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Abstract. In this paper, the main purpose is to calculate the conservation laws of Kuramoto-
Sivashinsky equation using the scaling method. Linear algebra and calculus of variations are
used in this algorithmic method. Also the density of the conservation law is obtained by
scaling symmetries of the equation and the flux corresponding to the density is calculated
using the homotopy operator.
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1. Introduction

In applied sciences such as physical chemistry, quantum physics, particle physics, fluid
mechanics, etc., there are nonlinear partial differential equations that admit the conser-
vation laws. The basic laws in physics which state that a quantity of an isolated system
remains unchanged over time are known as the conservation laws. There are several
methods for calculating the conservation laws, some of them can be found in references
[2, 4, 5, 7]. Noether’s theorem which is used in common methods, relates the conversation
laws and variational symmetry of the considered PDE [11, 12]. In contrast, the scaling
method uses the calculus of variations and linear algebra, which is described below [14].
First, as a default density, we consider a linear combination of polynomials with arbitrary
coefficients that are invariant under the scaling symmetry of the PDE. The concept of
symmetries is one of the most important topics in the theory of Lie groups, which can
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be referred to [9, 10] for further study. Then we get the derivative with respect to time
from candidate density and combine it with the PDE. Next, using the Euler operator,
a system of linear equations is obtained, which solves the desired coefficients, and as a
result, the real density is obtained by substituting the specified coefficients instead of the
unknown coefficients. After calculating the actual density, the corresponding flux must
be obtained using inversion of divergence operator. To do this, the homotopy operator is
used. With the help of the homotopy operator, the inversion from divergence is reduced
to a one-dimensional integration.
In this study, we construct the new conservation laws of the Kuramoto-Sivashinsky (KS)
equation by the scaling method. This equation is a nonlinear PDE that has been used
as a model for complex spatiotemporal dynamics in extended systems driven far from
equilibrium by intrinsic instabilities. As can be expected, the solutions of the equation
exhibit chaotic behavior. Also, this equation plays a dominant role in stability of flame
fronts, reaction diffusion, and other physical phenomena [1, 13]. The KS equation is

ut + αuux + βu2x + κu4x = 0, (1)

where α, β and κ are arbitrary constants. The applications of the Kuramoto-Sivashinsky
equation go beyond the main field of flame propagation and reaction-diffusion systems.
These additional applications include flows in pipes and at interfaces, plasmas, chemical
reaction dynamics, and models of ion-sputtered surfaces [8]. Recently, extensive studies
have been conducted to find exact solutions and conservation laws for different types of
this equation [16, 18]. The novelty of this study is that we have obtained new conservation
laws using the scaling method. This paper is organized as follows: In section 2, we have
referred to some definitions and previous results that are used in the later sections. We
will show KS equation is uniform in rank and admits a scaling symmetry in section 3. In
section 4, the primitive density of rank 5 is constructed and actual density is obtained
by removing the divergence and divergence-equivalent terms. Finally, we calculate the
corresponding fluxes using the homotopy operator. In addition, the conservation laws of
orders 1, 3 and 7 are obtained.

2. Preliminaries

In this section, some of the main definitions and concepts that we need are stated. Let
∆(x, u(n)) = 0 be a differential equation, where x = (x1, . . . , xp) and u = (u1, . . . , uq) are
independent and dependent variables respectively and u(n) is all the derivatives of u up
to nth-order. A conversation law is the following divergence expression

DivQ = 0,

which is vanished for all solutions u = f(x) of the given system. The time variable t
and the spatial variables x = (x1, . . . , xp) are identified distinguishably in dynamical
problems, therefore the conservation law takes the form

Dtρ+DivJ = 0, (2)

where ρ is conserved density, J is the corresponding flux, Dt is the total time derivative
and Div is the total divergence of J = (J1, . . . , Jp) with respect to the spatial variables
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[12]. Conserved densities are polynomial in u(n), including polynomial functions of inde-
pendent variables multiplied to terms. Fluxes have fewer restrictions and are determined
by (2) once Dtρ is computed. If the PDE has rational terms, the flux may also contain
rational terms. Transcendental terms are not allowed at this point, but may be included
at a later date. The total derivative is an algorithmic tool to compute derivatives with
respect to a single independent variable on differential expressions, defined on the jet
space. The total time derivative is defined below.

Definition 2.1 Let f = f(x, t, u(M)(x, t)) be given. The total time derivative Dt is
defined as follows:

Dtf =
∂f

∂t
+

q∑
α=1

∑
J

uαJ,t
∂f

∂uαJ
,

where J = (j1, ..., jk) is multi-index with 0 ⩽ k ⩽ M and

uαJ,t =
∂uαJ
∂t

=
∂k+1uα

∂t∂xj1 ...∂xjk
.

Definition 2.2 Let f be a scalar differential function. The zeroth-Euler operator acting
on f is definitionned as

Lu(x)f = (Lu1(x)f,Lu2(x)f, ...,Luq(x)f),

where

Luα(x)f =

Mα
1∑

k=0

(−Dx)
k ∂f

∂uαkx
, α = 1, ..., q, (3)

where Mα
1 ’s are the orders of f for the component uα with respect to x [15].

Definition 2.3 Let f = f(x, u(M)(x)) of order M be given. f is called exact (or diver-
gence) if a differential vector function F (x, u(M−1)(x)) exists such that f = DivF .

Using the zeroth-Euler operator, the following theorem (called Exactness theorem)
provides a condition for exactness of a differential function. This theorem is essential for
computing conservation laws.

Theorem 2.4 Exactness of a differential function f = f(x, u(M)(x)) is equivalent to the
condition Lu(x)f = 0.

Definition 2.5 Two or more terms are divergence-equivalent when a linear combination
of the terms is a divergence.

For example, uxuy and uuxy are divergence-equivalent since uxuy+uuxy = Div(uuy, 0).
The zeroth-Euler operator is also used to identify divergence-equivalent terms by applying
the following theorem.

Theorem 2.6 When the zeroth-Euler operator is applied to a set of divergence-
equivalent terms, their images under the zeroth-Euler operator are linearly dependent
[14].
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In the following, we will definitionne the homotopy operator. This operator provides
a reliable method for integrating exact functions in one independent variable and for
inverting divergences on multi-variable exact functions. Homotopies play a large role in
topological theory. The homotopy operator first appeared in works by Volterra, where
he uses the homotopy operator in the inverse problem of the calculus of variations [17].

Definition 2.7 Given a differential function f = f(x, u(M)(x)) of one variable x, the
homotopy operator is the following vector operator

Hu(x)f =

∫ 1

0
(

q∑
α=1

Iuα(x)f)[λu]
dλ

λ
. (4)

The integrand is definitionned as

Iuα(x)f =

Mα
1∑

k=1

(

k−1∑
j=0

uαjx(−Dx)
k−(j+1))

∂f

∂uαkx
. (5)

Theorem 2.8 Suppose that an exact differential function f = f(x, u(M)(x)) is given.
That is, there exists a function F = F (x, u(M−1)(x)) such that f = DivF . Then,

F = Hu(x)f.

3. Scaling symmetry of the KS equation

In calculation of the conservation laws by the scaling method, the scaling (dilation)
symmetry is applied to obtain a candidate density. Considering the scaling symmetry,
which is computed below, the equation (1) stays invariant under the transformation

(x, t, u) → (λ−1x, λ−4t, λu, λ2α, λ2β, λ0κ), (6)

where λ is an arbitrarily scaling constant. There are some algorithmic methods for com-
puting the scaling symmetries [3, 4, 6], but we use the concept of weight for variables to
find (6) [15].

Definition 3.1 Considering the scaling symmetry x → λ−px, the weight of the variable
x, denoted by W (x), is −p. If Dx denotes the total derivative with respect to x and
W (x) = −p, then W (Dx) = p [15].

Definition 3.2 If a monomial has more than one variable and each one has a weight,
then the sum of the weights is called the rank of the monomial. If each monomial in a
differential function has the same rank, then it is called uniform in rank.

A PDE that admits a scaling symmetry is uniform in rank, so we can compute the
scaling symmetry of the KS equation by letting (1) to be uniform in rank. Under this
assumption, a system of weight-balance equations, corresponding to the terms in the
KS equation can be arranged. By solving this system, we can determine the scaling
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symmetry. For (1), the weight-balance equations are

W (u) +W (Dt) = W (α) + 2W (u) +W (Dx)

= W (β) +W (u) + 2W (Dx)
= W (κ) +W (u) + 4W (Dx).

(7)

Solving the linear system (11) gives W (κ) = 0, W (u) = 1 and W (Dx) = 1 then W (β) =
W (α) = 2 and W (Dt) = 4. Since (2) must vanishes on all the solutions of the PDE, the
conserved density and its corresponding flux must agree with the scaling symmetry of
the PDE. So, the conservation law must be uniform in rank evidently. Thus, according
to the scaling symmetry of the KS equation, we can make a primitive density that is a
linear combination of monomials of preselected ranks (see [15] for more details).

4. Conservation laws of the KS equation

In this section, we find the conservation laws of the KS equation using the scaling
method. For computing the conservation laws, we first need to construct the density ρ.
Then, the corresponding flux J is computed. To find the density, we construct a can-
didate density by taking a linear combination of differential monomials with arbitrary
coefficients. Under the scaling symmetry of the KS equation, these terms must be invari-
ant. For the next step, the total derivative of the candidate density with respect to time
is calculated and then all the time derivative factors of the terms are substituted with
their equivalent expressions using (1). By (2), the obtained expression must be exact.
Therefore, arbitrary coefficients are computed by solving the linear system that is found
by applying the exactness Theorem 2.4; i.e.,

Lu(x)(Dtρ) = 0.

Substituting the solution for the coefficients in ρ, we get the actual density. Finally, the
corresponding flux is calculated using the homotopy operator

J = −Div−1(Dtρ).

4.1 Constructing the Candidate Density

As previously explained, the first step of finding the conservation laws of the KS
equation is to compute the candidate density ρ. At first, we choose an arbitrary rank
for the primitive density. Then, to construct the terms of ρ, the dependent variables are
combined with their partial derivatives to make monomials of the previously specified
rank. After that, the monomials are linearly combined with unspecified coefficients to
form the candidate density ρ of the same rank.
In the following, we construct the candidate density ρ of rank 5 for the KS equation (1).
First, we consider a list P including all powers of the dependent variables up to rank 5.
According to (7), P = {u5, αu3, βu3, α2u, β2u, αβu, u4, αu2, βu2, u3, αu, βu, u2, u}. Then,
we extend P by applying the total derivative operator with respect to the space variables
in order to increase the rank of the terms in P up to 5 and make a new list Q such as

Q = {u5, u3ux, u2u2x, u2xu, u2xux, u3xu, u4x, αu2x, αuux, αu3, α2u, αβu, βu2x, βuux,

β2u, βu3}.
(8)
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In order to have a nontrivial density, it should not include divergence terms and one
of the terms must be excluded from each pair of the divergence-equivalent terms. By
applying (3) over (8), we have

Lu(x)Q = {5u4, 0, 4u2xu+ 2u2x,−u2x − 2u2xu, 0, 0, 0, 0, 0, 3αu
2, α2, αβ, 0, 0, β2, 3βu2}.(9)

According to the Theorem 2.4, u3ux, u2xux, u3xu, u4x, αu2x, αuux, βu2x and βuux are
divergences, so they must be excluded from Q. Also, the third and fourth terms in list
(9) are multiples of each other, therefore u2u2x and u2xu are divergence-equivalent and
one of them must be removed. For each divergence-equivalent pair, the corresponding
term in Q with the lowest order is our choice and the other is omitted. Therefore, Q is
shrunk to the following

Q = {u5, u2xu, αu3, α2u, αβu, β2u, βu3}.

Now, taking a linear combination of the terms in Q, we form the primitive density of
rank 5 for the KS equation as

ρ = c1u
5 + c2u

2
xu+ c3αu

3 + c4α
2u+ c5αβu+ c6β

2u+ c7βu
3, (10)

where c1, . . . , c7 are arbitrary scalars. We will specify ci’s in the next subsection.

4.2 Determining the Actual Density

A trivial conservation law will fit one of two possible cases. The first case occurs when
the density ρ and the flux J vanish independently for solutions of the given PDE. The
second case occurs when the conservation law (2) holds identically for u, without u being
a solution of the PDE [14]. It is important to note that conservation laws are valuable
that are not trivial and are not equivalent. For this reason, we compute densities that are
not equivalent or divergent. To determine the unknown coefficients in (10), we calculate
Dtρ and replace ut and its differentials with their equivalent representations using (1).

Dtρ = (5c1u
4 + c2u

2
x + 3c3αu

2 + c4α
2 + c5αβ + c6β

2 + 3c7βu
2)ut + 2c2uxuuxt.

Let E = −Dtρ. Then, using (1), we have

E = (5c1u
4 + c2u

2
x + 3c3αu

2 + c4α
2 + c5αβ + c6β

2 + 3c7βu
2)(αuux+

βu2x + κu4x) + 2c2uxu(αu
2
x + αuu2x + βu3x + κu5x).

According to (2), E is required to be exact. So, by the Theorem 2.4, Lu(x)E = 0. This
equation gives a system of linear equations as

c1 = c2 = 0, c3 = −β
αc7, (11)

and c4, c5, c6 and c7 are arbitrary. Assuming c4 = c5 = c6 = c7 = 1 and substituting (11)
in (10), the actual density is obtained as follows:

ρ = (α2 + αβ + β2)u.
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4.3 Computing the Flux

After constructing the density ρ, we are ready to compute the corresponding flux using
the fact that J = Div−1(E), by Theorem 2.8. Substituting (11) in E, we have

E = (α2 + αβ + β2)(αuux + βu2x + κu4x).

The integrand Iu(x)E can be calculated by (5) as

Iu(x)E =
∑4

k=1

(∑k−1
j=0 ujx(−Dx)

k−(j+1)
) ∂f
∂ukx

=

α3u2 + α2βu2 + αβ2u2 + α2βuxαβ
2ux + β3ux + α2κu3x + αβκu3x + β2κu3x.

Using (4), we obtain the corresponding flux of rank 5 for equation as follows:

J = Div−1(E) = 1
2α

3u2 + 1
2α

2βu2 + 1
2αβ

2u2 + αβ2ux + β3ux + α2κu3x + α2βux+

β2κu3x + αβκu3x.

So a conservation law of rank 5 for the Kuramoto-Sivashinsky equation is constructed as
follows:

Dtρ+DivJ = Dt((α
2 + αβ + β2)u) + Div

(
1
2α

3u2 + 1
2α

2βu2 + 1
2αβ

2u2+

αβ2ux + β3ux + α2κu3x + α2βux + β2κu3x + αβκu3x) = 0.

Additional conservation laws for the Kuramoto-Sivashinsky equation of rank 1, 3 and 7
are as follows:

ρ1 = u,

J1 =
1
2αu

2 + βux + κu3x,

ρ3 = (α+ β)u,

J3 =
1
2α

2u2 + 1
2αβu

2 + ακu3x + βκu3x + αβux + β2ux,

ρ7 = (α3 + α2β + αβ2 + β3)u+ (α+ β)(2uu2x + u2u2x),

J7 =
κ(α+β)

3 (40uu2xu3x + 26uuxu4x − 20u2xu3x) + (αβ3 + α3β + α2β2 + β4)ux+
κ(α3 + α2β + αβ2 + β3)u3x +

1
2(α

2β2 + αβ3 + α3β + α4)u2+
7
3κ(α+ β)u2u5x + (βα+ β2)u2u3x + (2βα+ 2β2)uuxu2x+
+(α2 + αβ)(3u2u2x + u3u2x).

5. Conclusions

In this paper, we consider the Kuramoto-Sivashinsky equation which appears in some
physical phenomena. This equation is uniform in rank and admits scaling symmetry. The
scaling symmetry was obtained by the concept of weight of variables and the density is
constructed by using this symmetry. The corresponding flux is computed by one dimen-
sional homotopy operator. We obtain the conservation laws of rank 1, 3, 5 and 7 for the
Kuramoto-Sivashinsky equation by the scaling method.
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