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Abstract. Digital topological methods are often used in computing the topological com-
plexity of digital images. We give new results on the relation between reducibility and digital
contractibility in order to determine the topological complexity of a digitally connected finite
digital image. We present all possible cases of the topological complexity TC of a finite digital
image in Z and Z2. Finally, we determine the higher topological complexity TCn of finite
irreducible digital images independently of the number of points for n > 1.
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1. Introduction

One of the main streams of topological robotics is to apply topological ideas to solve
specific problems in engineering and computer science. On the other hand, digital topol-
ogy has an important place in the studies of computer science. Topological robotics and
digital topology have a common field of study and common methods. This suggests the
following question: What results can one get in the subject of robotics by using topologi-
cal methods on digital images? The answer gets inspired with the study of using discrete
structures in computing topological complexity numbers.

Studies of topological robotics start by defining the notion of the topological com-
plexity number of a path-connected topological space by Farber [15]. This number is an
integer that indicates the complexity of the field where the robot moves. Many different
methods, especially cohomology, are used in algebraic topology to determine the number
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exactly (see [16] for a collection of the methods used). Contractibility of a topological
space is so important if one wants to know the topological complexity number precisely.
The topological complexity number of a contractible space is 1 and the converse is also
true. If a topological complexity number of a topological space is 1, then the space must
be contractible [15]. Rudyak improves the idea of this topological complexity definition
and presents the higher topological complexity number of a topological space [26]. He
proves that the special version of this new number corresponds to Farber’s topologi-
cal complexity number. Karaca and Is define the digital topological complexity number
and the digital higher topological complexity number by moving the study to the field
of digital topology [19, 20]. Digital topology is a discrete structure built on digital im-
ages at the point, so it assembles topological features without including a topology (see
[2, 3, 5–13, 21, 23–25] for more information about digital topology, its applications, and
digital geometry). This fundamental difference makes some of the topological methods
useless in digital topology. For instance, the cohomological cup-product method is one
of the well-known methods in usual topology to have a new bound for the topological
complexity number [15]. But it does not work for digital images [19]. At this point, it
is sometimes necessary to use new ways that comply with the rules of digital topology.
It is not only a problem of studies of digital topological complexity but also a problem
of studies in every aspect of digital topology. As an example, the Euler characteristic is
not a homotopy invariant for digital images [14]. Staecker et al. have a new numerical
homotopy invariant for digitally connected digital images and regard their invariant as
‘true’, which means that it is not an adaptation from topology [17]. They use the no-
tions of reducibility and rigidity. In this paper, we examine a relation between digital
contractibility and reducibility (partly rigidity). This leads us to have a characterization
of finite digital images in Z and Z2 in terms of the topological complexity and the higher
topological complexity.

The organization of the paper is as follows. In Section 2, we have a simple background
of the digital setting and recall the definitions of the topological complexity and the
higher topological complexity with some important properties. In Section 3, we start
with proving that if X is an irreducible digital image, then the topological complexity of
the image is greater than 1. We also demonstrate under what conditions the reducibility
requires digital contractibility. We prove that if X ⊂ Z is a digitally connected finite
image, then the topological complexity of the image is 1. After that, we examine the
topological complexity of irreducible images having a finite number of points. Using this
fact, we have the topological complexity number of all digitally connected finite digital
images in Z2. We conclude that there is no digitally connected finite image in Z and
Z2 such that the topological complexity of the image is greater than 2. In Section 4, we
consider the diagonal map on a digital image X and define a new digital fibrational sub-
stitute of it. Then we find the digital higher topological complexity number of irreducible
images with computing the digital Schwarz genus of the digital fibrational substitute. The
topological complexity of the irreducible images is independent of the number of points.
At the end of the paper, we state some open problems.

2. Preliminaries

This section is planned to provide some backgrounds commonly used in digital topology
and topological robotics.

A digital image is the basic element of the digital topology and consists of a set
with a relation on this set. More precisely, (X,κ) is a digital image, where X is a finite
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subset of Zn for a positive integer n and κ is an adjacency relation on X [3]. On a digital
image, unlike in topological spaces, there is an adjacency relation instead of topology
and this relationship works as follows: Let X be a finite subset of Zn and let k ∈ Z with
1 ⩽ k ⩽ n. For any two distinct elements x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ X, x and
y are called ck−adjacent if we have |xi− yi| = 1 for at most k indices i, and |xj − yj | 6= 1
implies xj = yj for all indices j [3, 22]. The notation x ↔ck y is used when x is adjacent
to y. By this construction, we have c1 = 2 adjacency in Z, c1 = 4 and c2 = 8 adjacencies
in Z2, and c1 = 6, c2 = 18 and c3 = 26 adjacencies in Z3. Let (X,κ) and (Y, λ) be any
digital images. Let (x1, y1) and (x2, y2) be any two points in the cartesian product image
X×Y . Then (x1, y1) and (x2, y2) are adjacent in X×Y if one of the following conditions
holds [1]:

• x1 = x2 and y1 ↔λ y2; or

• x1 ↔κ x2 and y1 = y2; or

• x1 ↔κ x2 and y1 ↔λ y2.

Let (X,κ) be a digital image in Zn and let p be any point in X. A κ−neighbor of
p is the point that is κ−adjacent to p [18]. Let (X,κ) ⊂ Zn be a digital image. X is
called κ−connected if and only if for every pair of different points x, y ∈ X, there is
a set {x0, x1, · · · , xm} of points in X such that x = x0, y = xm and xi ↔κ xi+1 for
i = 0, 1, · · · ,m − 1 [18, 22]. Let f : (X1, κ1) → (X2, κ2) be a digital map such that
X1 ⊂ Zm1 and X2 ⊂ Zm2 . Then f is said to be (κ1, κ2)−continuous if x ↔κ1

x
′
for any

different points x, x
′ ∈ X1, then either f(x) = f(x

′
) or f(x) ↔κ2

f(x
′
) in X2 [3]. In

addition, f is (κ1, κ2)−isomorphism if f is bijective, (κ1, κ2)−continuous and the inverse
f−1 is (κ2, κ1)−continuous [5].

A set [a, b]Z = {z ∈ Z : a ⩽ z ⩽ b} is called a digital interval from a to b [4, 7]. Since
the interval is a subset of Z, it has 2−adjacency. If a digital map f : [0,m]Z → X is
(2, κ)−continuous with f(0) = x and f(m) = y, then f is a digital path from x to y in
X [7]. The digital path f is a κ−loop if f(0) = f(m). The product of two digital paths
is defined in [21]: Let f : [0,m]Z → X and g : [0, n]Z → X be digital κ−paths with
f(m) = g(0). Then the product of f and g,

(f ∗ g) : [0,m+ n]Z → X

is a (2, κ)−continuous function defined by

(f ∗ g)(t) =

{
f(t), t ∈ [0,m]Z

g(t−m), t ∈ [m,m+ n].

Let (X,κ) and (Y, λ) be two digital images, and let f , g : X → Y be (κ, λ)−continuous
maps. The maps f and g are (κ, λ)−homotopic if there exists m ∈ Z such that for all
x ∈ X, there is a digital map F : X × [0,m]Z → Y with F (x, 0) = f(x) and F (x,m) =
g(x), for any fixed t ∈ [0,m]Z, the digital map Ft : X → Y is (κ, λ)−continuous, and
for any fixed x ∈ X, the digital map Fx : [0,m]Z → Y is (2, λ)−continuous [3, 21]. It is
denoted by f '(κ,λ) g when f is (κ, λ)−homotopic to g. We also note that m is said to
be the step number of the homotopy in this construction. In another saying, we say that
f is digitally homotopic to g in m step.

Let f : X → Y be a (κ, λ)−continuous map. Then f is a (κ, λ)−homotopy equivalence
if there exists a (λ, κ)−continuous map g : Y → X for which g ◦ f is digitally homotopic
to the identity function on X and f ◦ g is digitally homotopic to the identity function
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on Y [8]. A digital image X is said to be κ−contractible if the identity map on X is
(κ, κ)−homotopic to a constant map at some x0 ∈ X, i.e., the constant map c : X → X
defined by c(x) = x0 for all x ∈ X [3, 21].

Definition 2.1 [17] Let (X,κ) be a finite digital image. If X is (κ, κ)−homotopy equiv-
alent to an image of fewer points, then X is called reducible. If X is not reducible, then
X is said to be irreducible.

Definition 2.2 [17] Let (X,κ) be a finite digital image. If the identity map on X is the
only map that is (κ, κ)−homotopic to the identity map on X, then X is rigid.

Let (X,κ) be a digital image. We say that X is a digital simple closed κ−curve if there
is an integer m ⩾ 4 for which there exists a (2, κ)−continuous map f : [0,m− 1]Z → X
such that the following conditions hold [8, 22, 25]:

• f is bijective;

• f(0) ↔κ f(m− 1); and

• for all t ∈ [0,m−1]Z, the only κ−neighbors of f(t) in f([0,m−1]Z) are f((t−1)mod m)
and f((t+ 1)mod m).

A simple closed curve with m points is generally denoted by Cm and named as an m−gon
or a digital m−cycle. Let (X,κ) be a digital image. An m−loop is a digitally continuous
map from Cm to X [17]. Moreover, the map p : Cm → X is called a simple m−loop if
p is an injection with p(ci) ↔κ p(ci+1) in X such that there are no other adjacencies
between points in the image of Cm.

Proposition 2.3 [17] Cm is irreducible for m ⩾ 5.

Definition 2.4 [17] Lm(X) is an integer that counts the number of equivalence classes
of m−loops for any finite digital image X.

Theorem 2.5 [17] Let (X,κ) and (Y, λ) be any two digital images such that they are
digitally homotopy equivalent. Then for all positive integer m, we get Lm(X) = Lm(Y ).

The next three results are the basic facts that we often use in the next sections. By
using these results, we have an idea about the digital topological complexity of a finite
digital image (reducible or irreducible) with respect to the number of its points.

Proposition 2.6 [17] Let (X,κ) be a finite digital image. If X has no simple m−loop
for any m ⩾ 4, then X is digitally homotopy equivalent to a one-point digital image {x}
for any x ∈ X, i.e., X is κ−contractible.

Proposition 2.7 [17] Let (X,κ) be a digitally connected digital image having m points.
If m ⩽ 4, then X is digitally homotopy equivalent to a one-point digital image {x} for
any x ∈ X, i.e., X is κ−contractible.

Proposition 2.8 [17] Let X be a digitally connected digital image having five points.
Then X is digitally homotopy equivalent to a one-point digital image or to C5.

Let PX be a set of all digitally continuous digital paths for a κ−connected digital
image (X,κ). Let s : X ×X → PX be the digital map which takes any pair (a, b) of a
digital image to a digital path starting at a and ending at b, is denoted by the digital
version of the motion planning algorithm. In [20], there is a reasoned way to define the
continuity of motion planning algorithm. The digital connectedness on PX is defined as
follows: Let τ be an adjacency relation on PX, and let α and β be any digital paths
on X. If α and β are τ−connected for all t ∈ [0,m]Z, then α ↔κ β. α and β can have
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different steps in their way. For instance, when α has 5 steps and β has 2 steps, the
last step of β repeats itself 3 times. Then both α and β have the same number of steps,
which means there is no confusion about the adjacency of digital paths. See [20] for
more detail and example about the continuity of digital motion planning algorithms.
Moreover, π : PX → X × X is a digital map, which takes any digital path α to the
pair (α(0), α(m)), where α(m) is the final step of α. Finally, we are ready to give the
following definition:

Definition 2.9 [20] The digital topological complexity TC(X,κ) of a digital image
(X,κ) is the minimum number k such that

X ×X = U1 ∪ U2 ∪ · · · ∪ Uk

with the property that there exists a digitally continuous motion planning algorithm
sj : Uj → PX, j = 1, 2, · · · , k, for which π ◦ sj is identity map on each Uj ⊂ X ×X. If
no such k exists, then we agree that TC(X,κ) = ∞.

We compute the digital topological complexity of only connected digital images (recall
that in ordinary topology, only path-connected topological spaces are considered for the
computation of the topological complexity). The next proposition is quite important such
as the fact that the topological complexity is a homotopy invariant.

Proposition 2.10 [20] TC(X,κ) = 1 if and only if (X,κ) is κ−contractible.

Definition 2.11 [19] Let f : (X,κ) → (Y, λ) be a continuous map in digital images
between digitally connected spaces (X,κ) and (Y, λ). A digital fibrational substitute of f

is defined as a digital fibration f̂ : (Z, κ3) → (Y, λ) such that there exists a commutative
diagram

X
h

//

f
��

Z

f̂
��

Y
1Y

Y,

where h is a digital homotopy equivalence.

Let p : X → Y be a digital fibration. The digital Schwarz genus of p is defined as
the minimum number k such that Y = U1 ∪ U2 ∪ · · · ∪ Uk with the property that for all
1 ⩽ i ⩽ k, there is a digitally continuous map si : Ui → X with p ◦ si = idUi

[19]. If
we do not have a digital fibration, then we regard the digital Schwarz genus of a map as
the digital Schwarz genus of its digital fibrational substitute. Consequently, we now give
another important definition:

Definition 2.12 [19] Let X be any κ-connected digital image. Let Jn be the wedge
of n−digital intervals [0,m1]Z, · · · , [0,mn]Z for a positive integer n, where 0i ∈ [0,mi],
i = 1, · · · , n, are identified. Then the digital higher topological complexity TCn(X,κ) is
defined by the digital Schwarz genus of the digital fibration

en : XJn → Xn
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f 7−→ (f1(m1), · · · , fn(mn)),
where f = (f1, · · · , fn) is a multipath on X.

In the definition of the higher topological complexity in digital images, we have TC2 =
TC [19]. Furthermore, TCn is also a homotopy invariant for digital images just as TC.

3. Digital topological complexity in Z and Z2

We begin with discussing the relation between the contractibility and the reducibility
on digitally connected digital images. It is clear that if (X,κ) is a κ−contractible finite
digital image, then X is reducible. The converse need not to be true. For example,
consider the following digital image X ⊆ Z2 with 8−adjacency (see Figure 1(a)) and
its digital homotopy equivalent digital image with 8−adjacency (see Figure 1(b)). The

Figure 1. The digital image X with 8−adjacency is on the left (a) and its digital homotopy equivalence X \
{(3,−1)} on the right (b).

digital image X is reducible because it is digitally homotopy equivalent to the image
X \{(3,−1)} (Figure 1 (b)) but it is well-known that X is not 8−contractible. Combining
this result with Proposition 2.10, we have that the topological complexity number of a
reducible image can be different from 1. Indeed, we obtain that

TC(X, 8) = TC(X \ {(3,−1)}, 8) = 2

(see [Example 3.5, [20]]). In addition, if for any digitally connected finite image (X,κ)
having more than one point, TC(X,κ) = 1, thenX must be reducible. So, we immediately
have the result:

Proposition 3.1 Let (X,κ) be a digitally connected finite image having more than one
point. If X is irreducible, then TC(X,κ) > 1.

We note that Proposition 3.1 is still true if we choose X as a rigid digital image
instead of an irreducible digital image. We express that the digital contractibility implies
the reducibility. The next Lemma shows that the converse of this statement is also valid
under certain requirements.

Lemma 3.2 Let X be a digital image with m ⩾ 4 points.
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a) If no digital simple closed curve exists in X, then X is digitally contractible if and
only if X is reducible.

b) If there is a digital simple closed curve in X, and X is not digitally homotopy
equivalent to Cm, then X is digitally contractible if and only if X is reducible.

Proof. a) It is enough to prove that if X is reducible then X is digitally contractible.
Let X be a reducible digital image. Then X is digitally homotopy equivalent to an image
X \ A, where A has fewer points than X. Let ∗ be any point of X. If X is digitally
homotopy equivalent to the one-point image {∗}, then there is nothing to prove. Assume
that X is not digitally homotopy equivalent to the one-point image. By Proposition
2.6, we have that X has a simple m−loop for any m ⩾ 4. Therefore, there exists a
digitally continuous injection p : Cm → X. This is a contradiction because p cannot be
an injection. Whereas X has m points, there does not exist a digital simple closed curve
in X for any m ⩾ 4. As a conclusion, X is digitally contractible.

b) Let X be a reducible digital image. Assume that X is not digitally homotopy
equivalent to the one point image. Then we have a digitally continuous injection p :
Cm → X. The cardinality of Cm is m, and the cardinality of X is the same. This
implies that p is surjective. Therefore, p is a bijection. If we define q : X → Cm with
q(x) = p−1(x), then q is digitally continuous. Indeed, for any xi ∈ X, i = 1, · · · ,m,
we find p−1(xi) ↔ p−1(xi+1) because p−1(xi) = ci and p−1(xi+1) = ci+1. Hence, we get
p ◦ q = idX and q ◦ p = idX . This means that X is digitally homotopy equivalent to Cm

which is a contradiction. Finally, X is digitally homotopy equivalent to the one-point
image, i.e., X is digitally contractible. ■

Lemma 3.3 A digitally connected imageX ⊂ Z is 2−contractible if and only if L1(X) =
1.

Proof. Let X ⊂ Z be a 2−contractible image. Then X is digitally homotopy equivalent
to the one-point digital image {∗}. We observe that the one-point is the unique irreducible
image in Z. By Theorem 2.5, L1(X) = L1({∗}) = 1. Conversely, if L1(X) = 1, then we
have that the number of equivalence classes of 1−loops is 1. This means that X is
2−contractible. ■

From the digital image X in Figure 1 (a), we cannot generalize Lemma 3.3 in Zn for
n > 1. Since X is 8−connected, L1(X) = 1. However, X is not 8−contractible. The
following Corollary is a result of Lemma 3.3 and Proposition 2.10.

Corollary 3.4 Let X ⊂ Z be a digitally connected finite image. Then TC(X, 2) = 1.

We now provide the digital topological complexity numbers of digital simple closed
curves in Z2.

Theorem 3.5 If there is a κ−connected digital simple closed curve in Z2 for any positive
integer m, where κ ∈ {4, 8}, then

TC(Cm, κ) =

{
1, m < 5

2, m > 5.

Proof. There are two adjacency relations 4 and 8 in Z2 so we have two cases. First,
consider the 4−adjacency on Cm. We catalog the first 12 simple closed curves with re-
spect to the number m in this case (see Figure 2). We note that some pictures can be
different (but homotopy equivalent) in Figure 2. For instance, the points of C2 can be
drawn vertically. This does not affect the result as the digital topological complexity
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Figure 2. Simple closed curve Cm related to 4−adjacency form ∈ {1, 2, 4, 8, 10, 12}.

number is a homotopy invariant for digital images. For m > 12, the list is extended.
However, the computation of TC changes only when m > 5. Let m < 5. We have
TC(Cm, 4) = 1 because they are 4−contractible digital images. If m > 5, then we
show that TC(Cm, 4) = 2. Let us choose any two diagonal points (the diagonal can be
from left to right or from right to left) on any squares or rectangles for any m > 5
and split the graphic into two parts named U1 and U2. Without loss of generality,
we assume that U1 has one of the diagonal points and U2 has the other point. Then
U1 and U2 have the same number of points. We set

V1 = {(x, y) ∈ Cm × Cm | (x, y) ∈ U1}

and

V2 = {(x, y) ∈ Cm × Cm | (x, y) ∈ U2 or x ∈ U1, y ∈ U2 or x ∈ U2, y ∈ U1}

as the subsets of Cm × Cm. Therefore, we get Cm × Cm = V1 ∪ V2. In addition, there
exist digitally continuous sections s1 : V1 → PCm and s2 : V2 → PCm of a digital
fibration π : PCm → Cm × Cm. These satisfy that π ◦ s1 = idV1

and π ◦ s2 = idV2
and

give the desired result for 4−adjacency. Similarly, we list the first 8 simple closed curves
with 8−adjacency in Figure 3. For m < 5, Cm is 8−contractible. Then we have that

Figure 3. Simple closed curve Cm related to 8−adjacency form ∈ {1, 2, 3, 4, 6, 7, 8}.

TC(Cm, 8) = 1. For m > 5, we choose the top and the bottom point of Cm (if there are
one more top or bottom points, then choose one pair of them such that they are located
vertically according to the each other) and split the graphic into two parts named as T1

and T2. Without loss of generality, we assume that T1 has the bottom point and T2 has
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the top point. We set

W1 = {(x, y) ∈ Cm × Cm | (x, y) ∈ T1}

and

W2 = {(x, y) ∈ Cm × Cm | (x, y) ∈ T2 or x ∈ T1, y ∈ T2 or x ∈ T2, y ∈ T1}

as the subsets of Cm×Cm. Then we have two digitally continuous sections t1 : W1 → PCm

and t2 : W2 → PCm of a digital map π : PCm → Cm × Cm that satisfy that the digital
maps π ◦ t1 and π ◦ t2 are equal to the identity maps. Moreover, there is no any digital
simple closed curve with 5 points exists in X for both 4 and 8 adjacencies. This completes
the proof. ■

Corollary 3.6 Let X ⊂ Z2 be a digitally connected digital image with m points.
TC(X, 8) = 1 for m < 6 and TC(X, 4) = 1 for m < 8.

Proof. Let m ⩽ 4. By Proposition 2.7, X is digitally homotopy equivalent to the one-
point digital image. Then, we have that TC(X,κ) = 1, where κ ∈ {4, 8}. Let m = 5.
From Proposition 2.8 and Proposition 2.10, we get TC(X,κ) = 1, where κ ∈ {4, 8}. Let
m = 6 or 7. Then there does not exist any digital simple closed curve in X with respect
to 4−adjacency. So, X is digitally contractible because X is reducible. This shows that
TC(X, 4) = 1 for m = 6 or m = 7. ■

We are now ready to compute the topological complexity number of finite digital
images in Z2. This characterization indicates that there are no finite digital images in Z2

whose topological complexity number is greater than 2.

Corollary 3.7 Let (X,κ) ⊂ Z2 be a κ−connected digital image with m points. If there
is at least one digital simple closed curve exists in X, and X is digitally (κ, κ)−homotopy
equivalent to Cm, then we get that

TC(X,κ) =

{
1, κ = 4 and m < 8

1, κ = 8 and m < 6

and

TC(X,κ) =

{
2, κ = 4 and m ⩾ 8

2, κ = 8 and m ⩾ 6.

Proof. By Theorem 3.5 and Corollary 3.6, it is enough to show that

TC(X, 4) = TC(X, 8) = 1

when there is no digital simple closed curve exists in X or X is not digitally homotopy
equivalent to Cm. Assume that there is a digital simple closed curve in X. If m ⩽ 4, then
the result holds from Proposition 2.7. If m ⩾ 5, then we have that X is reducible from
Proposition 2.3. Hence, the first part a) of Lemma 3.2 gives the desired result. Assume
that the digital image X is not digitally homotopy equivalent to Cm. Then TC(X,κ) 6= 2.
Assume that there is a digital simple closed curve inX. Letm ⩾ 5. Since Cm is irreducible
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for m ⩾ 5, X is reducible. Thus, the second part b) of Lemma 3.2 completes the proof.
■

4. Digital Higher Topological Complexity of Finite 2D Digital Images

We aim to give a general characterization of the digital higher topological complexity
computations of any finite digital image especially in Z2 in this section.

We begin with computing the digital higher topological complexity TCn of any one-
point digital image for n ⩾ 1. ConsiderX = {∗} ⊂ Z with 2−adjacency. Let f ∈ XJn be a
constant map at ∗. The digital fibration en : XJn → Xn, defined by en(f) = (∗, ∗, · · · , ∗),
has a digitally continuous map s : Xn → XJn with s(∗, ∗, · · · , ∗) = f such that en◦s = id.
This shows that TCn(X) = 1.

Theorem 4.1 Let (X, 2) be a finite 2−connected digital image in Z and n ⩾ 1 be an
integer. Then TCn(X, 2) = 1.

Proof. If (X, 2) is finite and 2−connected in Z, then it is easy to see that X is
2−contractible. Hence, it is 2−homotopy equivalent to the one-point digital image. The
digital homotopy invariance of TCn gives the desired result. ■

The digital higher topological complexity computation of a one-point digital image
is quite useful because a great majority of digital images in Z2 are digitally contractible
(have the same homotopy type as the one-point image). We now examine the digital
higher topological complexity of another type which is not homotopy equivalent to the
one-point image.

Lemma 4.2 Let (X,κ) be a κ−connected digital image. Consider the set

Sn(X) = {(f, p1, · · · , pn) | pi ∈ Im(f), f is a digital path in X, i = 1, 2, · · · , n}

in X [0,m]Z ×Xn. Then the digital map

e
′

n : Sn(X) −→ Xn

(f, p1, p2, · · · , pn) 7−→ (p1, p2, · · · , pn)

is a digital fibrational substitute of the diagonal map dn : X → Xn.

Remark 1 Note that the adjacency relation on Sn(X) is defined as follows: For
all (f, p1, p2, · · · , pn), (g, q1, q2, · · · , qn) ∈ Sn(X), (f, p1, p2, · · · , pn) is κ∗−adjacent to
(g, q1, q2, · · · , qn) if f is λ−adjacent to g and pi is κ−adjacent to qi for all i = 1, 2, · · · , n,
where κ∗ is an adjacency relation on X [0,m]Z×Xn and λ is an adjacency relation on digital
paths in X.

Proof. Let dn : X → Xn be a diagonal map of X. Define the digital map h :
X → Sn(X) by h(x) = (ϵx, x, x, · · · , x), where ϵx is the digital constant path at x.
Let (f, p1, p2, · · · , pn) ∈ Sn(X). Then there exists y ∈ X such that f(0) = y. Since
X is κ−connected, there exists a digital path g from x to y in X, i.e., g(0) = x
and g(1) = f(0) = y. To show that h is a digital homotopy equivalence, we define
k : Sn(X) → X with k(f, p1, p2, · · · , pn) = f ∗ g(0). It is easy to see that h ◦ k is digitally
homotopic to identity map on Sn(X) and k ◦h is digitally homotopic to identity map on
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X. Moreover, we find

e
′

n ◦ h(x) = e
′

n(ϵx, x, · · · , x) = (x, x, · · · , x) = dn(x).

Consequently, e
′

n is a digital fibrational substitute of dn. ■

Lemma 4.3 TC3(C6, 8) = 2.

Proof. Let

X = C6 = {p1 = (0, 0), p2 = (1, 1), p3 = (2, 1), p4 = (3, 0),

p5 = (2,−1), p6 = (1,−1)},

where p1 < p2 < p3 < p4 < p5 < p6 (see Figure 4). Let e
′

3 : S3(X) → X3 be a digital
fibration with e

′

3(f, pi, pj , pk) = (pi, pj , pk) for i, j, k ∈ {1, 2, 3, 4, 5, 6}. We split X3 into
two parts. A1 consists of triples in C6 such that the order of points never changes from
left to right, i.e., pi ⩽ pj ⩽ pk or if pi > pj , then pi = 6 and pj = 1 (similarly if
pj > pk, then pj = 6 and pk = 1). A2 consists of elements of C6 in which they do not
belong to A1, i.e., the order of points can change from left to right except using 6 and 1
consecutively. Let (pi, pj , pk) ∈ A1. Using these points, we set a route starting and ending
at pi and pk, respectively. Then we have a digitally continuous map s1 : A1 → S3(X)
with s1(pi, pj , pk) = (f, pi, pj , pk), where f is the route (digital path from pi to pk).
It is clear that e

′

3 ◦ s1 = idS3(X). Similarly, we can construct s2 : A2 → S3(X) with

s2(pi, pj , pk) = (f, pi, pj , pk) on A2. Hence, we find that e
′

3 ◦ s2 = idS3(X). Moreover, we

have that X3 = A1 ∪ A2. As a result, we have that the digital Schwarz genus of e
′

3,
genus(κ∗,λ∗)(e

′

3), is equal to 2, where κ∗ and λ∗ are adjacency relations on S3(X) and X3,
respectively. ■

Figure 4. The irreducible digital image C6 with the order of six points in it.

Lemma 4.4 TC3(C8, 4) = 2.
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Proof. Let

X = C8 = {r1 = (0, 0), r2 = (0, 1), r3 = (0, 2), r4 = (1, 2), r5 = (2, 2),

r6 = (2, 1), r7 = (2, 0), r8 = (1, 0)},

where r1 < r2 < r3 < r4 < r5 < r6 < r7 < r8 (see Figure 5). In a similar way of Lemma
4.3, we get B1 without changing the order of points and t1 : B1 → S3(X) is a digitally
continuous map on C1 such that e

′

3 ◦ t1 is identity on B1. Changing the order of points
in C8, we set B2 that consists of triples in C8 × C8 × C8. The digitally continuous map
t2 : B2 → S3(X) gives us e

′

3 ◦ t2 is identity on S3(X). Hence, we split X3 into two parts
B1 and B2. This proves that TC3(X, 4) is 2. ■

Figure 5. The irreducible digital image C8 with the order of eight points in it.

Corollary 4.5 Assume that there is a digital κ−connected simple closed curve in X
with m points. Then TC3(Cm, 4) = 2 for m ⩾ 8 and TC3(Cm, 8) = 2 for m ⩾ 6.

Proof. The proof is a generalization of Lemma 4.3 and Lemma 4.4. The order of points
in Cm can be easily constructed for all cases. ■

Corollary 4.5 can be improved for n > 3 and TCn gives the same result with TC3

for irreducible digital images:

Theorem 4.6 Assume that there is a digital simple closed curve in Z2 with m points.
Let n > 2 be a positive integer. Then

• TCn(Cm, 4) = 2 for m ⩾ 8,

• TCn(Cm, 8) = 2 for m ⩾ 6.

Proof. Let m ⩾ n. Let p1, · · · , pm be points of Cm, where p1 < p2 < · · · < pm. By
using the order, a digital path can be obtained by taking n or less (staying on the same
point more than once) of m points. Then the method of Lemma 4.3 works for this case.
Let m < n and (f, p1, p2, · · · , pn) ∈ Sn(X). In this case, it is necessary to increase the
number of steps of the digital path to be able to have an n−step path created with m
points. A new n−step path is obtained by adding the endpoint of any m−step path f to
the end of the path m− n times. Since we have n−step path, we use its n points in the
definition of Sn(X). After that, we split Xn into two parts A1 and A2 again: n points of
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the digital image which follow the order and not, respectively. Thus, we conclude that
the digital Schwarz genus of e

′

n is 2. ■

5. Conclusion

The aim of this paper is to characterize the digital topological complexity of digi-
tally connected two-dimensional finite digital images entirely. We first deal with simple
closed curves among digital images because they are irreducible. After giving the results
about digital simple closed curves, we examine the topological complexity and the higher
topological complexity of all possible digitally connected finite digital images in Z and
Z2.

One of the open problems on this topic is to apply our work on 3−dimensional
digital images. As the number of points that a digital image has in three-dimensional
space extremely increases, it is not easy to categorize the topological complexities of
these points. Before solving this problem, it is more convenient that try to categorize the
digital images up to digital homotopy equivalence, because of the fact that the topological
complexity (and the higher topological complexity) is a homotopy invariant for digital
images. Moreover, one can observe the results of the topological complexities of reducible
or irreducible images in Z3. This leads us to think more about the characterize digital
images up to the digital homotopy equivalence in any dimension of digital topology.
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