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1. Introduction and preliminaries

We apply the following definitions introduced by Aliprantis and Border [3] and Altun
and Cevik [4, 5].
Let (E ,⩽) be a partially ordered set. The notation a < b stands for a ⩽ b but a ̸= b. An
order interval [a, b] in E is the set {c ∈ E : a ⩽ c ⩽ b}. A real linear space E along with an
order relation ⩽ on E which is compatible with the algebraic structure of E is named an
ordered vector space. Then (E ,⩽) is named a Riesz space if for every a, b ∈ E , there exist
a ∧ b = inf{a, b} and a ∨ b = sup{a, b}. If a+ = 0 ∨ a, a− = 0 ∨ (−a) and |a| = a ∨ (−a),
then a = a+ − a− and |a| = a+ + a−. The cone {a ∈ E : a ⩾ 0} in a Riesz space E is
marked by E+. A sequence of vectors {an} in E is said to decrease (increase) to an element
a ∈ E if an+1 ⩽ an (an ⩽ an+1) for each n ∈ N and a = inf{an : n ∈ N} = ∧n∈Nan
(a = sup{an : n ∈ N} = ∨n∈Nan), and we denote it by an ↓ a (an ↑ a). Also, E is
named Archimedean if 1

na ↓ 0 for each a ∈ E+. Moreover, a sequence (bn) is named order
convergent or o-convergent to b if there is a sequence (an) in E provided that an ↓ 0 and
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|bn− b| ⩽ an for all n. We denote this by bn
o→ b. Further, (bn) is o-Cauchy if there exists

a sequence (an) in E so that an ↓ 0 and |bn − bn+p| ⩽ an for all n and p. E is o-complete
if every o-Cauchy sequence is o-convergent. For other things about Riesz spaces, see [3].

Definition 1.1 [4, 5] Assume that X ̸= ∅ and E is a Riesz space. The function d :
X × X → E is named a vector metric or E-metric if

(E1) d(x, y) = 0 iff x = y;
(E2) d(x, y) ⩽ d(x, z) + d(y, z).

for all x, y, z ∈ X

In this case, the triple (X , d, E) is named a E-metric space.

Example 1.2 [4, 5] A Riesz space E with d : E × E → E given by d(x, y) = |x− y| is a
E-metric space. This metric is called the absolute valued metric.

Obviously, E-spaces extend metric spaces.

Definition 1.3 [4, 5] Let (xn) be a sequence in a E-metric space. Then

(s1) (xn) E-converges to x ∈ X (we write xn
d,E−→ x) if there is a sequence (an) in E

provided that an ↓ 0 and d(xn, x) ⩽ an for each n;
(s2) (xn) is E-Cauchy if there is a sequence (an) in E so that an ↓ 0 and d(xn, xn+p) ⩽

an for each n and p.

A E-metric space is named E-complete if every E-Cauchy sequence in X E-converges to
a x ∈ X .

The difference between E-metric and Zabrejko’s metric [15] is that the Riesz space has
a lattice structure. Also, the difference between E-metric and Huang-Zhang’s metric [7]
is that there exists a cone due to the existence of ordering on Riesz space. The other
difference is that E-metric omits the requirement for the vector space to be a Banach
space. Moreover, if E = R, then the definitions of E-convergence and convergence in
metric are the same. Further, if X = E and d is a absolute valued metric, then E-
convergence (E-Cauchy) and convergence (Cauchy) in order are the same.

Lemma 1.4 [4] If E is a Riesz space and a ⩽ ka where a ∈ E+ and k ∈ [0, 1), then
a = 0.

Definition 1.5 [11] Assume that f, g : X → X are two arbitrary mappings. If fw =
gw = z for a w ∈ X , then w is called a coincidence point of f and g, and z is called a
point of coincidence of f and g.

Sessa [13] introduced the concept of weakly commuting to obtain common fixed point
for a pairs of mappings. Also, Jungck extended the concept of commuting mappings to
compatible mappings in [10] and to weakly compatible mappings in [9]. There exist some
examples show that each of these extensions of commutativity are a proper generalization
of former definitions.

Definition 1.6 [11] Assume f, g : X → X are two mappings. Then f and g are said to
be weakly compatible if they commute at every coincidence point.

Lemma 1.7 [1] Assume that f and g are two weakly compatible self-mappings on X
provided that they have a unique point of coincidence z = fw = gw. Then z is the
unique common fixed point of f and g.
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2. Results

The following theorem is the E-metric version of Theorem 2.1 of [8] and Theorem 2.2
of [2].

Theorem 2.1 Assume that X is a E-metric space with E is Archimedean and mappings
f, g, S, T : X → X satisfy the following conditions:

(i) for each x, y ∈ X ,

d(fx, gy) ⩽ kux,y(f, g, S, T ) (1)

in which k ∈ (0, 1) and

ux,y(f, g, S, T ) ∈
{
d(Sx, Ty), d(fx, Sx), d(gy, Ty),

1

2
[d(fx, Ty) + d(gy, Sx)]

}
;

(2)

(ii) f(X ) ⊂ T (X ) and g(X ) ⊂ S(X ).

If one of f(X ), g(X ), S(X ) or T (X ) is a E-complete subspace of X , then {f, S} and {g, T}
have a unique point of coincidence. Also, if {f, S} and {g, T} are weakly compatible, then
f , g, S and T have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary. Since f(X ) ⊂ T (X ), there exists x1 ∈ X so that
f(x0) = T (x1) = z1. Since g(X ) ⊂ S(X ), there exists x2 ∈ X so that g(x1) = S(x2) = z2.
By repeating this procedure, construct a sequence {zn} defined by

fx2n−2 = Tx2n−1 = z2n−1;

gx2n−1 = Sx2n = z2n.

We first establish

d(z2n+1, z2n+2) ⩽ kd(z2n, z2n+1) (3)

for each n. Using (1), we get

d(z2n+1, z2n+2) = d(fx2n, gx2n+1) ⩽ kux2n,x2n+1
(f, g, S, T )

for all n ∈ N, where

ux2n,x2n+1
(f, g, S, T ) ∈

{
d(z2n, z2n+1), d(z2n+1, z2n+2),

d(z2n, z2n+1) + d(z2n+1, z2n+2)

2

}
.

If ux2n,x2n+1
(f, g, S, T ) = d(z2n, z2n+1), then (3) holds. If ux2n,x2n+1

(f, g, S, T ) =
d(z2n+1, z2n+2), then d(z2n+1, z2n+2) = 0 by Lemma 1.4 and (3) holds. Ultimately, assume
that

ux2n,x2n+1
(f, g, S, T ) =

d(z2n, z2n+1) + d(z2n+1, z2n+2)

2
.
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Then

d(z2n+1, z2n+2) ⩽
k

2
d(z2n, z2n+1) +

1

2
d(z2n+1, z2n+2)

holds. Analogously, we get

d(z2n+2, z2n+3) ⩽ kd(z2n+1, z2n+2). (4)

So, by (3) and (4), we obtain

d(zn, zn+1) ⩽ knd(z0, z1). (5)

Now, using (E2) and (5). Then, we get

d(zn, zn+p) ⩽
kn

1− k
d(z0, z1)

for all n and p. Now, due to being Archimedean E , {zn} is a E-Cauchy sequence. Assume

that S(X ) is a E-complete subspace of X . Then there is z ∈ S(X ) so that Sx2n = z2n
d,E−→

z. Hence, there exists a sequence {an} in E provided that an ↓ 0 and d(Sx2n, z) ⩽ an.
Beside, there is w ∈ X so that Sw = z. Now, we establish that fw = z. Using (E2) and
(1), we get

d(fw, z) ⩽ d(fw, gx2n+1) + d(gx2n+1, z) ⩽ kuw,x2n+1
(f, g, S, T ) + an+1

in which

uw,x2n+1
(f, g, S, T ) ∈

{
d(Sw, Tx2n+1), d(fw, Sw), d(gx2n+1, Tx2n+1),

d(fw, Tx2n+1) + d(gx2n+1, Sw)

2

}
for every n. There are four cases.

1. d(fw, z) ⩽ d(Sw, Tx2n+1) + an+1 ⩽ an+1 + an+1 ⩽ 2an.
2. d(fw, z) ⩽ kd(fw, Sw) + an+1 ⩽ kd(fw, z) + an. Hence,

d(fw, z) ⩽ 1
1−kan.

3. d(fw, z) ⩽ d(gx2n+1, Tx2n+1) + an+1 ⩽ 2an+1 + an+1 ⩽ 3an.
4.

d(fw, z) ⩽ d(fw, Tx2n+1) + d(gx2n+1, Sw)

2
+ an+1

⩽ d(fw, z) + d(z, Tx2n+1) + d(gx2n+1, z)

2
+ an+1

⩽ 1

2
d(fw, z) + 2an.

Thus, d(fw, z) ⩽ 4an.
Since the infimum of sequences on the right side of last inequality are zero, then
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d(fw, z) = 0; namely, fw = z. So, fw = Sw = z. Since z ∈ f(X ) ⊂ T (X ), there is
v ∈ X provided that Tv = z. Now, we establish that gv = z. Using (E2) and (1), we get

d(z, gv) ⩽ d(z, fx2n) + d(fx2n, gv) ⩽ an + kux2n,v(f, g, S, T )

in which

ux2n,v(f, g, S, T ) ∈
{
d(Sx2n, T v), d(fx2n, Sx2n), d(gv, Tv),

d(fx2n, T v) + d(gv, Sx2n)

2

}
for every n. There are four cases.

1. d(z, gv) ⩽ an + d(Sx2n, T v) ⩽ an + an+1 ⩽ 2an.
2. d(z, gv) ⩽ an + d(fx2n, Sx2n) ⩽ an + 2an ⩽ 3an.
3. d(z, gv) ⩽ an + kd(gv, Tv) ⩽ an + kd(gv, z). Hence, d(v, gz) ⩽ 1

1−kan.
4.

d(z, gv) ⩽ an +
d(fx2n, T v) + d(gv, Sx2n)

2

⩽ an +
d(fx2n, z) + d(gv, z) + d(z, Sx2n)

2

⩽ 2an +
1

2
d(z, gv).

So, d(z, gv) ⩽ 4an.
Since the infimum of sequences on the right side of last inequality are zero, then d(z, gv) =
0; namely, gv = z. So, gv = Tv = z. Thus, {f, S} and {g, T} have a common point of
coincidence. Now, if {f, S} and {g, T} are weakly compatible, fz = fSw = Sfw = Sz =
z1 ∈ X and gz = gTv = Tgv = Tz = z2 ∈ X . Hence,

d(z1, z2) = d(fz, gz) ⩽ kuz,z(f, g, S, T ),

where

uz,z(f, g, S, T ) ∈
{
d(Sz, Tz), d(fz, Sz), d(gz, Tz),

d(fz, Tz) + d(gz, Sz)

2

}
=

{
0, d(z1, z2)

}
.

So d(z1, z2) = 0; namely, z1 = z2. If {f, S} and {g, T} are weakly compatible, then z is
a unique common fixed point of f , g, S and T by Lemma 1.7. The proof is analogous
above when f(X ), g(X ) or T (X ) is complete. ■

The following corollary generalizes Fisher’s theorem [6] and Theorem 2.1 of Abbas and
Jungck [1] to E-metric spaces.

Corollary 2.2 Assume that X is a E-metric space with E is Archimedean and mappings
f, g, S, T : X → X satisfy

d(fx, gy) ⩽ kd(Sx, Ty)
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for every x, y ∈ X in which k ∈ [0, 1). If f(X ) ⊂ T (X ) and g(X ) ⊂ S(X ), and one of
f(X ), g(X ), S(X ) or T (X ) is a E-complete subspace of X , then {f, S} and {g, T} have a
unique point of coincidence in X . Also, if {f, S} and {g, T} are weakly compatible, then
f , g, S and T have a unique common fixed point.

Proof. It’s sufficient to consider ux,y(f, g, S, T ) = d(Sx, Ty) in Theorem 2.1. ■

Example 2.3 Let E = R, X = [0,∞) and d(x, y) = |x − y| for x, y ∈ X . Also, assume
that f, g, T, S : X → X are given as f(x) = g(x) = ln(x+ 1) and T (x) = S(x) = ex − 1.
Then {f, S} and {g, T} are weakly compatible and the range of all of mappings are
complete subspace of X . Further, by applying mean value theorem, we get

d(fx, gy) = | ln(x+ 1)− ln(y + 1)| ⩽ k|x− y| ⩽ k|ex − ey| = kd(Tx, Sy)

for every x, y ∈ X in which k = 1
1+c ∈ [0, 1) with x < c < y. So f , g, S and T satisfy

all conditions in Corollary 2.2. Furthermore, 0 is a unique common fixed point of these
mappings.

The following result is gained from Theorem 2.1 to E-metric spaces.

Corollary 2.4 Assume that X is a E-metric space with E is Archimedean and mappings
f, g, S, T : X → X satisfy the following conditions:

(i) d(fpx, gqy) ⩽ kux,y(f
p, gq, Sp, T q) for all x, y ∈ X and some p, q ∈ N in which

k ∈ (0, 1) and

ux,y(f
p, gq, Sp, T q) ∈ {d(Spx, T qy), d(fpx, Spx), d(gqy, T qy),

1

2
[d(fpx, T qy) + d(gqy, Spx)]};

(ii) f(X ) ⊂ T (X ) and g(X ) ⊂ S(X ).

If one of f(X ), g(X ), S(X ) or T (X ) is a E-complete subspace of X , then {f, S} and {g, T}
have a unique point of coincidence. Also, if {f, S} and {g, T} are weakly compatible, then
f , g, S and T have a unique common fixed point.

The following corollary is same Theorem 2.1 of Soleimani Rad and Altun [14], where
generalizes Corollary 2.5 of Abbas et al. [2].

Corollary 2.5 Assume that X is a E-metric space with E is Archimedean and mappings
f, g, T : X → X satisfy the following conditions:

(i) d(fx, gy) ⩽ kux,y(f, g, T ) for every x, y ∈ X in which k ∈ (0, 1) and

ux,y(f, g, T ) ∈
{
d(Tx, Ty), d(fx, Tx), d(gy, Ty),

1

2
[d(fx, Ty) + d(gy, Tx)]

}
;

(ii) f(X ) ∪ g(X ) ⊂ T (X ).

If one of f(X ), g(X ) or T (X ) is a E-complete subspace of X , then {f, T} and {g, T} have
a unique point of coincidence. Further, if {f, T} and {g, T} are weakly compatible, then
f , g and T have a unique common fixed point.

Proof. It’s sufficient to consider S = T in Theorem 2.1. ■
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In Corollary 2.5, consider g = f . Then we obtain the same Corollary 2.2 in [14] as
bellow.

Corollary 2.6 Assume that X is a E-metric space with E is Archimedean and mappings
f, T : X → X satisfy the following conditions:

(i) d(fx, fy) ⩽ kux,y(f, T ) for every x, y ∈ X in which k ∈ (0, 1) and

ux,y(f, T ) ∈ {d(Tx, Ty), d(fx, Tx), d(fy, Ty), 1
2
[d(fx, Ty) + d(fy, Tx)]};

(ii) f(X ) ⊂ T (X ).

If one of f(X ) or T (X ) is a E-complete subspace of X , then {f, T} have a unique point
of coincidence. Further, if {f, T} are weakly compatible, then f and T have a unique
common fixed point.

Corollary 2.7 Assume that X is a E-metric space with E is Archimedean and mapping
f : X → X satisfies the inequality

d(fx, fy) ⩽ kux,y(f)

for all x, y ∈ X in which k ∈ (0, 1) and

ux,y(f) ∈ {d(x, y), d(fx, x), d(fy, y), 1
2
[d(fx, y) + d(fy, x)]}.

If f(X) is a E-complete subspace of X , then f has a unique fixed point.

Proof. It’s sufficient to set T = iX in Corollary 2.6 in which iX is identity mapping on
X . ■

The following theorem is the E-metric version of Theorem 2.6 of [2].

Theorem 2.8 Assume that X is a E-metric space with E is Archimedean and mappings
f, g, S, T : X → X satisfy the following conditions:

(i) for all x, y ∈ X ,

d(fx, gy) ⩽ k1d(Sx, Ty) + k2d(fx, Sx) + k3d(gy, Ty) (6)

+ k4d(fx, Ty) + k5d(gy, Sx),

where ki for i = 1, 2, · · · , 5 are nonnegative constants and

k1 + k2 + k3 + 2max{k4, k5} < 1; (7)

(ii) f(X ) ⊂ T (X ) and g(X ) ⊂ S(X ).

If one of f(X ), g(X ), S(X ) or T (X ) is a E-complete subspace of X , then {f, S} and {g, T}
have a unique point of coincidence. Also, if {f, S} and {g, T} are weakly compatible, then
f , g, S and T have a unique common fixed point.

Proof. For each arbitrary point x0 ∈ X , take the sequences {xn} and {zn} as the proof
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of Theorem 2.1. Using (6), we obtain

d(z2n+1, z2n+2) ⩽ k1d(z2n, z2n+1) + k2d(z2n+1, z2n) + k3d(z2n+2, z2n+1)

+ k4d(z2n+1, z2n+1) + k5d(z2n+2, z2n).

Thus,

d(z2n+1, z2n+2) ⩽ βd(z2n, z2n+1), (8)

where β = k1+k2+k5

1−k3−k5
< 1 by (7). Analogously, we have

d(z2n+3, z2n+2) ⩽ k1d(z2n+2, z2n+1) + k2d(z2n+3, z2n+2) + k3d(z2n+2, z2n+1)

+ k4d(z2n+3, z2n+1) + k5d(z2n+2, z2n+2).

Hence,

d(z2n+3, z2n+2) ⩽ βd(z2n+2, z2n+1), (9)

where β = k1+k3+k4

1−k2−k4
< 1 by (7). Using (8) and (9), we get

d(zn, zn+1) ⩽ βnd(z0, z1).

As the same discussion of Theorem 2.1, {zn} is E-Cauchy. Assume that S(X ) is a E-
complete subspace of X . Then there is z ∈ S(X ) provided that Sx2n = z2n

d,E−→ z. Thus,
there exists a sequence {an} in E so that an ↓ 0 and d(Sx2n, z) ⩽ an. Beside, we can find
w ∈ X so that Sw = v. Now, we establish that fw = v. From (6), we obtain

d(fw, z) ⩽ d(fw, gx2n+1) + d(gx2n+1, z)

⩽ (k1 + k3 + k4)d(z, Tx2n+1) + (k2 + k4)d(fw, z)

+ (k3 + k5 + 1)d(gx2n+1, z).

So,

d(fw, z) ⩽ k1 + 2k3 + k4 + k5 + 1

1− k2 − k4
an

for every n. Hence, d(fw, v) = 0; namely, fw = z. Since z ∈ f(X) ⊂ T (X), there is
v ∈ X provided that Tv = z. Now, we establish that gv = z. From (6), we obtain

d(z, gv) ⩽ d(z, fx2n) + d(fx2n, gv)

⩽ (k1 + k2 + k5)d(z, Sx2n) + (k3 + k5)d(gv, z)

+ (k2 + k4 + 1)d(fx2n, z).

So,

d(gv, z) ⩽ k1 + 2k2 + k4 + k5 + 1

1− k3 − k5
an
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for every n. Hence d(gv, z) = 0; namely, gv = z. Now, if {f, S} and {g, T} are weakly
compatible, fz = fSw = Sfw = Sz = z1 ∈ X and gz = gTv = Tgv = Tz = z2 ∈ X . By
using (6) and doing simple calculation, we have

d(z1, z2) ⩽ (k1 + k4 + k5)d(z1, z2),

which implies that d(z1, z2) = 0 by (7) and Lemma 1.4. Hence, z1 = z2; namely, {f, S}
and {g, T} have a unique point of coincidence. If {f, S} and {g, T} are weakly compatible,
then z is a unique common fixed point of f , g, S and T by Lemma 1.7. The proof is
analogous above when f(X ), g(X ) or T (X ) is complete. ■

The following corollary is same Theorem 2.5 of Soleimani Rad and Altun [14], where
generalizes Corollary 2.10 of Abbas et al. [2] to E-metric spaces.

Corollary 2.9 Assume that X is a E-metric space with E is Archimedean and mappings
f, g, T : X → X satisfy the following conditions:

(i) for every x, y ∈ X ,

d(fx, gy) ⩽ k1d(Tx, Ty) + k2d(fx, Tx) + k3d(gy, Ty)

+ k4d(fx, Ty) + k5d(gy, Tx),

where ki for i = 1, 2, · · · , 5 are nonnegative and

k1 + k2 + k3 + 2max{k4, k5} < 1;

(ii) f(X ) ∪ g(X ) ⊂ T (X ).

If one of f(X ), g(X ) or T (X ) is a E-complete subspace of X , then {f, T} and {g, T} have
a unique point of coincidence. Also, if {f, T} and {g, T} are weakly compatible, then f ,
g and T have a unique common fixed point.

Proof. It’s sufficient to consider S = T in Theorem 2.8. ■

Corollary 2.10 Assume that X is a E-metric space with E is Archimedean and mappings
f, T : X → X satisfy the following conditions:

(i) for every x, y ∈ X ,

d(fx, fy) ⩽ k1d(Tx, Ty) + k2d(fx, Tx) + k3d(fy, Ty)

+ k4d(fx, Ty) + k5d(fy, Tx)

in which ki for i = 1, 2, · · · , 5 are nonnegative and

k1 + k2 + k3 + 2max{k4, k5} < 1;

(ii) f(X ) ⊂ T (X ).

If one of f(X ) or T (X ) is a E-complete subspace of X , then {f, T} have a unique point
of coincidence in X . Also, if {f, T} are weakly compatible, then f and T have a unique
common fixed point.

Proof. It’s sufficient to consider g = f in Corollary 2.9. ■
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Remark 1 Note that although the proof of our results is completely similar to Rahimi et
al.’s paper [12] but our results is different of [12], since we consider vector metric spaces
instead of ordered vector metric spaces. Actually, it is hard to find mappings satisfying
all of condition in the results of Rahimi et al. Also, the assumptions of our theorems and
corollaries is much less than of assumptions of theorems and corollaries in mentioned
paper.

3. Conclusion

In this paper, we introduced E-metric version of some famous fixed point theorems
without appealing to continuity of mappings. Note that the E-metric is generalization
of usually metric, Zabrejko’s metric [15], and Huang and Zhang’s metric [7]. Thus, our
theorems and corollaries unify, extend and generalize well-known comparable results of
fixed point theory in metric spaces and cone metric spaces like Jungck and Rhoades
[8–11], Abbas and Jungck [1]. Moreover, Our work was continuing and reviewing work
of Altun and Cevik [4, 5] and Soleimani Rad and Altun [14].
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