jp), to be written in the following multiplicative
forms:

εi1,...,ip;j1,...,jp = αi1,...,ipβj1,...,jp

εi1,...,ip;j1,...,jp =
(
αi1
1 . . . αip

p

)(
βj1
1 · · ·βjp

p

)
εi1,...,ip;j1,...,jp = αi1+···+ipβj1+···+jp

In [1], Abhimanyu has consider the weight εi1,...,ip;j1,...,jp = A

(
i1 · · · ip
j1 · · · jp

)
, and in [9],

Nakagami has defined the determinants of a rectangular matrix A = (A1, . . . , An) ∈
Cm×n with the weight εi1,...,ip;j1,...,jp = 1 as follows:

det
(N,n)

(A) =
∑

1⩽j1⩽···⩽jn⩽m

〈
A1 ∧ · · · ∧An, ej1 ∧ · · · ∧ ejn

〉
, (3)

Det
(N,n)

(A) =
∑

1⩽j1<···<jn⩽m

〈
A1 ∧ · · · ∧An, ej1 ∧ · · · ∧ ejn

〉
. (4)

In (2), if we replace the determinant with permanent, we immediately obtain a weighted
version of the permanent by the following formula:

per
(ε̃,p)

(A) =
∑

1⩽i1<···<ip⩽m

1⩽j1<···<jp⩽n

εi1, ..., ip;j1, ..., jpper

(
A

[
i1 · · · ip
j1 · · · jp

])
. (5)

In particular, for εi1, ..., in;j1, ..., jn = 1, we get the definition of classic permanent (see
[8]):

per(A) =
∑

1⩽i1<···<in⩽m

per

(
A

[
i1 · · · in
j1 · · · jn

])
. (6)

3. The generalized Cauchy-Binet formula

A generalization of the multiplicative property of determinants is the well-know
Cauchy-Binet formula. In this section, we present several extensions of Cauchy-Binet
formula for determinant and permanent of a rectangular matrix. We first need to in-
troduce some notations. Let r and n be positive integers. The set Γr,n consists of all
sequences of integers ω = (ω1, . . . , ωr) for which 1 ⩽ ωi ⩽ n, i = 1, . . . , r. If r ⩽ n, then
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Gr,n and Qr,n denote as follows:

Gr,n =
{
(ω1, . . . , ωr) ∈ Γr,n : 1 ⩽ ω1 ⩽ · · · ⩽ ωr ⩽ n

}
,

Qr,n =
{
(ω1, . . . , ωr) ∈ Γr,n : 1 ⩽ ω1 < · · · < ωr ⩽ n

}
.

If ω = (ω1, . . . , ωr) ∈ Gr,n then by the notation µ(ω), we mean µ(ω) =
∏r

k=1 ωk!, where
ωk! denotes the factorial of the positive integer ωk.
Let A = (ai,j) ∈ Cm×n and α ∈ Qh,m and β ∈ Qk,n. Then A

[
α|β
]
denotes the h × k

submatrix of A whose (i, j) entry is aαiβj
. Again, if α ∈ Qh,m and β ∈ Qk,n, then A

(
α|β
)

denotes the (m − h) × (n − k) submatrix of A complementary to A
[
α|β
]
, that is, the

submatrix obtained from A by deleting rows α and columns β.

Theorem 3.1 (The generalized Cauchy-Binet formula) Let A ∈ Cm×t, B ∈ Ct×n and
p ⩽ min{m,n, t}. Then

det
(ε̃,p)

(AB) =
∑

I,J,K

εI,J det
(
A[I|K]

)
det
(
B[K|J ]

)
, (7)

per
(ε̃,p)

(AB) =
∑

I,J,K

εI,J per
(
A[I|K]

)
per
(
B[K|J ]

)
,

where I ∈ Qp,m, J ∈ Qp,n and K ∈ Qp,t.

Proof. According to Definition 2.1, we obtain

det
(ε̃,p)

(AB) =
∑

1⩽i1<···<ip⩽m,

1⩽j1<···<jp⩽n

εi1,...,ip;j1,...,jp

〈
p∧

l=1

(AB)jl ,

p∧
l=1

eil

〉
, (8)

By a similar calculation as in the proof of Lemma 2.2, it can be seen that

p∧
l=1

(AB)jl =
∑

1⩽s1<···<sp⩽m
1⩽k1<···<kp⩽t

det
(
A[I|K]

)
det
(
B[K|J ]

) p∧
l=1

esl , (9)

Thus, considering formulas 8 and 9, we finally get, the formula 7. ■

We note that, in the case p = 1, for every I ∈ Qt,m, J ∈ Qt,n and K ∈ Qt,t, we get the
classic Cauchy-Binet formula.

Corollary 3.2 Let A ∈ Cm×t, B ∈ Ct×n and p ⩽ min{m,n, t}. Then

det
(ε1,...,εp;p)

(AB) =
∑

I,J,K

ε−2
K det

(ε1,...,εp;p)

(
A[I|K]

)
det

(ε1,...,εp;p)

(
B[K|J ]

)
,

per
(ε1,...,εp;p)

(AB) =
∑

I,J,K

ε−2
K per

(ε1,...,εp;p)

(
A[I|K]

)
per

(ε1,...,εp;p)

(
B[K|J ]

)
,

where εK = εk1

1 · · · εkp
p , I ∈ Qp,m, J ∈ Qp,n and K ∈ Qp,t.
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In the special case of t ⩽ min{m,n} and ε1 = · · · = εt = ε,

det
(ε,t)

(AB) = ε−t(t+1) det
(ε,t)

(A) det
(ε,t)

(B),

per
(ε,t)

(AB) = ε−t(t+1) per
(ε,t)

(A) per
(ε,t)

(B).

Before stating our next theorem, we present the following combinatorial lemma.

Lemma 3.3 [8] Let f be a scalar function defined on the set of m-tuples of integers.
Then ∑

ω∈Γm,n

f(ω1, . . . , ωm) =
∑

ω∈Gm,n

1

µ(ω)

∑
σ∈Sm

f(ωσ(1), . . . , ωσ(m)),

where ω = (ω1, . . . , ωm).

Theorem 3.4 Let A ∈ Cm×t and B ∈ Ct×n where p ⩽ min{m,n, t}. Then

det
(ε̃,p)

(AB) =
∑

I,J,K

1
µ(K)εI,J det

(
A[I|K]

)
det
(
B[K|J ]

)
,

per
(ε̃,p)

(AB) =
∑

I,J,K

1
µ(K)εI,J per

(
A[I|K]

)
per
(
B[K|J ]

)
,

where I ∈ Qp,m, J ∈ Qp,n and K ∈ Gp,t.

Proof. Using Lemma 3.3, the proof is similar to the proof of Theorem 3.1. ■

4. The generalized Laplace expansion

One of the fundamental and classic results in the theory of determinants and permanent
is the Laplace expansion formula. Next, we obtain some results regarding the Laplace
expansion of rectangular matrices.

Theorem 4.1 [3] For A = (ai,j) ∈ Cm×n with 1 < n ⩽ m,

det
(ε,n)

(A) =
∑

1⩽i1<···<in⩽m

∑
σ∈Sn

ε
∑n

l=1(iσ(l)+l)sgn(σ)

n∏
l=1

aiσ(l),l, (10)

per
(ε,n)

(A) =
∑

1⩽i1<···<in⩽m

∑
σ∈Sn

ε
∑n

l=1(iσ(l)+l)
n∏

l=1

aiσ(l),l.

We note that the formula of permanent is different from the formula of determinant
A because the sign of permutations is not taken into account.
In [11, 17], it has been shown that the classic Laplace expansion for rectangular matrix
(m ⩽ n) is valid with respect to each row and for the case of (n ⩽ m) is true with respect
to each column. Next, we generalize the Laplace expansion formula for an arbitrary
partition of rows and columns of rectangular matrices of Radić and Stojaković types.
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Theorem 4.2 Let A = (ai,j) ∈ Cm×n with 2 ⩽ n ⩽ m and J ∈ Qr,n. Then

det
(R,n)

(A) =
∑

I∈Qr,m

(−1)I+J det
(R,r)

(
A[I|J ]

)
det

(R,n−r)

(
A(I|J)

)
, (11)

det
(S,n)

(A) =
∑

I∈Qr,m

det
(S,r)

(
A[I|J ]

)
det

(S,n−r)

(
A(I|J)

)
.

Proof. Fix arbitrary j1, . . . , jr columns where J = (j1, . . . , jr) ∈ Qr,n. By neglecting
the sign of terms, we can imagine that det

(R,n)
(A) is the products of det

(R,r)

(
A[I|J ]

)
and

det
(R,n−r)

(
A(I|J)

)
where I = (i1, . . . , ir) ∈ Qr,m; without no other terms in the expansion

of the determinant of A. To compute the signs of these products, let us shuffle the rows
and columns so as to replace the term det

(R,r)

(
A[I|J ]

)
in the upper left corner. Hence, we

have to perform

(i1 − 1) + · · ·+ (ir − r) + (j1 − 1) + · · ·+ (jr − r) ≡
∑r

l=1(il + jl) (mod 2)

permutations. ■

Corollary 4.3 [8, 18] For A = (ai,j) ∈ Cn×n with 2 ⩽ n, we have

det(A) =
∑

I∈Qr,n

(−1)I+J det
(
A[I|J ]

)
det
(
A(I|J)

)
.

Our next result is a generalized Laplace expansion for determinant of rectangular
matrices based on the generalized cofactors.

Theorem 4.4 For a full-rank matrix A ∈ Cm×n the following Laplace’s expansion is
valid 

det
(ε̃,m)

(A) =
n∑

k=1

aikA
(ε̃,m)
ki , i = 1, . . . ,m, m ⩽ n;

det
(ε̃,n)

(A) =
m∑
k=1

aikA
(ε̃,n)
ki , i = 1, . . . , n, n ⩽ m;

where A
(ε̃,m)
ij , i.e. A

(ε̃,n)
ij is the generalized algebraic complement corresponding to the

element aji defined as follows:


A

(ε̃,m)
ij =

∑
1⩽j1<···<jm⩽n

ε1,...,m;j1,...,jnAj,i

(
1 · · · i · · · m

j1 · · · j · · · jm

)
, m ⩽ n

A
(ε̃,n)
ij =

∑
1⩽i1<···<in⩽m

εi1,...,in;1,...,nAj,i

(
i1 · · · i · · · in
1 · · · j · · · n

)
. n ⩽ m.

Proof. For 1 < n ⩽ m, by (2) and using Laplace’s expansion for the square minors
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A

(
i1 · · · in
1 · · · n

)
, we conclude that

det
(ε̃,n)

(A) =
∑

1⩽i1<···<in⩽m

εi1,...,in;1,...,n

[
n∑

k=1

aik,jAik,j

(
i1 · · · ik · · · in
1 · · · j · · · n

)]

=

n∑
l=1

al,j

 ∑
1⩽i1<···<in⩽m

εi1,...,in;1,...,nAl,j

(
i1 · · · l · · · in
1 · · · j · · · n

)
=

n∑
l=1

al,jA
(ε̃,n)
jl .

■

Corollary 4.5 If A ∈ Cm×n is a full-rank matrix, then

n∑
k=1

aikA
(ε̃,m)
kj = δij det

(ε̃,m)
(A), m ⩽ n,

m∑
k=1

aikA
(ε̃,n)
kj = δij det

(ε̃,n)
(A), n ⩽ m,

where δij is the Kronecker delta symbol.

Proof. For m ⩽ n, in the case that i ̸= j the above expansion indicates the rectangular
determinant of a matrix which has the identical ith row and jth column. ■

5. The generalized induced inverse of the determinant of rectangular
matrices

In this section, we present a definition of generalized inverses of the rectangular ma-
trices based on in tearms of determinant and the generalized cofactors, which we call it
the determinantal generalized inverses.

Definition 5.1 Suppose A ∈ Cm×n
r , the generalized inverse of A denoted by A−1

(ε̃,p) is

defined by

(
A−1

(ε̃,p)

)
ij
=

A
(ε̃,p)
ij

det
(ε̃,p)

(A)
,

in which 1 ⩽ p ⩽ rank(A) ⩽ min{m,n} is the greatest integer such that det
(ε̃,p)

(A) ̸= 0

(where we denote it by ρε̃(A)). Similarly A
(ε̃,p)
ij for each p is defined as follows:

A
(ε̃,p)
ij =

∑
1⩽j1<···<j<···<jp⩽n

1⩽i1<···<i<···<ip⩽m

εi1,...,ip;j1,...,jpAj,i

(
j1 · · · j · · · jp
i1 · · · i · · · ip

)
.
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Now, we define the generalized adjoint of A of the order p as follows:

adj
(ε̃,p)

(A) =
(
A

(ε̃,p)
ij

)
.

Remark 1 Considering the Corollary 4.5, if p = ρε̃(A) = min{m,n}, then the matrix
A−1

(ε̃,p) with m < n has the right inverse and for m > n, it has the left inverse.

Our next results are concerned with the properties of the generalized adjoint and
determinantal inverse of rectangular matrices.

Lemma 5.2 Let εi1,··· ,ir,j1,··· ,jr = εi1+j1
1 · · · εir+jr

r , where 1 ⩽ i1 < · · · < ir ⩽ m, 1 ⩽ j1 <
· · · < jr ⩽ n and ε1, . . . , εr are arbitrary but fixed non-zero constants. If A ∈ Cm×r and
B ∈ Cr×n are two full-rank matrices such that rank(A) = r = rank(B) = ρ(ε1,...,εr)(A) =
ρ(ε1,...,εr)(B) = ρ(ε1,...,εr)(AB), then

adj
(ε1,...,εr,r)

(AB) = ε−2
1 · · · ε−2r

r adj
(ε1,...,εr,r)

(B) adj
(ε1,...,εr,r)

(A).

Let ε1 = · · · = εr = ε. Then

adj
(ε,r)

(AB) = ε−r(r+1) adj
(ε,r)

(B) adj
(ε,r)

(A).

Proof. The entry in the ith row and jth column of the matrix adj
(ε1,··· ,εr,r)

(AB) is equal

to

(AB)
(ε1,··· ,εr,r)
ij =

∑
1⩽β1<···<i<···<βr⩽n

1⩽α1<···<j<···<αr⩽m

εα1+β1

1 · · · εαr+βr
r (AB)j,i

(
α1 · · · j · · · αr

β1 · · · i · · · βr

)
.

Using the Cauchy-Binet formula for square matrices (Theorem 3.1), we get

(AB)
(ε1,...,εr,r)
ij =

∑
1⩽β1<···<i<···<βr⩽n

1⩽α1<···<j<···<αr⩽m

εα1+β1

1 · · · εαr+βr
r

[
r∑

k=1

Aj,k

(
α1 · · · j · · · αr

1 · · · k · · · r

)

.Bk,i

(
1 · · · k · · · r
β1 · · · i · · · βr

)]

=

r∑
k=1

[ ∑
1⩽β1<···<i<···<βr⩽n

ε1+β1

1 · · · εr+βr
r Bk,i

(
1 · · · k · · · r
β1 · · · i · · · βr

)]

×

[ ∑
1⩽α1<···<j<···<αr⩽m

ε1+α1

1 · · · εr+αr
r Aj,k

(
α1 · · · j · · · αr

1 · · · k · · · r

)]

= ε−2
1 · · · ε−2r

r

r∑
k=1

B
(ε1,...,εr,r)
i,k A

(ε1,...,εr,r)
k,j .

■
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According to Lemma 2.2 and Lemma 5.2, we can compute the determinantal inverses
using the notion of the full-rank matrix factorization.

Corollary 5.3 If A = PQ is a full-rank matrix factorization of A ∈ Cm×n
r , then the

determinantal inverse of A is

A−1
(ε1,...,εr,r)

= ε−2
1 . . . ε−2r

r Q−1
(ε1,...,εr,r)

P−1
(ε1,...,εr,r)

, r = ρ(ε1,...,εr)(A).

Let ε1 = · · · = εr = ε. Then

A−1
(ε,r) = ε−r(r+1)Q−1

(ε,r)P
−1
(ε,r) and r = ρε(A).

Using Theorem 1.2, we can immediately prove the following corollary.

Corollary 5.4 If A ∈ Cm×n
r and r = ρ(ε1,...,εr)(A), then

A−1
(ε1,...,εr,r)

= ε−2
1 · · · ε−2r

r Q−1
(ε1,...,εr,r)

P−1
(ε1,...,εr,r)

and also,

• If P−1
(ε1,...,εr,r)

= P † and Q−1
(ε1,...,εr,r)

= Q†, then A ∈ A{1, 2, 3, 4};
• If P−1

(ε1,...,εr,r)
= P † and Q−1

(ε1,...,εr,r)
̸= Q†, then A ∈ A{1, 2, 3};

• If P−1
(ε1,...,εr,r)

̸= P † and Q−1
(ε1,...,εr,r)

= Q†, then A ∈ A{1, 2, 4};
• In other cases, we have A ∈ A{1, 2}.

Example 5.5 Let

A =


−2 4 4
−3 1 6
2 0 −4
−1 −1 2

 .

Now, we have A = PQ, where

P =


1 3

−1 2
1 −1

−1 0

 and Q =

(
1 1 −2

−1 1 2

)
.

The right inverse of Q is

Q−1
(R,2) =

1
det
(R,2)

(Q)


det
(R,1)

(
1 2
)

− det
(R,1)

(
1 −2

)
− det

(R,1)

(
−1 2

)
det
(R,1)

(
1 −2

)
det
(R,1)

(
−1 1

)
− det

(R,1)

(
1 1
)
 = 1

6

−1 −3
3 3

−2 0

 .
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The left inverse of P is

P−1
(R,2) =

1

det
(R,2)

(P )


det
(R,1)

 2
−1
0

 − det
(R,1)

 3
−1
0

 det
(R,1)

3
2
0

 − det
(R,1)

 3
2

−1


− det

(R,1)

−1
1

−1

 det
(R,1)

 1
1

−1

 − det
(R,1)

 1
−1
−1

 det
(R,1)

 1
−1
1




=

1

8

(
3 −4 1 0
3 −1 −1 3

)
and the right generalized inverse of A is equal to

A−1
(R,2) = Q−1

(R,2)P
−1
(R,2) =

1

48

−11 6 3 −9
15 −12 −3 9
−4 6 0 0

 .

The next result represents a sufficient condition for the equivalence of the determinan-
tal inverse and the Moore-Penrose inverse.

Corollary 5.6 If r = ρε̃(A) and the matrix A satisfies the condition

A

(
i1 · · · ir
j1 · · · jr

)
= k εi1,...,ir;j1,...,jr , k ∈ C (C1)

for all (i1, · · · , ir) ∈ Qr,m and (j1, · · · , jr) ∈ Qr,n, then A−1
(ε̃,r) = A†.

Proof. For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, it can be easily seen that Nr(A) =

k det
(ε̃,r)

(A) and A
(†,r)
ji = kA

(ε,r)
ji . Thus, the result follows considering Theorem 1.1. ■

Now, by Corollary 5.6 and Corollary 5.4, the following algorithm is presented for
computing the determinantal inverse A−1

(ε̃,ρε̃(A)).

Algorithm 1.

Case 1. If p = ρε̃(A) = min{m,n}, then apply rules 1.1 and 1.2.
Rule 1.1 If A satisfies the codition (C1), then A−1

(ε̃,p) = A†.

Rule 1.2 If the condition (C1) does not holds for A, then

(a) For m ⩽ n, if
(
A−1

(ε̃,p)A
)∗

= A−1
(ε̃,p)A, then A−1

(ε̃,p) = A†,

else A−1
(ε̃,p) is a right inverse of A;

(b) For n ⩽ m, if
(
AA−1

(ε̃,p)

)∗
= AA−1

(ε̃,p), then A−1
(ε̃,p) = A†,

else A−1
(ε̃,p) is a left inverse of A.

Case 2. If ρε̃(A) = ran(A) = r < min{m,n}, then
Rule 2.1 If A satisfies the codition (C1), then A−1

(ε̃,r) is the Moore-Penrose

inverse of A.
Rule 2.2 If the condition (C1) does not holds, compute a full-rank factor-
ization A = PQ and select one of the following two rules.
Rule 2.3 If both P and Q satisfy condition (C1), then A−1

(ε̃,r) = A†.
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Rule 2.4 If both P or Q satisfy condition (C1), then
(a) A−1

(ε̃,r) satisfies conditions (1), (2) and (3), if m ⩽ n;

(b) A−1
(ε̃,r) satisfies conditions (1), (2) and (4), if m ⩾ n.

Rule 2.5 If neither P nor Q satisfies condition (C1), use Corollary 5.3.
Case 3. If ρε̃(A) < ran(A), then A−1

(ε̃,r) /∈ A{1, 2}.

Example 5.7 The matrix

A =

(
−1 1 2
−1 −4 −3

)

satisfies the condition (C1) so that

A−1
(R,2) = A† =

−1
5

1
3

−2
5 −3

5
3
5

2
5

 .

Example 5.8 The rank-deficient matrix

A =

 1 1 0
0 1 1
−1 0 1


satisfies condition (C1). According to rule 2.1, A−1

(R,2) is the Moore-Penrose inverse of A

and

A(†,2) =

1
3 0 −1

3
1
3

1
3 0

0 1
3

1
3

 .

Example 5.9 Consider

A =


1 2 1
−1 2 3
2 3 1
0 2 2

 .

We have rank(A) = 2, and det
(R,2)

(A) = 9. A full-rank factorization of A is

P =


1 1

−1 3
2 1
0 2

 and Q =

(
1 1 0
0 1 1

)
.
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The matrix Q satisfies condition (C1), so that Q−1
(R,2) = Q†. Also, P−1

(R,2) ̸= P † so that

A−1
(R,2) =

−1
2

1
6

1
3 −2

3
7
6 −1

2 −1
3

5
6

−2
3

1
3 0 −1

6


satisfies conditions (1), (2) and (4).

Example 5.10 Full-rank factorization of

A =


1 4 6
3 14 22
2 10 16
0 2 4


is

P =


1 3
3 11
2 8
0 2

 and Q =

(
1 1 0
0 1 2

)
.

Using P−1
(R,2) ̸= P † and Q−1

(R,2) ̸= Q†, it is easy to see that

A−1
(R,2) =

−2 −1 2 0
9
2

5
2 −5 0

−5
2 −3

2 3 0

 ∈ A{1, 2}.

Example 5.11 Consider a matrix of the form A =

1 −2 2 3
0 0 2 1
2 3 −3 −1

 . If we use the Radić

definition, then it is easy to verify that ρε(A) = 2 < rank(A) and det
(R,2)

(A) = −28.

Moreover, X = A−1
(R,2) =


−6 6 0
5 −2 −3
3 −8 5

−6 9 −3

 and AXA =

−14 77 −35 −70
14 21 −35 −14

−42 −63 105 42

 ̸= A and

XAX = X.
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