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Abstract. Following [6], we define Grothendieck topologies on a small category and describe
sheaves for these Grothendieck topologies. This generalizes, in a natural way, the theory of
sheaves on a topological space.
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1. Motivation

In 1998, Morel and Veovodsky [10] constructed the A1-homotopic category of k-
schemes, where k is a perfect field using the Nisnevich site. This site is built in the
category of k-schemes with a Grothendieck topology, (see details below). The richness
of the A1-homotopic category of k-schemes allowed Voevodsky to prove Milnor’s conjec-
ture [9], Riou [11] to conceive a motivic analogue of Atiyah’s theorem linking the ring of
representations to the ring of K-theory of its classifying space for the linear group and
Azi-Hamraoui to extend this motivic analogue to the special group [1]. Since 2014, in
using Grothendieck topology in order to develop the non-commutative approach to the
Riemann hypothesis, Connes and Consani [2–4] have constructed the arithmetic site and
have proved that the completed Riemann zeta function is obtained as the Hasse Weil
zeta function. We can also investigate the Mod 2 Steenrod algebra [8, 12].
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2. Introduction

To define a cohomology of a topological space X, as it is described in [5] we first
define a category of presheaves over X of sets or A-modules where A is a commutative
unitary ring, then its full sub-category of sheaves by constructing the sheaf associated to
a presheaf. We will briefly recall this study in Section 3. In section 4, following [6], we
define a topology, called Grothendieck topology, on a category C by means of covering
sieves. Such categories are called sites. We then turn to the category of presheaves and
define its full sub-category of sheaves called topos thanks to Yoneda’s lemma.

Section 5 is devoted to the study of five examples: Considering the category Ouv(X)
where X is a topological space, we define a Grothendieck topology and its topos in order
to recover the results of section 3. In the second example, we consider the category BG
of G-sets where G is a group and define a Grothendieck topology and characterize its
topos. In the last three examples, we work with the category of k-schemes where k is
a field, we define three Grothendieck topologies, called Zariski, étale, Nisnevich and we
study their corresponding toposes.

3. Sheaf on a topological space

Definition 3.1 Let X be a topological space and U be an open set of X and V ⊂ U
with V an open set. A presheaf of sets F over X is given by

(1) a subset F(U).
(2) a restriction morphism ρU |V : F(U)−→F(V ) that satisfies the following proper-

ties:

• ρU |U = IdF(U).

• For each inclusion of open subsets W ⊂ V ⊂ U , we have ρV |W ◦ ρU |V = ρU |W .

Example 3.2 We define the presheaf of continuous functions on R as follows: For any
open U of R, F(U) = C(U,R) the set of continuous functions on U . If U and V are open
subsets such that V ⊂ U , a restriction morphism is given by ρU |V : F (U) → F (V ) where
ρU |V (f) = f ◦ i.

Definition 3.3 A presheaf F is a sheaf if and only if for any family of open sets {Ui}i∈I
of X, there is a bijection

F(
∪
i∈I

Ui) −→
{
(si)i∈I

}
s 7−→ si

such that si ∈ F(Ui) and for all i, j ∈ I si|Ui∩Uj
= sj|Ui∩Uj

.

Example 3.4 The presheaf of continuous functions is a sheaf.

Not every presheaf is a sheaf, in this case certain additional conditions are imposed to
force the presheaf to become a sheaf, hence the interest in the notion of a sheaf associated
to a presheaf.

Proposition 3.5 Given a presheaf F , there exists a sheaf F+ and a morphism θ :
F −→ F+ verifying for every morphism φ : F −→ G where G is a sheaf, there is a
unique morphism ψ : F+ −→ G such that φ = ψ ◦ θ. The pair (F+, θ) is unique up to
isomorphism.
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Proof. See [7]. ■

Definition 3.6 The pair (F+, θ) which existence has been shown in the previous propo-
sition is called the sheaf associated to the presheaf F .

4. Grothendieck Topology

4.1 Sieves

Along this section C refers to a small category (in other terms the class of objects of C
is a set). We denote by PRFC the category of presheaves of sets over C. The objects of
PRFC are presheaves of sets and for two presheaves F and G, a morphism of presheaves
from F to G is a natural transformation of F to G.

Example 4.1 For each object X of C, the functor hX = HomC(−, X) is a presheaf
called the presehaf represented by X.

The category PRFC can be equipped with a relation of order in the following way: for
all presheaves F and E over C, we will say that E is a subpresheaf of F if for every object
X of C, E (X) is a subset of F (X) .

Definition 4.2 A presheaf of sets F over C is said representable if there exists an object
X of C such that the functor hX = HomC(−, X) is isomorphic to F .

Lemma 4.3 (Yoneda, see [6]) For every X ∈ C and every presheaf F ∈PRFC , the
following morphism is a bijection:

HomPRFC (hX ,F) −→ F (X)
ϕ 7−→ ϕX(idX)

.

Definition 4.4 Let C and D be two categories and F : C −→ D a functor. The functor F
is said faithful (resp. full) if the map: HomC(X,Y ) −→ HomD(F(X),F(Y )) is injective
(resp. surjective). A functor that is both faithful and full is said to be fully faithful.

It follows from Yoneda’s lemma that the functor C −→ PRFC which to each object X
associates the presheaf HomC(−, X) is fully faithful.

Definition 4.5 A sieve S on X is a subpresheaf of the presheaf represented by X.

Proposition 4.6 Studying a sieve on X is equivalent to consider a class S ′ of morphisms
from the category C satisfying:

(i) each map f of S ′ has the target X,
(ii) for every map f of S ′ and every map g of C, the composition f ◦ g is an element

of S ′.

Example 4.7

• For every object X ∈ C, the presheaf Hom(−, X) is a sieve called the trivial sieve.

• Consider the category Ouv(X) where the objects are the open subsets of X and the
morphisms are the inclusions of open subsets. In Ouv(X) a sieve S on an open V ⊂ U
is given by
• S(V ) ⊂ HomOuv(X)(V,U) = { the inclusion of V in U}.
• S(V ) is thus reduced to one element.
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Definition 4.8 Let
(
Ui

fi−→ X
)
i∈I

be a collection of morphisms of C. The sieve gener-

ated by fi is the set of maps:

〈fi〉 = {f : Y −→ X such that there exists i ∈ I hi : Y −→ Ui where f = fi ◦ hi} .

Definition 4.9 Let S be a sieve on X and f : Y −→ X a morphism of C. The pullback
S ×

Hom(−,X)
Hom(−, Y ) exists in the category of presheaves PRFC , we denote it Sf .

Sf ⊂ Hom(−, Y ) is a sieve on Y and it is defined for every object Z of the category C
by Sf (Z) = {g : Z −→ Y such that f ◦ g ∈ S(Z)} .

Proposition 4.10 If the morphism f : Y −→ X of Definition 4.9 belongs to S, then
Sf = Hom(−, Y ).

Proof. See [6]. ■

Proposition 4.11 Suppose that the category C admits pullbacks. Let
(
Ui

fi−→ X
)
i∈I

be a collection of morphisms of C and Y an object of C, f : Y −→ X a morphism and S
a sieve on X. If S = 〈Ui −→ X, i ∈ I〉, then Sf = 〈Ui ×X Y −→ Y, i ∈ I〉 .

Proof. See [6]. ■

4.2 Sites

4.2.1 Topologies

Definition 4.12 A Grothendieck topology T on the category C is the assignment, for
every object X of C, of a collection T (X) of sieves on X satisfying the following axioms:

(a) Stability under base change: For every object X of C, every sieve S ∈ T (X) and
every morphism f : Y −→ X where Y ∈ C, the sieve Sf ∈ T (Y ).

(b) Local character: If S and S ′ are two sieves ofX, if S ∈ T (X) and if for every Y ∈ C
and every morphism Hom(−, Y ) −→ S the sieve S ′f ∈ T (Y ), then S ′ ∈ T (X).

(c) Identity: For every object X of C, the trivial sieve Hom(−, X) ∈ T (X). The
sieves belonging to T (X) are said T -covering. Each category C equipped with a
Grothendieck topology T is called a site, it is denoted (C, T ). The category C is
called the underlying category of that site.

The inclusion relation of presheaves induces a preorder relation on the sieves and conse-
quently on the covering ones. We will say for two sieves S and S ′ on X that S is finer
than S ′ if S ⊂ S ′.

Definition 4.13 Let (C, T ) be a site and X an object of C. A collection of morphisms
(fi : Ui −→ X)i∈I of C is said to be T -covering if the sieve generated by the family (fi)i∈I
is a T -covering sieve on X.

Lemma 4.14 If (C, T ) is a site, then for each object X of C and every sieves S and S ′

on X, the following assertions are satisfied:

(i) If S and S ′ are T -covering, then S ∩ S ′ is T -covering.
(ii) If S is T -covering and S is finer than S ′, then S ′ is T -covering.
(iii) The ordered set T (X) is filtered.

Proof.

(i) Let f : Y −→ X be a morphism of S. It follows from Proposition 4.10 and Defi-
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nition 4.12 that the sieve (S ∩ S ′)f = Hom(−, Y ) is T -covering for Y according
to (c). We deduce from (b) that S ∩ S ′ ∈ T (X).

(ii) Similar to (i), let f : Y −→ X be a map of S. Since S is finer than S ′ we have

once again (S ′)f = Hom(−, Y ) and we conclude with (b).
(iii) It follows from the fact that T (X) is non-empty according to (c) and the assertions

(i) and (ii).

■

Definition 4.15 If T1 and T2 are two topologies on the category C, we will say that T1
is finer than T2 if for each object X of C the sieve T1 (X) ⊂ T2 (X).

Example 4.16

• The topology defined on C by T (X) = Hom(−, X) is the least fine of all topologies on
C, we call it the trivial topology.

• The topology defined on C by T (X) = {All the sieves on X} is the finest of all topolo-
gies on C, we call it discrete topology.

Proposition 4.17 If (Ti)i∈I is a family of topologies on C, then the topology T given
by T (X) =

∩
i∈I Ti (X) is

(1) a topology;
(2) the infimum of Ti for the order defined on the topologies.

Proof. See [6]. ■

The family (Ti)i∈I also admits a supremum, it is the intersection topology of topologies
finer than each of the Ti.

4.3 Pretopologies

Definition 4.18 We call Grothendieck pretopology on C the data consisting of: for all
X ∈ Ob(C), Cov(X) is a set of family of morphisms (fi : Ui −→ X)i∈I . That collection
satisfies the following properties:
1. Existence of pullbacks: For every (fi : Ui −→ X)i∈I ∈ Cov(X) the morphisms fi are
quadrable, which means that for all Y −→ X in the category C the pullback Ui ×X Y
exists.
2. Stability under base change: for all X ∈ Ob(C), for all (fi : Ui −→ X)i∈I ∈ Cov(X)
and for all Y −→ X in the category C, (fi : Ui ×X Y −→ Y )i∈I ∈ Cov(Y ).
3. Stability under composition: for all X ∈ Ob(C), for all (fi : Ui −→ X)i∈I ∈ Cov(X)
and for all i ∈ I, let us consider (gji : Vji −→ Ui)ji∈Ji

∈ Cov(Ui). Then the family
(fi ◦ gji : Vji −→ X)ji∈Ji,i∈I ∈ Cov(X).
4. Identity: for all X ∈ Ob(C), we have (idX : X −→ X) ∈ Cov(X).

Definition 4.19 Let Cov be a pretopology on C and X be an object of C and S a sieve
on X. We say that S is elementary if there exists a covering Cov(X) = (fi : Ui −→ X)i∈I
such that S = 〈Ui −→ X, i ∈ I〉.

4.4 Topos

Definition 4.20 Let C be a category equipped with a Grothendieck topology and F
a presheaf on C. We will say that F is a separated presheaf (resp. a sheaf) of sets
on the site (C, T ) if for every object X of C and every covering sieve S on X, the
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map HomPRFC (HomC(−, X),F) −→ HomPRFC (S,F) is injective (resp. bijective). We
denote by FC the subcategory of PRFC formed by sheaves over C and we call it the
associated topos to the site (C, T ).

Proposition 4.21 If the topology on C is generated by a pretopology defined by a family
of coverings (fi : Ui −→ X)i∈I for every object X, then a presheaf on C is a sheaf if and
only if

F(X)−̃→
{
(si)i∈I such that si ∈ F(Ui) and for all i, j ∈ I, si|Ui×XUj

= sj|Ui×XUj

}
is an isomorphism.

Proof. See [6] ■

5. Examples of sites

5.1 The site Ouv(X)

5.1.1 The topology

Proposition 5.1 For every topological space X, we get a site by equipping the category
Ouv(X) with the covering family (Ui −→ U)i∈I ∈ Cov(U) if and only if U =

∪
i∈I

Ui.

Proof. 1. Existence of pullbacks: Let U, {Ui}i∈I ∈ Ouv(X) such that f : Ui −→ U and
g : Uj −→ U.

Ui ×U Uj = {(x, y) ∈ Ui × Uj / f(x) = g(y)}

= {(x, y) ∈ Ui × Uj / x = y}

= Ui ∩ Uj ∈ Ouv(X).

Moreover, for all W ∈ Ouv(X), W
a−→ Ui and W

b−→ Uj such that f ◦ a = g ◦ b, there
is a unique morphism u :W −→ Ui ∩ Uj and for every w ∈W , we have

(f ◦ a) (w) = (g ◦ b) (w) =⇒ a(w) = b(w).

Since a(w) ∈ U and b(w) ∈ V , then (a(w), b(w)) = u(w).
2. Stability under base change: Let (Ui −→ U)i∈I ∈ Cov(U). Then U =

∪
i∈I

Ui =⇒

V ∩U = V ∩
(∪

i∈I
Ui

)
. Since V ⊂ U , we get V = V ∩

(∪
i∈I

Ui

)
. Thus, V =

∪
i∈I

(V ∩ Ui) .

We conclude that (V ∩ Ui −→ V )i∈I ∈ Cov(V ).
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3. Stability under composition:

(gji : Vji −→ Ui)i∈I,ji∈Ji
∈ Cov(Ui)

⇐⇒ Ui =
∪

i∈I,ji∈Ji

Vji

⇐⇒ U =
∪
i∈I

 ∪
i∈I,ji∈Ji

Vji

 =
∪

i∈I,ji∈Ji

Vji .

As a result, (fi ◦ gji : Vji −→ U) ∈ Cov(U).
4. Identity: It is clear that for all U ∈ Ouv(X), idU ∈ Cov(U).
Conclusion: (Ouv(X), Cov(U))U∈Ouv(X) is a site. This is how the notion of site on a
category generalizes the notion of topology on a set. ■

5.1.2 Topos on Ouv(X)

A presheaf F on the site Ouv(X) is a sheaf if and only if

F(X)−̃→
{
(si)i∈I such that si ∈ F(Ui) for all i, j ∈ I si|Ui×XUj

= sj|Ui×XUj

}
.

is an isomorphism. Since Ui×X Uj = Ui∩Uj , we find the definition of a sheaf in the case
of a topological space. The category of toposes on Ouv(X) and the one of sheaves X are
equivalent.

5.2 The site BG where G is a group

Definition 5.2 Let G be a group and X a set. We say that X is a left G-set if there
exists a map

G×X −→ X
(g, x) 7−→ g.x

such that

(1) for all g1, g2 ∈ G; (g1.g2)(x) = g1.(g2.x).
(2) for all x ∈ X; there exists e ∈ G such that ex = x.

Definition 5.3 We denote BG the category where

• Ob(BG)={G-sets}.
• HomBG(E1, E2) = {f : E1 −→ E2} such that for all x ∈ E1 and for all g ∈ G,
f(g.x) = g.f(x).

5.2.1 A pretopology on BG

Proposition 5.4 The following covering family is a Grothendieck pretopology on BG:

(Ui −→ X)i∈I ∈ Cov(X) ⇐⇒
⨿
i∈I

Ui −→ X surjective.

Proof.
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(1) Existence of pullbacks: Let Ui and Uj be two G-sets:

Ui × Uj
//

��

Ui

f

��
Uj

g
// X

Ui×
X
Uj = {(a, b) ∈ Ui × Uj such that f(a) = g(b)}

a ∈ Ui =⇒ there exist x ∈ Ui and g1 ∈ G so that a = g1.x
b ∈ Uj =⇒ there exist y ∈ Uj and g2 ∈ G so that b = g2.y
Ui×

X
Uj = {(a, b) ∈ Ui × Uj such that g1.f(x) = g2.g(y) g1, g2 ∈ G }

Ui×
X
Uj = {(a, b) ∈ Ui × Uj such that f(x) = g−1

1 .g2.g(y) g1, g2 ∈ G}
It is easy to check that Ui×

X
Uj is a G-set since

G× Ui×
X
Uj → Ui×

X
Uj

(h, α) 7→ h.α

α ∈ Ui×
X
Uj =⇒ α = (x, y) ∈ Ui × Uj such that f(x) = g−1

1 .g2.g(y)

h.α = h.(x, y) = (h.x, h.y) ∈ Ui × Uj such that f(h.x) = g−1
1 .g2.g(h.y)

=⇒ h.α = h.(x, y) = (h.x, h.y) ∈ Ui × Uj such that h.f(x) = h.g−1
1 .g2.g(y).

Then Ui×
X
Uj is an object of the category BG.

(2) Stability under composition: Suppose that (fi)i∈I ∈ Cov(U) and (gji : Vji −→
Ui)ji∈Ji

∈ Cov(Ui).

fi ∈ Cov(U) ⇐⇒ πfi :
⨿
i∈I

Ui −→ X surjective

gji ∈ Cov(Ui) ⇐⇒ πgj :
⨿
ji∈Ji

Vji −→ Ui surjective

Let us consider the following composition:⨿
ji∈Ji

Vji
πgj−→ Ui

π−→
⨿
i∈I

Ui
πfi−→ X

Consequently, πfi ◦π ◦ πgj :
⨿

ji∈Ji

Vji −→ X is surjective as being the composition

of two surjective maps. Thus, the family (fi ◦ gji : Vji −→ X)ji∈Ji,i∈I ∈ Cov(X).
(3) Stability under base change:

(Ui −→ X)i∈I ∈ Cov(X) ⇐⇒
⨿
i∈I

Ui −→ X surjective. And for all Y −→ X,

the map
⨿
i∈I

(Ui ×
X
Y ) −→ Y is surjective. Then (Ui ×

X
Y −→ Y )i∈I ∈ Cov(Y ).

(4) Identity: Since X
⨿
X = X, we get idX : X −→ X ∈ Cov(X).

■
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5.2.2 Topos on the site BG

Let U be a G-set. We can construct a presheaf of sets on U as follows:

FU : BGOpp −→ Ens
V 7−→ HomBG(V,U)

To show that the presheaf FU defined on BG is a sheaf we must prove that the map φ∗
i

is bijective where

FU (X)
φ∗

i−→ A(X) =
{
si ∈ FU (Ui) such that si|Ui×XUj

= sj| Ui×XUj

}
(i) Injectivity: Let us consider the morphism Hom(X,U)

φ∗
i−→ Hom(Ui, U) which

associates to the map f the morphism φ∗
i (f) = f ◦ φi = FU (φi). Let h, g ∈

FU (X) = Hom(X,U) such that φ∗
i (h) = φ∗

i (g) and let us verify that h = g.
φ∗
i (h) = φ∗

i (g) if and only if for all (φi : Ui −→ X)i∈I ∈ Cov(X), h◦φi = g ◦φi.
Let x ∈ X, then there exists i ∈ I such that x = φi (ui). h(x) = h ◦ φi (ui) =
(h ◦ φi) (ui) = (g ◦ φi) (ui) = g(x). This implies that φ∗

i is injective.
(ii) Surjectivity: Consider the diagram:

Ui × Uj

qj
//

qi

��

Uj

φj

��
Ui

φi

// X

Let (ti)i∈I ∈ Hom(Ui, U) such that q∗i (ti) = q∗j (tj) ⇐⇒ ti ◦ qi = tj ◦ qj . We have
to construct t ∈ Hom(X,U) such that ti = φ∗

i (t) = t ◦ φi. Since
⨿
i∈I

Ui −→ X is

surjective, then for all x ∈ X, there exists i ∈ I such that x = φi (ui). According
to the following diagram:

Ui

φi

//

ti   @
@@

@@
@@

X

t��~~
~~
~~
~~

U

The needed map t is given by (t ◦ φi) (ui) = t(φi(ui) = t(x) = ti(ui). Finally, φ
∗
i

is surjective.
Conclusion: for all U ∈ Ob(BG), the functor Hom(−, U) is a sheaf of sets on BG.

5.3 Grothendieck topologies on the category of schemes

Let Sch/k be the category of separated and finite type schemes over a field k [7].

5.3.1 Zariski topology

Definition 5.5 An open subscheme of a scheme X is a scheme U whose the topological
space is an open subset of X and whose the structure sheaf OU is isomorphic to the
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restriction OX|U of the sheaf to X. An open immersion is a morphism f : X −→ Y that
induces an isomorphism from X to an open subscheme of Y .

Definition 5.6 LetX be a scheme. We say that a family of morphisms (fi : Ui −→ X)i∈I
is a Zariski covering if fi is an open immersion for each i ∈ I. The corresponding site of
this pretopology is denoted by (X)Zar.

5.3.2 Étale topology

Definition 5.7 Let k be a field and X,Y be two schemes on k. A morphism of schemes
f : X −→ Y is étale if f is locally of finite presentation, flat and if for each point
y ∈ Y , the k(y)-scheme Xy is étale. We say that a scheme X is étale if the morphism
X −→ Spec(k) is étale.

Definition 5.8 Let X be a scheme in Sch/k. We say that a family of morphisms of the

form
(
Ui

fi−→ X
)
i∈I

is an étale covering if:

(1) the morphisms fi are étale,
(2) the morphism

⨿
i∈I

Ui −→ X is surjective.

The topology generated by the pretopology of étale coverings is called étale topology on
Sch/k. We denote (Sch/k)Et the corresponding site.

5.3.3 Characterization of the topos of Sch/k

The aim of this part is to describe the structure of any étale topos associated to a
given field.

Proposition 5.9 Let k be a field, k̄ its separable closure and két the category of k-étale
algebras. Sheaves F on két are the discrete G-sets X where G = Gal(k̄/k) and we have
the following equivalence of categories:

Fkét

i−→ discrete G-sets
F 7−→ i (F)= lim

L/k finite, L⊂k̄
F (L) .

Proof. If F is a sheaf on k, we take

i (F)= lim
L/k finite, L⊂k̄

F (L) .

Then i (F) is a set on which G operates. Conversely, let E be a discrete G-set.Consider

the presheaf defined on the subcategory of k̂ét formed by the separable finite extensions
of k included in k̄ by

FE(L) = EGal(k̄/L).

Since the inclusion presheaf of this subcategory in k̂ét is an equivalence of categories,
we can extend FE to k̂ét in a substantially unique way and then to két in a unique way
into a functor which commutes with disjoint sums. Thus, FE is a sheaf. ■
5.3.4 Nisnevich topology

Definition 5.10 Let X be a scheme. We say that a family of morphisms (fi : Ui −→
X)i∈I is a Nisnevich covering if
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(1) the morphism
⨿
i∈I

Ui −→ X is surjective.

(2) the morphism fi is étale for each i ∈ I.
(3) for each point x ∈ X, there is an index i ∈ I and a point u ∈ Ui such that

fi(u) = x and the morphism fi induced on the residual fields k(x)
∼−→ k(u) is an

isomorphism.

The topology generated by this pretopology is called Nisnevich topology on Sch/k and
the underlying site is (Sch/k)Nis.

5.3.5 Characterization of the topos of Sch/k

Proposition 5.11 Let k be a field. A presheaf on Sch/k is a Nisnevich sheaf if the
following two conditions are satisfied:
i) F(∅) is a singleton.
ii) for all E,F ∈ Ob(Sch/k), the map F(E × F ) −→ F(E)×F(F ) is a bijection.

Proof. See [11]. ■

Remark 1 Note that the étale topology is finer than Nisnevich topology which is finer
than Zariski topology because every Nisnevich morphism is an étale morphism and every
étale morphism is a Zariski morphism.
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