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Abstract. In this paper, we study some categorical structures of the category CoarsePro,
whose objects are coarse proximity spaces and whose morphisms are coarse proximity maps.
We investigate the structure of initial, final, embedding and quotient morphisms in the con-
struct CoarsePro. A special attention is paid to investigate quotients by introducing some
conditions that they exist. Also, it is shown that bimorphisms are exactly bijective coarse
proximity maps, but not isomorphisms. Consequently, CoarsePro is not balanced.
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1. Introduction and Preliminaries

In classical topology, there are various ways for studying small-scale structures on a
set. Uniformity and proximity are two different ways for this concept. In 1937, Weil [15]
defined the concept of uniformity and in 1950, Efremovič [3, 4] used proximity relations
for studying small-scale notions. In contrast to classical topology, coarse topology in-
vestigates the large-scale aspects of spaces, including the large-scale analog of uniform
spaces, called coarse spaces [13]. Because coarse spaces generalize coarse properties of
metric spaces, some topologists have attempted to define a concept of large-scale prox-
imity. In [6], Hartmann defined a binary relation on the power set of a metric space as
the negation of asymptotic disjointness. In [9], the authors presented asymptotic resem-
blance relations as a generalization of the Hausdorff distance relations of metric spaces.
Recently, Grzegrzolka and Siegert [5] have defined coarse proximity structures, which are
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an analog of small-scale proximity spaces in the large-scale context. The relationships
between proximity spaces, ideals and grills investigated by many researchers, for example
see [8, 10, 11, 14].

In this paper, we study some categorical structures of the category CoarsePro of
coarse proximity spaces with coarse proximity maps. We show that monomorphisms and
epimorphisms are exactly injective and surjective coarse proximity maps, respectively.
Thus bimorphisms are bijective coarse proximity maps, but not isomorphisms. Conse-
quently, CoarsePro is not balanced. Also, we introduce the structure of initial, final,
embedding and quotient morphisms in the construct CoarsePro. In particular, we show
that the embedding morphisms are precisely the coarse proximity embedding maps and
the quotient maps are precisely the coarse proximity quotient maps.

In the following, readers are suggested to refer to [1] for some categorical notions. We
first recall some basic results and concepts of proximity and coarse proximity structures
given in [5, 12].

Definition 1.1 LetX be a set and P (X) be the power set ofX. A (Efremovič) proximity
on a set X is a relation δ on P (X) satisfying the following axioms for all A,B,C ∈ P (X):

(1) AδB implies BδA,
(2) AδB implies A ̸= ∅ and B ̸= ∅,
(3) A ∩B ̸= ∅ implies AδB,
(4) (A ∪B)δC if and only if AδC or BδC,
(5) Aδ̄B implies that there exists a subset E such that Aδ̄E and (X − E)δ̄B,

where Aδ̄B means AδB is not true. If AδB, then we say that A is close to (or near) B.
Axiom 4 is called the union axiom and axiom 5 is called the strong axiom. A pair (X, δ),
where X is a set and δ is a proximity on X, is called a proximity space.

Definition 1.2 A function f : (X, δ1) → (Y, δ2) is called a proximity map if Aδ1B
implies f(A)δ2f(B) for all A,B ⊆ X.

Definition 1.3 A bornology B on a set X is a family of subsets of X satisfying:

(1) {x} ∈ B for all x ∈ X,
(2) A ⊆ B and B ∈ B implies A ∈ B (i.e., it is closed under taking subsets),
(3) if A,B ∈ B, then A ∪B ∈ B (i.e., it is closed under taking finite unions).

The elements of B are called bounded and subsets of X not in B are called unbounded.

Bornologies play an important role in the theory of locally convex spaces [7], bound-
edness in metric spaces [2] and coarse geometry [5].

Example 1.4 The following families are bornologies on a set X:

(1) the finite subsets of X,
(2) the countable subsets of X,
(3) the power set P (X),
(4) the bounded subsets of a metric space X,
(5) the totally bounded subsets of a metric space X,
(6) the subsets of a metric space X with compact closure.

Definition 1.5 Let B be a bornology on a set X. A binary relation b on P (X) is called
a coarse proximity on X if it satisfies the following axioms for all A,B,C ∈ P (X):

(A1) AbB implies BbA,
(A2) AbB implies A /∈ B and B /∈ B,
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(A3) A ∩B /∈ B implies AbB,
(A4) (A ∪B)bC if and only if AbB or BbC,
(A5) Ab̄B implies that there exists a subset E such that Ab̄E and (X − E)b̄B,

where Ab̄B means AbB is not true. A triple (X,B,b), where X is a set, B is a bornology
on X and b a coarse proximity on X, is called a coarse proximity space and the pair
(B,b) a coarse proximity structure on X. Axiom (A4) is called the union axiom and (A5)
is called the strong axiom.

Example 1.6 Let (X, d) be a metric space, Bd be the collection of all bounded sets
of X with respect to the metric d and bd be the relation defined by AbdB. If there
exists ϵ < ∞ such that d(A −D,B −D) < ϵ for all bounded sets D, then this relation
is a coarse proximity on X. We call this relation the metric coarse proximity and the
associated space (X,Bd,bd) the metric coarse proximity space.

Example 1.7 Let B be a bornology on a set X. For any subsets A and B of X, define

(1) Ab1B ⇐⇒ A ∩B /∈ B,
(2) Ab2B ⇐⇒ A,B /∈ B.

Then b1 and b2 are coarse proximities on X, called the discrete and indiscrete coarse
proximity, respectively.

Definition 1.8 Let (X,B1,b1) and (Y,B2,b2) be coarse proximity spaces. Let f : X →
Y be a function and A and B subsets of X. Then f is a coarse proximity map provided
that the following are satisfied:

(1) B ∈ B1 implies f(B) ∈ B2,
(2) Ab1B implies f(A)b2f(B).

Remark 1 Notice that a coarse proximity map sends unbounded sets to unbounded sets.
For if B /∈ B1, then Bb1B. Thus, f(B)b2f(B), implying that f(B) /∈ B2. Consequently,
the preimages of bounded sets are bounded.

Definition 1.9 Let (X,B,b) be a coarse proximity space. Given subsets A,B ⊆ X, we
say that B is a b-coarse neighborhood of A, denoted A ≪ B, if Ab̄(X −B).

Theorem 1.10 Let (X,B,b) be a coarse proximity space. Let A,B,C and D be subsets
of X. Then the relation ≪ satisfies the following properties:

(P1) X ≪ (X −D) for all D ∈ B,
(P2) A ≪ B implies that there exists D ∈ B such that (A −D) ⊆ B, i.e., A ⊆ B up

to some bounded set D,
(P3) A ⊆ B ≪ C ⊆ D implies A ≪ D,
(P4) A ≪ (B ∩ C) if and only if A ≪ B and A ≪ C,
(P5) A ≪ B if and only if (X −B) ≪ (X −A),
(P6) A ≪ B implies that there exists C ⊆ X such that A ≪ C ≪ B.

Theorem 1.11 Let X be a set with a bornology B. If ≪ is a binary relation on P (X)
satisfying (P1) through (P6) of Theorem 1.10 and b is a relation on P (X) defined by

Ab̄B if and only if A ≪ (X −B).

Then b is a coarse proximity on X, called the coarse proximity induced by the relation
≪. Also, B is a b-neighborhood of A if and only if A ≪ B.
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Proposition 1.12 Let (X,B,b) be a coarse proximity space. Let A,B and C be subsets
of X. Then the following statements hold.

(1) If A ⊆ C, B ⊆ D, and AbB, then CbD.
(2) AbB if and only if for all D1, D2 ∈ B, (A−D1)b(B −D2).

2. Monomorphisms and epimorphisms

In this section, we show that monomorphisms and epimorphisms in CoarsePro
are exactly injective and surjective coarse proximity maps, respectively. Consequently,
CoarsePro is not balanced.

A coarse proximity space (X,B,b) is said to be bounded if X is bounded, i.e., X ∈ B,
otherwise X is said to be unbounded. The following lemma is an immediate consequence
of the definition of boundedness.

Lemma 2.1 A coarse proximity space (X,B,b) is bounded if and only if B is the power
set of X if and only if b is the empty relation.

By the previous lemma we have the following two results.

Corollary 2.2 The full subcategory of CoarsePro consisting of all bounded coarse
proximity space is isomorphic to the full subcategory of topological spaces consisting of
all discrete topological spaces and hence is isomorphic to the category Set.

Corollary 2.3 Let f : (X,B1,b1) → (Y,B2,b2) be any function whose domain is
bounded. Then f is a coarse proximity map if and only if B ∈ B1 implies f(B) ∈ B2.
In particular, since every finite coarse proximity space is bounded and every function
preserves finite subsets, it follows that if X is finite, then f is a coarse proximity map.

Theorem 2.4 A morphism f in CoarsePro is a monomorphism if and only if f is
injective.

Proof. It is clear that every injective coarse proximity map is a monomorphism. Con-
versely, let f : (X,B1,b1) → (Y,B2,b2) be a monomorphism and f(x) = f(y). Assume
that ({1},B0, ∅) is the one point coarse proximity space, where B0 = {∅, {1}}. Then by
Corollary 2.3, the functions α, β : ({1},B0, ∅) → (X,B1,b1) defined by α(1) = x and
β(1) = y are coarse proximity maps such that f ◦ α = f ◦ β. Thus α = β and hence
x = y. ■

Lemma 2.5 Let (X,B,b) be a coarse proximity space and a be a point such that a /∈ X.
Let Xa = X ∪{a}, Ba be the set {C | C ⊆ B∪{a} for some B ∈ B} and ba a relation
on Xa defined as follows:

AbaB ⇐⇒ (A− {a})b(B − {a}).

Then (Ba,ba) is a coarse proximity structure on Xa such that is coarser than of (B,b).

Proof. It is easy to verify that Ba is a bornology on Xa and B ⊆ Ba. Now, we show that
ba is a coarse proximity. Since b is symmetric, so is ba. To show (A2), let AbaB. Then
(A− {a})b(B − {a}), so (A− {a}) /∈ B and (B − {a}) /∈ B. Hence A /∈ Ba and B /∈ Ba.
To show (A3), let Ab̄aB. Then (A− {a})b̄(B − {a}), so ((A ∩B)− {a}) ∈ B and hence
(A ∩ B) ∈ Ba. The union axiom of b0 follows immediately from the union axiom of ba.
To show the strong axiom, assume Ab̄aB, i.e, (A−{a})b̄(B−{a}). By the strong axiom
of b, there exists a subset E ⊆ X such that (A−{a})b̄E and (X −E)b̄(B−{a}). Since
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a /∈ X, we have (A−{a})b̄(E −{a}) and ((Xa −E)−{a})b̄(B −{a}). Thus Ab̄aE and
(Xa − E)b̄aB. Finally, it is easy to check that (B,b) is finer than of (Ba,ba). ■

Theorem 2.6 A morphism f in CoarsePro is an epimorphism if and only if f is
surjective.

Proof. It is clear that every surjective coarse proximity map is an epimorphism. Con-
versely, assume that f : (X,B1,b1) → (Y,B,b) is an epimorphism such that is not surjec-
tive. Then there is y0 ∈ Y such that y0 /∈ f(X). Let (Ya,Ba,ba) be the coarse proximity
space defined as Lemma 2.5. Since (B,b) is finer than of (Ba,ba), the inclusion map
e : (Y,B,b) → (Y,Ba,ba) is a coarse proximity map. Let β : (Y,B,b) → (Y,Ba,ba) be
a function defined by β(y) = y for all y ̸= y0 and β(y0) = a. Then for every B ⊆ Y we
have

β(B) =

{
B, if y0 /∈ B,

(B ∪ {a})− {yo}, if y0 ∈ B.

We show that β is a coarse proximity map. It is clear that B ∈ B implies β(B) ∈ Ba.
If AbB, then by Proposition 1.12, (β(A) − {a})b(β(B) − {a}) and hence β(A)baβ(B).
Now, take α = e, then α and β are coarse proximity maps such that α ◦ f = β ◦ f . Thus
α = β and hence a = β(y0) = α(y0) = y0 ∈ Y , which is a contradiction. ■

Recall that a morphism in a categoryC is called a bimorphism if it is both epimorphism
and monomorphism; and the category C is called balanced if bimmorphisms are exactly
the isomorphisms. According to Theorems 2.4 and 2.6, a bimorphism in CoarsePro is
a bijective coarse proximity map. Therefore, a bimorphism in CoarsePro need not be
an isomorphism, for example, assume that X is a infinite set with the bornology B of
all finite subsets of X. If b1 and b2 are the discrete and indiscrete coarse proximities
on X, then the identity map id : (X,B,b1) → (X,B,b2) is a bimorphism but not an
isomorphism. Thus, we have the following result:

Corollary 2.7 The category CoarsePro is not balanced.

3. Initial and final Structures

In this section, we introduce the structure of final, initial, embedding and quotient
morphisms in the construct CoarsePro.
Let (A, | − |) be a concrete category over a category X. An A-morphism f : A → B is
called initial provided that for any A-object C an X-morphism g : |C| → |A| is an A-
morphism whenever f ◦ g : |C| → |B| is an A-morphism. An initial morphism f : A → B
that has a monomorphic underlying X-morphism f : |A| → |B| is called an embedding.
The concepts of final morphism and quotient morphism are dual to the concepts of initial
morphism and embedding, respectively. A concrete category over the category Set of sets
is called a construct [1].

Definition 3.1 Given a set X and two coarse proximity structures (B1,b1), (B2,b2)
on X, we say that (B1,b1) is finer than (B2,b2) or (B2,b2) is coarser than (B1,b1), if
B1 ⊆ B2 and b1 ⊆ b2, i.e., Ab1B implies Ab2B.

Theorem 3.2 Let f : X → (Y,B1,b1) be a function such that codomain be a coarse
proximity spaces. Then the coarsest coarse proximity structure (B0,b0) on X for which
f is a coarse proximity map, is defined by
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(1) B0 = {B ⊆ X | f(B) ∈ B1},
(2) Ab0B if and only if f(A)b1f(B).

Proof. It is easy to verify that B0 is a bornology on X. Now, we show that b0 is a coarse
proximity. Since b1 is symmetric, so is b0. To show (A2), let Ab0B. Then f(A)b1f(B),
so f(A) /∈ B1 and f(A) /∈ B1. Hence A /∈ B0 and B /∈ B0. To show (A3), let Ab̄0B.
Then f(A)b̄1f(B), so f(A) ∩ f(B) ∈ B1 and hence f(A ∩ B) ∈ B1. Thus A ∩ B ∈ B0.
The union axiom of b0 follows immediately from the union axiom of b1. To show the
strong axiom, assume Ab̄0B, i.e., f(A)b̄1f(B). By the strong axiom of b1, there exists
a subset F ⊆ Y such that f(A)b̄1F and (Y −F )b̄1B. Take E = f−1(F ), then f(E) ⊆ F
and f(X − E) ⊆ (Y − F ). By Proposition 1.12, f(A)b̄1f(E) and f(X − E)b̄1B. Thus
Ab̄0E and (X − E)b̄0B. Finally, it is clear that f : (X,B0,b0) → (Y,B1,b1) is a coarse
proximity map. Assume that (B2,b2) is another coarse proximity structure on X such
that f : (X,B2,b2) → (Y,B1,b1) is a coarse proximity map. If B ∈ B2, then f(B) ∈ B1

and hence B ∈ B0, which shows that B2 ⊆ B0. If Ab2B, then f(A)b1f(B), so Ab0B.
Hence b2 ⊆ b0. ■

Definition 3.3 The coarse proximity structure (B0,b0) defined in Theorem 3.2, is called
the induced coarse proximity structure by (f,B1,b1).

Theorem 3.4 Let f : (X,B,b) → (Y,B1,b1) be a morphism in the construct
CoarsePro. Then f is initial if and only if (B,b) is the induced coarse proximity struc-
ture by (f,B1,b1).

Proof. Let f be an initial morphism and (B0,b0) be the induced coarse proximity
structure by (f,B1,b1). Then by Theorem 3.2, we have B ⊆ B0 and b ⊆ b0. Now, assume
that id : (X,B0,b0) → (Y,B,b) is the identity function. Then f ◦ id : (X,B0,b0) →
(Y,B1,b1) is a coarse proximity map, so is id. Thus we have B0 ⊆ B and b0 ⊆ b, which
shows that (B,b) = (B0,b0). Conversely, let (B,b) be the induced coarse proximity
structure by (f,B1,b1) and g : (Z,B2,b2) → (X,B,b) a function such that f ◦ g be a
coarse proximity map. Then B ∈ B2 implies f(g(B)) ∈ B1. Hence g(B) ∈ B. Also, Ab2B
implies f(g(A))b1f(g(B)), so g(A)bg(B), which shows that g is a coarse proximity map.
■

Definition 3.5 An injective coarse proximity map f : (X,B1,b1) → (Y,B2,b2) is called
a coarse proximity embedding map if (B1,b1) is the induced coarse proximity structure
by (f,B2,b2).

By Theorem 3.4, we have the following corollary.

Corollary 3.6 The embedding morphisms are precisely the coarse proximity embedding
maps.

Remark 2 Let (X,B,b) be a coarse proximity space, Y a subset of X and e : Y → X be
the inclusion map. If (B0,b0) is the induced coarse proximity structure on Y by (e,B,b),
then e is a coarse proximity map. In particular, we have B0 = {B ∩ Y | B ∈ B}; and
Ab0B if and only if AbB for all A,B ⊆ Y . The coarse proximity space (Y,B0,b0) is
called the coarse proximity subspace of X.

Recall that a morphism e : E → A is called an equalizer of the morphisms f, g : A → B
provided that the following conditions hold:

(1) f ◦ e = g ◦ e,
(2) for any morphism e′ : E′ → A with f ◦ e′ = g ◦ e′, there exists a unique morphism

ē : E′ → E such that e′ = e ◦ ē.
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Theorem 3.7 The category CoarsePro has equalizers.

Proof. Let f, g : (X,B1,b1) → (Y,B2,b2) be a pair of morphisms. Let E be the subset
{x ∈ X | f(x) = g(x)} of X and (E,B0,b0) be the coarse proximity subspace of X. Then
by Remark 2, the inclusion map e : (E,B0,b0) → (X,B1,b1) is a coarse proximity map
such that f ◦ e = g ◦ e. It is easy to verify that e is an equalizer of fand g. ■

Lemma 3.8 Let f : (X,B1,b1) → (Y,B2,b2) be a function between coarse proximity
spaces. Then the following statements are equivalent:

(1) Ab1B implies f(A)b2f(B),
(2) Cb̄2D implies f−1(C)b̄1f

−1(D),
(3) C ≪2 D implies f−1(C) ≪1 f

−1(D).

Proof. (1)⇒(2): Let C and D be subsets of Y such that f−1(C)b1f
−1(D). By assump-

tion we have ff−1(C)b1ff
−1(D). Hence by Remark 1, Cb2D.

(2)⇒(3): Let C and D be subsets of Y such that C ≪2 D. This means that Cb̄2(Y −D).
By assumption we have f−1(C)b1(X − f−1(D)), which means that f−1(C) ≪1 f

−1(D).
(3)⇒(1): Let A and B be subsets of X such that f(A)b̄2f(B). This means that
f(A) ≪2 (Y − f(B)). By assumption we have f−1f(A) ≪1 (X − f−1f(B)), which
means that f−1f(A)b̄1f

−1f(B). Hence by Remark 1, Ab̄1B. ■

The following lemma is an immediate consequence of Remark 1.

Lemma 3.9 Let f : (X,B1,b1) → (Y,B2,b2) be a coarse proximity map. Then the
following statements hold.

(1) X is bounded if and only if f(X) is bounded.
(2) B ∈ B1 if and only if f−1f(B) ∈ B1.
(3) If B′ is the set {C ⊆ Y | f−1(C) ∈ B1}, then B′ is a bornology on Y , such that

B2 ⊆ B′. Moreover, if f is surjective, then B2 = B′.

Remark 3 By Lemma 3.9, if (X,B1,b1) and (Y,B2,b2) are coarse proximity spaces
such that X is unbounded and Y is bounded, then there is no coarse proximity map from
(X,B1,b1) to (Y,B2,b2). Thus, the quotient of coarse proximity spaces need not exist,
in general.

In the following, we investigate the structure of quotient morphisms, and introduce
the conditions that the quotient of a coarse proximity space exists.

Theorem 3.10 Suppose that f : (X,B1,b1) → Y is a surjective function such that
domain is a coarse proximity space and f satisfies the following conditions:

(1) f−1({y}) ∈ B1 for all y ∈ Y ,
(2) f−1f(B) ∈ B1 for all B ∈ B1.

Then the finest coarse proximity structure (B0,b0) on Y for which f is a coarse proximity
map, is defined by

(1) B0 = {B ⊆ Y | f−1(B) ∈ B1},
(2) b0 is induced by the relation ≪0 defined as follows: A ≪0 B if and only if for

each binary rational s ∈ [0, 1] there is a subset As of Y such that A0 = A, A1 = B
and s < t implies f−1(As) ≪1 f

−1(At).

Proof. It is easy to show that B0 is a bornology on Y . Now, we show that ≪0 satisfies in
the conditions (P1) through (P6) of Theorem 1.10. To show (P1), letD ∈ B0. Take A0 = Y
and As = Y −D for all s ̸= 0, then we have f−1(A0) = X ≪1 (X−f−1(D)) = f−1(As) for
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all s ̸= 0. Since (X − f−1(D)) ≪1 (X − f−1(D)), it follows that f−1(As) ≪1 f
−1(At) for

s < t. Thus Y ≪0 (Y −D). To show (P2), let A ≪0 B. By the definition of ≪0, we have
f−1(A) ≪1 f−1(B). Thus by Theorem 1.10, f−1(A−B) ∈ B1 and hence (A−B) ∈ B0.
To show (P3), let A ⊆ B ≪0 C. Then for each binary rational s ∈ [0, 1] there is a subset
Bs of Y such that B0 = B, B1 = C and s < t implies f−1(Bs) ≪1 f

−1(At). Take A0 = A
and As = Bs for all s ̸= 0, then we have f−1(A0) ⊆ f−1(B0) ≪1 f

−1(Bs) = f−1(Bs) for
all s ̸= 0. Since f−1(As) ≪1 f−1(At) for 0 < s < t, it follows that A ≪0 C. Similarly, it
is easy to show that B ≪0 C ⊆ D implies B ≪0 D. To show (P4), By condition (P3),
A ≪0 (B1 ∩B2) implies A ≪0 B1 and A ≪0 B2. Conversely, assume that A ≪0 B1 and
A ≪0 B2. Then for each binary rational s ∈ [0, 1] there are subsets As and A′

s of Y such
that A0 = A, A1 = B1, A

′
0 = A, A′

1 = B2 and s < t implies f−1(As) ≪1 f−1(At) and
f−1(A′

s) ≪1 f
−1(A′

t). Let A
′′
s = As ∩A′

s. Then A′′
0 = A, A′′

1 = B1 ∩B2 and s < t implies
f−1(A′′

s) = f−1(As ∩ A′
s) ≪1 f−1(At ∩ A′

t) = f−1(A′′
t ). Thus we have A ≪0 (B1 ∩ B2).

To show (P5), assume that A ≪0 B. Then for each binary rational s ∈ [0, 1] there is a
subset As of Y such that A0 = A, A1 = B and s < t implies f−1(As) ≪1 f−1(At). Let
(Y −B)s = Y −A(1−s). Then we have (Y −B)0 = Y −B, (Y −B)1 = Y −A and s < t

implies f−1(Y −A(1−s)) ≪1 f−1(Y −A(1−t)). Hence f−1((Y −B)s) ≪1 f−1((Y −B)t),
which shows that (Y − B) ≪0 (Y − A). To show (P6), assume that A ≪0 B. Then for
each binary rational s ∈ [0, 1] there is a subset As of Y such that A0 = A, A1 = B and
s < t implies f−1(As) ≪1 f−1(At). Take C = A 1

2
and A′

s = A s

2
, A′′

s = A 1+s

2
for all s.

Then we have A′
0 = A, A′

1 = A′′
0 = C, A′′

1 = B and s < t implies f−1(A′
s) ≪1 f−1(A′

t)
and f−1(A′′

s) ≪1 f
−1(A′′

t ). Thus we have A ≪0 C ≪0 B.
Finally, we show that f : (X,B1,b1) → (Y,B0,b0) is a coarse proximity map. If B ∈ B1,
then by assumption f−1f(B) ∈ B1 and hence f(B) ∈ B0. On the other hand, by the
definition of ≪0, A ≪0 B implies f−1(A) ≪1 f

−1(B). Thus by Lemma 3.8, f is a coarse
proximity map. Now, assume that (B2,b2) is another coarse proximity structure on Y
such that f : (X,B1,b1) → (Y,B2,b2) is a coarse proximity map. Then by Lemma 3.9,
we have B2 = B0. Let Ab̄2B, i.e., A ≪2 (Y − B). Since ≪2 satisfies the condition (P6)
of Theorem 1.10, for each binary rational 0 < s < 1 there is a subset As of Y such that
s < t implies A ≪2 As ≪2 At ≪2 (Y − B). Take A0 = A and A1 = Y − B. Then by
Lemma 3.8, we have that f−1(As) ≪1 f

−1(At) for each binary rational s ∈ [0, 1]. Hence
A ≪0 (Y −B), i.e., Ab̄0B. Thus (B0,b0) is finer than (B2,b2). ■

Definition 3.11 The coarse proximity structure (B0,b0) defined in Theorem 3.10, is
called the coinduced coarse proximity structure by (f,B1,b1).

Definition 3.12 A surjective coarse proximity map f : (X,B1,b1) → (Y,B2,b2) is
called a coarse proximity quotient map if (B2,b2) is the coinduced coarse proximity
structure by (f,B1,b1).

Theorem 3.13 In the construct CoarsePro the quotient morphisms are precisely the
coarse proximity quotient maps.

Proof. Let f : (X,B1,b1) → (Y,B2,b2) be a surjective and final morphism, and (B0,b0)
be the coinduced coarse proximity structure by (f,B1,b1). Then by Lemma 3.9 and
Theorem 3.10, we have B0 ⊆ B0 and b0 ⊆ b2. Now, assume that id : (Y,B2,b2) →
(Y,B0,b0) is the identity function. Then id ◦ f : (X,B1,b1) → (Y,B2,b2) is a coarse
proximity map, so is id. Thus we have B2 ⊆ B0 and b2 ⊆ b0, which shows that (B2,b2) =
(B0,b0). Conversely, let f : (X,B1,b1) → (Y,B2,b2) be a coarse proximity quotient
map and g : (Y,B2,b2) → (Z,B3,b3) a function such that g ◦ f be a coarse proximity
map. Then B ∈ B2 implies f−1(B) ∈ B1. Hence g(B) = g ◦ f(f−1(B)) ∈ B3. Now, let
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C ≪3 D. Since ≪3 satisfies the condition (P6) of Theorem 1.10, for each binary rational
0 < s < 1 there is a subset Cs of Z such that s < t implies C ≪3 Cs ≪3 Ct ≪3 D.
Take A0 = g−1(C), A1 = g−1(D) and As = g−1(Cs) for 0 < s < 1. Then we have that
f−1(As) ≪1 f−1(At) for each binary rational s ∈ [0, 1]. Thus g−1(C) ≪2 g−1(D), which
shows that g is a coarse proximity map. ■

4. Conclusion

In this paper, we have studied some categorical structures of the category CoarsePro,
whose objects are coarse proximity spaces and whose morphisms are coarse proximity
maps. We have investigated the structure of initial, final, embedding and quotient mor-
phisms in the construct CoarsePro. Also, it is shown that bimorphisms are exactly
bijective coarse proximity maps, but not isomorphisms. Consequently, CoarsePro is
not balanced.
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