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1. Introduction and preliminaries

In recent times, many generalizations of frames have been appeared. Some of them are
K-frame, g-frame, fusion frame and g-fusion frame etc. K-frames for a separable Hilbert
spaces were introduced by Lara Gavruta [6] to study atomic decomposition systems for
a bounded linear operator. In fact, generalized atomic subspaces for operators in Hilbert
spaces were studied by Ghosh and Samanta [7]. K-frame is also presented to reconstruct
elements from the range of a bounded linear operator K in a separable Hilbert space and
it is a generalization of the ordinary frames. In fact, many properties of ordinary frames
may not holds for such generalization of frames. Like K-frame, another generalization of
frame is g-fusion frame and it has been studied by several authors [T, 17, [8]. Rabinson
[T5] presented the basic concepts of tensor product of Hilbert spaces. The tensor product
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of Hilbert spaces X and Y is a certain linear space of operators which was represented by
Folland [4] and Kadison and Ringrose [I3]. Generalized fusion frame in tensor product
of Hilbert spaces was studied by Ghosh and Samanta [8].

In 1970, Diminnie et al. [8] introduced the concept of 2-inner product space. Atomic
system in 2-inner product space is studied by Dastourian and Janafada [2]. A general-
ization of a 2-inner product space for n > 2 was developed by Misiak [I4] in 1989.

In this paper, we give a notion of a family of local atoms in n-Hilbert space. Since
tensor product of n-Hilbert spaces becomes a n-Hilbert space, we like to study K-frame
in this n-Hilbert space. We give a necessary and sufficient condition for being K-frames
in n-Hilbert spaces is that of being in their tensor products. Atomic system in tensor
product of n-Hilbert spaces is discussed. Finally, we are going to establish a relationship
between atomic systems in n-Hilbert spaces and their tensor products.

Throughout this paper, X will denote separable Hilbert spaces with the inner product
(-,-); and K denotes the field of real or complex numbers. [? (N) and [? (N x N) denotes
the spaces of square summable scalar-valued sequences with index sets N and N x N,
respectively. B ( X ) denotes the space of all bounded linear operators on X.

Now, we recall some basic definitions and theorems.

Definition 1.1 [5] Let K € B(X ). A sequence { f; };-; C X is called a K-frame for
X if there exist positive constants A, B such that

AINK*FIE < D1 finl> < BIFIE Y F € X (1)

=1

The constants A, B are called frame bounds. If { f; };° | satisfies only the right inequality
of (), it is called a Bessel sequence with bound B.

Definition 1.2 [5] Let K € B(X) and { f; };=, be a sequence in X. Then { f; }72
is said to be an atomic system for K if the following statements hold:
o
(i) the series Y. c; f; converges for all {c;}2, € 12 (N);
i=1
(ii) for every z € X, there exists a, = {a; }?2, € [?(N) such that ||as [, < C| x|
o0
and K (z) = Y a; f; for some C > 0.
i=1
Definition 1.3 [i6] Let (Y, (-, -),) be a Hilbert space. Then the tensor product of X
and Y is denoted by X ® Y and it is defined to be an inner product space associated
with the inner product

(fog, ffog)y=(ff)(9.9"), VL eX &g g €Y.

The norm on X ® Y is given by

If@gll=1Flillgle VfeX &ge,

where || - ||; and || - |2 are norms induced from (-, -); and (-, -),, respectively. The
space X ® Y is clearly completion with respect to the above inner product. Thus, the
space X ® Y is a Hilbert space.

For the operators Q € B(X ) and T € B(Y ), their tensor product is denoted by
Q ® T and defined as (Q ® T) A = QAT* V A € X ® Y. It can be easily verified
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that Q ® T € B(X ® Y) [d].
Theorem 1.4 [d] Suppose Q, Q' € B(X)and T, 7" € B(Y ). Then

() QT e B(X®Y)and [[Qe T = |Q T

(1)) (RAT)(f®yg)=Qf@Tgforall f e X, geY.

(ii)) (Q@T)(Q'®T')=(QQ") ® (TT').

(tv) @ ® T is invertible if and only if @ and T are invertible, in which case (Q ® T')~
( Q ' T ).

(v) (ReT) =(Q*aT").

(vi) Let f, f' € H\{O} and g, g’ € K\ {0}.If f ® g = f' ® ¢’, then there exist
constants a and b with ab = 1 such that f = a f’ and g = bg’.

Definition 1.5 [12] A real valued function |-, ---, -|| : H™ — R satisfying the follow-
ing properties:
(2) |z1,z2, -+, 2] =0 ifand only if =1, ---, z, are linearly dependent,

(i) ||x1, x2, -+, | is invariant under permutations of xy, - -+, x,,

(ZZ/L) ||Oé.’E]_, 2, - )an = |a| ||xla T2, l‘n||705 € Ka

(Z/U) ||I + Y, T2, , l‘nH g ”17, L2y ", xn” + Hyv L2y """, xn”:
forall 1, xo, -+, Ty, x, y € H, is called n-norm on H. A linear space H together with
a n-norm ||+, ---, -|| is called a linear n-normed space.

Definition 1.6 [(4] Let n € N and H be a linear space of dimension greater than or
equal to n over the field K. An n-inner product on H is a map

(1‘, Y, T2, ,J}n) — (a:,y]xg, "'71'71)7 T,Y, T2, ", Tp € H
from H"*! to the set K such that for every z, y, 1, 2, -+, , € H,
(1) (x1,x1]x2, -+, xn)y = 0 and (x1,x1|x2, -+, 2,) = 0 if and only if
T1, Lo, -, Ty are linearly dependent,
(i) (x, y|:1:2, oy xn) = {(x,y|lx,, -+, x; ) for every permutations (ig, ---, i, ) of
(2, n),
(ZZ/L) <IL’ y|CC2,"' xn>:<yvﬂ:’$2u"'7xn>)
() (ax,y|lxe, -+, zn) = al{x,y|lze, -, x,) fora € K,
(v) (x +y, z|lxe, -, xn) = (x,2|x2, -, xn) + (y,2|T2, -+, Tp).
A linear space H together with an n-inner product (-, -|-, ---, ) is called an n-inner

product space.
Theorem 1.7 [(4] Let H be an n-inner product space. Then

](x,y\xg,---,xnﬂ < Hx,wg,---,:vnH Hyvx%"'vanv

for all z, y, xo, -+, x, € H, where ||z1, x2, -, x,| = \/<:L'1, xy|we, -+, xy) is
called Cauchy-Schwarz inequality.

Definition 1.8 [1?] A sequence {z } in linear n-normed space H is said to be con-

vergent to x € H if klim |zp — x,ea, -+, en|| = 0 for every eg, -+, e, € H
— 00
and it is called a Cauchy sequence if %im |z — xk, €2, -+, en|| = 0 for every
, [eS)
eo, -+, ey € H. The space H is said to be complete if every Cauchy sequence in this

space is convergent in H. An n-inner product space is called n-Hilbert space if it is
complete with respect to its induce norm.

Definition 1.9 [0] Let (X, (-, -|-)) be a 2-Hilbert space and £ € X. A sequence
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{fi};2, € X is said to be a 2-frame associated to & if there exist positive constants
A, B such that

ANFEP< Y HF BIEIP<BISEIP VfeX

=1
Theorem 1.10 [1] Let L¢ denote the 1-dimensional linear subspace of X generated by
afixed { € X. Let M¢ be the algebraic complement of L¢. Define (2, y), = (2, y[§)
on X. This semi-inner product induces an inner product on the quotient space X /L
which is given by

(z+ Le,y+ L) =(z,y)e = (z,y§) VayelX
By identifying X / L¢ with M¢ in an obvious way, we obtain an inner product on Me¢.
Define ||zl = (/(z,2), (2 € M¢). Then (Mg, || - [|¢) is a norm space. Let X¢

be the completion of the inner product space Me¢.

Definition 1.11 [6] Let H be a n-Hilbert space. A sequence { f; } ;2 ; in H is said to
be a frame associated to (ag, -+, a, ) if there exists constant 0 < A < B < oo such
that

AHf? a?a'”7anH2 < Z ‘<f7 fi|a27”'7an>|2 < B Hf7 a??'”7an||2 (2)
i=1

for all f € H. The constants A, B are called frame bounds. If { f; } 72, satisfies only
the right inequality of (B), is called a Bessel sequence associated to (ag, -+, ap ) in H
with bound B.

Let as, as, ---, ap, be the fixed elements in H and Lp denote the linear subspace
of H spanned by the non-empty finite set ¥ = {as,as, -+, ap}. Then the quo-
tient space H / Lp is a normed linear space with respect to the norm, ||z + Lp | =
|z, aq, -+, ayl| for every x € H.Let Mp be the algebraic complement of Lp, then
H = Lr & Mp. Define (z,y)p = (x,y|az, -+, a,)on H. Then (-, ) is a semi-
inner product on H and this semi-inner product induces an inner product on the quotient
space H / Ly which is given by

<x+LF7y+LF>F:<x7y>F:<x7y’a27"'7an> VJUayEH‘

By identifying H / Lr with Mp in an obvious way, we obtain an inner product on
Mp. Then Mp is a normed space with respect to the norm || - ||r defined by ||z ||p =
V{z,z)p Vo € Mp. Let Hr be the completion of the inner product space M [6].

Theorem 1.12 [6] Let H be a n-Hilbert space. Then { f; };2, C H is a frame associ-
ated to (ag, -+, a, ) with bounds A and B if and only if it is a frame for the Hilbert
space Hp with bounds A and B.

For more details on frames in n-Hilbert spaces and their tensor products one can go
through the papers [B, 9].
2. Atomic system in n-Hilbert space

In this section, concept of a family of local atoms associated to (ag, ---, a, ) is dis-
cussed. Next, we are going to generalize this concept and then define K-frame associated
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to (ag, -+, ap ) for H, for a given bounded linear operator K.
Definition 2.1 Let (H, ||+, -+, -||) be a linear n-normed space and as, --- , a, be
fixed elements in H. Let W be a subspace of H and (a;) denote the subspaces of H
generated by a;, for i = 2,3,---,n. Thenamap T : W X (a2) X -+ X (an) - K
is called a b-linear functional on W' x (ag) x --- X (ay), if for every z, y € W and
k € K, the following conditions hold:

(/L) T(ZE + Yy, az, '”7a7’b) = T(ZE,CLQ, "'7an) + T(y7a27 "'7an)

(it) T(kx,ag, - ,an) =kT(xz,a2, -, an).

A b-linear functional is said to be bounded if there exists a real number M > 0 such
that

| T (x,a2, - ,an)| <M |z,a2, - ,a,| Y € W.

Some properties of bounded b-linear functional defined on H X (a2) X -+ X (ay,)
have been discussed in [

Definition 2.2 Let { f; },2; be a Bessel sequence associated to (as, -+, a, ) in H and
Y be a closed subspace of H. Then { f; },= ; is said to be a family of local atoms associated
to (ag, -+, ay ) for Y if there exists a sequence of bounded b-linear functionals { T'; },°
defined on H x (ag) x -+ X (ay,) such that

() Z |T (faa27"'van)|2 < C’]|f,a2,--~,an||2forsomeC > 0.
=1

(i) f = Z Ti (f, a2, -, an) fiforall f €Y.
i=1
Theorem 2.3 Let { f; },°, be a family of local atoms associated to (as, -+, ay ) for

Y, where Y be a closed subspace of H. Then the family { f; },°, is a frame assoc1ated
to(ag,---, n) for Y.

Proof. Since { f; };7, is a family of local atoms associated to (as, -+, a, ) for Y, there
exists a sequence of bounded b-linear functionals { T; },2 | such that
o0
Z ‘E (fa a2, - ’an)|2 < C Hf’a2’ )an||27f S Yu
i=1

for some C' > 0. Now, for each f € Y,

Hf,CLQ,"',QnH42 f f’a27 7a/n>2
2
:<fvztrl f,CLQ, 7an)fi‘a2)”')an>
=1

00 2
= (Z T'l f:a27"'aan) <fafi|a21"'aan>>

=1

< Z ‘,‘Ti(fva%"'aan)‘Qz ’<f7fi’a27"'7an>|2

i=1 =1

OHf7a27"'7anH2Z‘<f7fi|a27"‘7an>‘2

=1

N
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1 o0
= 6 ||f,CL2, "'7a7l||2 < Z |<f>fi‘a2> ""an>|2‘
i=1
Also, { fi };2, is a Bessel sequence associated to (ag, -+, ap ) in Y. Hence, { f; },7,
is a frame associated to (ag, ---, a, ) for Y. [ |
Theorem 2.4 Let { f; }2, be a Bessel sequence associated to (as, -+, ay, ) in H and
Y be a closed subspace of H. If there exists a Bessel sequence associated to (a9, --- , ay)
in H, say {g; };= such that
o
PY(f):Z<f7gi’a27”'7a’fL>f’i7 (3)
i=1
for all f € Hp, where Py is the orthogonal projection onto Y, then { f; },2  is a family
of local atoms associated to (ag, ---, ap ) for Y.
Proof. Let us take f € Y then by (B), we can write
o0
F=DPr(f)=> (f, gilaz, -, an) fu
i=1
Now, for each f € Y, we define
n (f7a27 "'7an) = (fagi|a27 "'7an>'
Then, for each f € Y, we have
oo
fzzﬂ(fva% aan)fl
i=1
Also, for any i, we have
’,‘TZ (f7a27 "'7an)| = ‘<f7gi’a27 "'7an>|
< Hf7a27 "'7anH Hgiaa27 "'7anH
<M ”f7a2a "'aan”
where M = sup || gi, a2, ---, ap||. This verifies that each T; are bounded b-linear
i
functionals defined on ¥ x (ag) X .-+ X (a,). On the other hand, since {g; }, =,
is a Bessel sequence associated to (a9, -+, a, ), we get
o0 o0
Z|Ti(fva27 "'7an)’2:Z|<f> gi|a27 "'7an>|2
i=1 i=1

< B||faa2"",an||2

This completes the proof. [ |
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Now, we are going to generalize the concept of a family of local atoms associated to
(ag, -+, an).

Definition 2.5 Let K be a bounded linear operator on Hr and { f; };2 , be a sequence

of vectors in H. Then { f; },7 ; is said to be an atomic system associated to (ag, -+ , ap)
for K in H if
(i) {fi};2, is a Bessel sequence associated to (ag, -+, ay, ) in H.
o0
(ii) For any f € Hp, there exists {c; }22, € [?(N) such that K (f)= Y c; fi, where
i=1
{citZille <CIf, a2, an] and C > 0.
Definition 2.6 Let K be a bounded linear operator on Hp. Then a sequence { f; }22, C
H is said to be a K-frame associated to (ag, -+, a, ) for H if there exist constants

A, B > 0 such that for each f € Hp,

o0
ANK* fraz, - anll? <Y (S filaz, — an)|> S B foa2, - an?.
i=1
Theorem 2.7 Let { f; }?° | be a K-frame associated to (ag, --- , ap ) for H. Then there
exists a Bessel sequence { g; }$2 | associated to (ag, ---, ay ) such that
oo
K*f=> (f,filaz,---,an) gi V[ € Hp.
i=1

Proof. According to the Theorem 3 of [f], there exists a Bessel sequence { g; }5° ; as-
sociated to (azg, - -+, a, ) such that

o

Kf=Y (f.gilas, -, an) fi Vf€ Hp.
i=1
Now, for each f, g € Hp, we have

<Kf7.g|a2’"'aan> = <Z<f,gi|a2a"'7an>fiag|a27"'aan>

1=1

= Z (f)gi|a27"'7an> <fi)g‘a2>"'>an>

~
—_

) <f7z <g’fi‘a2""’“n>9i’a27“-7a">.
i=1
This shows that
K*f = Z <f7fi’a27"',an>gi Vf c HF
i=1

This completes the proof. [ |
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3. Atomic system in Tensor product of n-Hilbert spaces

Let Hy and Hs be two n-Hilbert spaces associated with the n-inner products
(«,-|-,---,-)yand (-, |-, -+, )y, respectively. The tensor product of H; and H»
is denoted by Hy ® Hs and it is defined to be an n-inner product space associated with
the n-inner product given by

<f®gafl®gl|f2®927"'7fn®gn> (4)
:<f7f1‘f27”'7fn>1 <g,gl|927"‘7gn>2
fora11f7f17f27"'7fn€Hlandgagl792)"'7gn€H2'
The n-norm on Hy ® Hs is defined by
Hf1®glaf2®927"'7fn®gn|| (5)
:||fl7f27"'7fn”1 Hglag2a"'agn”2
for all f17f27 7fn S Hl and g1,92, *** , 9n S H27 where ||77H1 and
|-, -, ||, are n-norm generated by (-, -|-, -+, -);and (-, |-, ---, - )5, respectively.

Clearly, the space H; ® Hs is completion with respect to the above m-inner product.
Therefore, the space H; ® Hs is an n-Hilbert space.

Remark 1 Let G = {ba, bs, -+, by } be a non-empty finite set, where by, bg, -+, by,
be the fized elements in Ho. Then we define the Hilbert space K g with respect to the inner
product is given by

<$+LG7?J+LG>G = <l‘7y>G = <$7y’b25'”7bn>2 v T,y € H27

where Lg denote the linear subspace of Ho spanned by the set G. According to the defi-
nition 3, Hr ® K¢ is the Hilbert space with respect to the inner product:

<a: Ry, 2’ ® y’> = <x,w’>F <y,y’>G Va,2' € Hr & y,y' € Kg.

Definition 3.1 Let K; € B (Hp) and Ky € B (K¢g). Then the sequence of vec-
tors {fi ® g, }1'03':1 C H;y ® Hy is said to be a K; ® Ks-frame associated to

(a2 ® by, -+, ap ® by ) for Hi ® Hj if there exist A, B > 0 such that
AH(Kl ® K2>* (f ®g),a2 029 b27 e, 0 @ an2
o
<> {f®g fi®gjlaz @by, an @ by)|”
i,j=1
SBIf®g as®@by -, an@byl|” Vf®ge Hr® K. (6)
If A = B, then the sequence is called a tight K; ® Ks-frame associated to
(a2®bo, -+ ,a,Rby). If K1 = Ip and K9 = Ig, then by the Theorem @2,
it is a frame associated to (agy ® ba, -+, ap ® by, ) for Hy ® Hs, where Ip and

I are identity operators on Hp and K, respectively. If only the last inequality of
(B) is true then the sequence { f; ® g; }53:1 is called a Bessel sequence associated
to (ag ® be, -+, a, ® by ) in Hy ® Hjy. Thus, every K1 ® Ks-frame associated to
(a2 ®bg, -+, a, by ) is a Bessel sequence associated to (ag ® ba, -+, an @ by).
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Theorem 3.2 Let {f;}.°, and {g;}°, be two sequences in H; and H,. Then
i=1 ifji=1

{fi};21 is a Ky-frame associated to (a2, -, an) for Hy and {g;};, is a Ko
frame associated to (ba, ---, by ) for Hy if and only if the sequence { f; ® g, };3»:1 is
a K1 ® Ko-frame associated to (ay ® bo, --+, a, ® by, ) for Hi ® Ho.

Proof. Suppose that the sequence { f; ® g; }Z.Oj.zl is a K1 ® Ks-frame associated to
(a2 ® by, -+, an ® by ) for HA @ Hy. Then foreach f ® g € Hr @ Kg — {0 ® 0},
there exist constants A, B > 0 such that

AH(K1®K2)*(f®g)7a2®b27”'7an®bn”2
[eS)
<> {f®g fi®gjlaz®@ba, -, an @ by)|”
i,j=1
g‘BHf(ggaa’Q(®bQ7'”ann(ngLH2
= AHKl*f@KQ*g?aQ®b27"‘7an®bn”2
oS
<> {f®g fi®gjlaz®@ba, -, an @ by)|”
=1
<‘BHf(X)gaan(81727"'aaln(®an2
:>A”K1*f7a27"'7anH12 ||K2*gab27"‘abn”22
[eS) 00 )
<<Z|<f7fi’a27”'7an>12) Z}(gag]‘6277bn>2|
i=1 j=1
2 2
g‘BHf?aza"'uanHl ||gvb27"'7bn”2'

Since f ® g € H ® K is non-zero element i.e., f € H and g € K are non-zero elements.
Here, we may assume that every f; and ao, ---, a, are linearly independent and every
gj and ba, ---, b, are linearly independent. Hence

ST g gilbay by |2 DI Filas, o an)y |

j=1 i=1

are non-zero. Therefore, by the above inequality, we get

Al K5g, by, -+, balls g )
_ 2 n I 2||K1*faa27'-'7an||1<Z|<f7fi\aza"',an)1|
Z ’<g>gj|b2aabn>2’ =1
j=1
B”K*gab27”'7b H2 2
<% — "2 fra e anll;
Z }(gvg]|b277bn>2|
j=1
o
= AU KL fran, o anllf <Y OICE filaz, o an) [P < Byl foaz, o an)f

=1
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where
AKyg,ba, -, byl B K5 g, ba, -, bnlly
Al _ 1n[£ _ || 29,02, y TLHQ . and B1 sup || 29,02, ) n||2 2‘
€
! ¢ Zl}<gvg]’b2aabn>2‘ 9€Ks Z ‘ gvg]‘b27"'7bn>2‘
j:

This shows that { f; }°2, is a K;-frame associated to (ag, ---, a, ) for H;. Similarly,
it can be shown that {g; }52, is a Ks-frame associated to (b2, -~ , by, ) for Ha.

Conversely, suppose that { f; },° is a Kj-frame associated to (ag, -+, ap ) for H;
with bounds A, B and {g; } | is a Ko-frame associated to (b, ---, by, ) for Hp with

bounds C, D. Then, for all f € Hrp and g € Kg, we have
[o.¢]
AHKl*f7a27"'7anH1 Z ffi’a27"’7an>1|2gBvaa%"‘aan”fv

CHKQ*gava”'vanQ Z‘ gvg]|b27 ) > ‘ <D||gvb277bn”22
j=1

Multiplying the above two inequalities and using (8) and (H), we get

ACH(K1®K2)*(f®g)7a2®b277an®an2
o0
<> H{f®g fi®gjlaz®@ba, -, an @ by)|”
i,j=1
<BDHf®gaa2®b2;"';an®bn”2 Vf®g€HF®KG
Hence, { fi ® g} D=1 is a K1 ® Ko-frame associated to (agy ® ba, -+, ap ® by ) for
H; ® Hs. This completes the proof. [ ]

Theorem 3.3 Let { f;};2, and {g;}32, be the sequences of vectors in n-Hilbert
spaces Hy and Hy. Then the sequence { f; ® g; } C H; ® Hy is a Bessel sequence

i,j=1
associated to (ag ® ba, ---,a, ® b, ) in H ® H2 if and only if { f; }2°, is a Bessel
sequence associated to (a9, ---, ap ) in Hy and {g; };X’: 1 is a Bessel sequence associated
o(bg, -+ ,by)in Hs.
Proof. Since every K| ® Ks-frame associated to (as ® ba, -+, ap, ® by, ) is a Bessel se-
quence associated to (ag ® by, -+, ap ® by, ), the proof of this theorem directly follows
from the Theorem BZ2. |
Theorem 3.4 Let { f; }2_1 be a Ki-frame associated to (ag, <+, ap) for Hy with
bounds A, B and { g; } 1 be a Ko-frame associated to (ba, - -+, by, ) for Hy with bounds

C, D, respectively.

(1)) f Ty ® Ty € B(Hr ® K¢g) is an isometry such that (K1®K2) (T1®T2) =
(T ®Ty) (K1 ® Ko)™, then the sequence A = {(T1®T3)" (fi ® g])} i1 is
a K ® Kj-frame associated to (ag ® ba, -+, ap ® by ) for Hy ® Ho.

(11) The sequence I' = { (L1 ® L) (fi ® g;j) }; 51 isa (L1 ® L2) (K1 ® Kj)-frame
associated to (agy ® bg, -+, ap ® by ) for Hy ® Ha, for some operator Ly ® Lo €
B (HF X Kg).
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Proof. (i) For each f ® g € Hr ® Kg, we have

o0
S Hf@g. (Ti@T)" (fi ®g;)lay @by, an ®by)|?
ij=1
oo
=Y [{(fog T'fi®Tigjlas @by, -+, an ®by)|?
ij=1
o0 oo 9
= <Z |<faT1*fi|a2""’an>1‘2> Z‘<97T2*g]|b257bn>2|
i=1 j=1
o0 o 9
- <Z‘<T1f7fi’a27"'aan>1‘2> Z‘<T297g]‘b277bn>2‘ (7)
i=1 j=1
<BHTlf,a27"',aanD”TQQ,GQ,"',CLan
[since {fi};Z, is a Ki-frame associated to (a2, -, an) and {g;};2, is a
Ko-frame associated to (ba, -+-, by )]
<SBD TP T2 11 £y a0, -5 anllf 19, b2, -5 balls

=BD|Th @ To|* | f @ g,a0 @by, -, an @ by |?.

On the other hand, since { f; },2, is a K;-frame associated to (ag, --- , ay ) for H; and
{g; };il is a Ks-frame associated to (ba, --- , by ) for Ha, from (@), we have

> (f@g, (i @T)* (fi ®gj)|az @by, -, an @ by)|°

=1

2"4”I(I*ITlfva%"'aa’n”12Cv||1{2*11297b2a"'abn||22

== AC<K1*T1f7K1*T1f‘a27 "'7an>1 <K2*T297K2*ng|b2,"‘,bn>2

= AC(K{T,f® K3Tag, K{iT1f ® K;Tog|as ® by, -+, an ® by)
=AC((K1®@Ko)" (1 @To) (f®g), (K1®@Ke) (11 @T) (f®g)|ag @b, -+, an @ by)

=AC(MeT)(K1®K2)" (fog), (T10Th) (Ki1®K)" (f©g)|laa®by, -+, an @ by)
[since (K1 ® K2)" (Th @ T2) = (Th @ Tz) (K1 @ K2)7]
=AC((K1 @ K2)" (f®yg), (K1® Ky)" (f®g)laz @by -, a, @ by)

[since (17 ® To) is an isometry |

= AC(K{ f® Kyg, K f ® Ky glas ® by, -+, an @ by)
= AC<K1*faK1*f|a27"’aan>1 <K2*97K2*g’b27"'7bn>2
= AC || K{ f,as, -, an|] 1 K5 g, ba, -, ball3

= AC||K{ f ® K5g,a2 @ ba, -+, a, ® by |*

= ACH(Kl ®K2)*(f@g),(lQ®b2,"',an®bn||2-
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Hence, A is a K1 ® Ky-frame associated to (az ® bg, ---, a, ® by, ) for Hy ® Ho.
(73) According to the proof of (i), it is easy to verify that for each f® g € Hr ® K¢,
we have

ST f@g, (L@ L) (fi ©g;) laz @ ba, -+, an @ by)|?
i,j=1
<BD|Li®Ly||?||f©®g, aa@ba, -, an@by]*

On the other hand,

o0

Y {f@g, (L1® L) (fi ®gj)|ag @by, -+, an @ bn)|?

ij=1

> A|K{ L f,ag, -, anlf{ C|KsLsg, by, -, ball}

= ACHK1*L1*f®K2*L2*gaa2 ®627"'7an®bn”2

= AC||(K{Lf @ K5 L3) (f ® g), a2 ® by, -, an @ by ||?

= AC|[(L1 ® Ly) (K1 ® K2)]" (f ® g), a2 ® by, -+, an ® by ”.
Hence, I'isa (L; ® Ly) (K1 ® Kj)-frame associated to (ag ® ba, -+, ap ® by ) for
H, ® Hs. |

Definition 3.5 Let K; and K5 be bounded linear operators on the Hilbert spaces Hp
and K. Then the sequence of vectors { f; ® g; |y C H; ® Hy is said to be an

ij=1
atomic system associated to (as ® ba, -++, ap, @ by, ) for K1 @ Ko € B(Hp @ Kg)
in Hi ® Hy if
(1) {fi ® gj};j—, is a Bessel sequence associated to (a2 ® b2, -+, ap ® by ) in Hy @
Hs.

(44) Forany f ® g € Hp ® Kg, there exists c ® d = {¢;d; }75_1 € 12(N x N) such
that

(K1 ® K2) (f®g)= Z cidj (fi ®gj),
i,j=1
and for some C > 0,
lc@dl <Clf@g, a2®ba, -, an®@byl|,

where ¢ = {¢;}72, andd = {d;}{2, arein [*(N).

Theorem 3.6 Let { f; },2, be an atomic system associated to (ag, -+, ap ) for Kj in
Hiand{g; };’il be an atomic system associated to (ba, - -, b, ) for Kyin Hy. Then the
sequence { f; ® g; }53:1 is an atomic system associated to (a2 ® ba, -+, ap ® by)
for K1 ® K9 in H; ® Hs.

Proof. Since { f; },2, is an atomic system associated to (a2, -, a, ) for Kj in H; and
129 is an atomic system associated to (ba, ---, b, ) for Ky in Hy, by the definition

gj j=1 Y Yy
P35, { fi};Z, is a Bessel sequence associated to (a2, -+, an) in Hy and {g;};2, is a
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Bessel sequence associated to (ba, ---, by ) in Hj, respectively. Then by the Theorem
B3, { fi ® g;};j— is a Bessel sequence associated to (a2 ® b, -+, apn ® by ) in H1 ®
Hs. Also, for any f € Hrp and g € Kg,

o0

Klf :Z Cifi with ||{Ci}ioil||lz < Cl ||faa2a T an”l for SOHIeCl > Oa
i=1
oo

Kyg = Z djg; with H{dj }]‘.’il Hl2 < Caollg, ba, -+, by |4 for some Cy > 0.
j=1

Therefore, for each f ® g € Hr ® Kg, we have

(K12 Ky)(f®g) = Kif®Kag

oo oo oo
=<Zczf¢)® Y digi| = > cidi(fi®g;)
=1 j=1 i,j=1
On the other hand,
e b le || 1ds 32|, < Callfaz - anlly Collg bay e ball,

= c@dlp <CIf©g a2 @by, an®bnl,

where C' = C7 Cs > 0. This completes the proof. [ |

Theorem 3.7 If the sequence {f; ® g; };’(j’.:]L is an atomic system associated to
(a2 @ by, -+, an ®by) for K1 ® Ky in Hi ® Hy. Then {Af;}2, is an atomic
system associated to (ag, ---, ap ) for Ky in Hy and { Bg; };x’:l is an atomic system

associated to (bo, - -+, b, ) for K9 in Ha, respectively, where A and B are constants with
AB = 1.

Proof. By definition B3, the sequence { f; ® g; };?3:1 is a Bessel sequence associated
to (ag ® b, -+, ap ® by ) in Hi @ Hy, and therefore by Theorem B3, { f; },2, is a
Bessel sequence associated to (ag, ---, a,) in Hy and {g;}2, is a Bessel sequence
associated to (ba, --+, by, ) in Ho, respectively. Also, for any f ® ¢ € Hr ® K¢, there
exists c ® d = {c;d; }5_1 in 12(N x N) such that

(K1 ®@ Ky) (f@g)= Y, cid; (fi®g;) = (Z Cifi) > djg;

i,j=1 i=1 j=1

By (vi) of Theorem I, there exist constants A, B with A B = 1 such that

o0

Klf = Zcz(Afz) and Kgg = Z dj(BQj).

i=1 j=1
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On the other hand, for some C > 0, using (B), we have

||C® d||l2 < C ||f ®g7a2 ® b27 ctry, Qn X bn”
S ekl | {di 320 |, < Cllfaz o anlly g, ba o bally
c Hgab?a o, b H
:>||{cl}zoil‘|l2< o = 2||f’a’27'”7an||1201 Hf)a27"'aanH17
H {dshi= 12
Cllg,ba,---,0b - .
where C] = lg.ba nlly > 0. Similarly, it can be shown that
o
H{d] }jzl 12
H{d]}joil le < C2 Hgv b27 T bn”Qv
Clf as -, _
where Cy = I a2 = anl L This completes the proof. [ ]
H{eitizill
Theorem 3.8 Let { f; },°, be an atomic system associated to (ag, ---, ap) for K
in Hy and {g; }]911 be an atomic system associated to (bg, -+, by ) for Ky in Ho,
respectively. Then { f; ® g;}_, is a K1 ® Ks-frame associated to (az, -+, an).

Proof. By Theorem B3, the sequence { f; ® g; }iOC;:l is a Bessel sequence associated
to (ag ® bg, -+, a, ® by) in Hy @ Hy. Then, for all f ® g € Hp ® K¢, there exists
B > 0 such that

o0

Z (f®g, fi®gjlaa®@ba, -, an @by, )|
i,5=1

<SB|f®g as@bs, -+, an®@bnl”.

Also, for any f1 € Hp and g1 € Kg, we have

(e}

K f1 = Zcifi with || {ci };2 1. < C1 |l f1, a2, -+, anlly,

=1

for some C7 > 0, and

K291 = ) djg; with H{dj}fil < C2llgrsbay - bally

i=1

12
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for some Cy > 0. Now, for each f ® g € Hr ® Kg, we have

||(K1®K2)*(f®g)v aQ@b?v ) an@bn||2 = ||K1*f®K2*g7 a2®b2> Tty an@an2
= | K/ f a2, anll{ 1 K5g,ba, -, bally [by (B)]
= sup |<K1*f7f1|a27”'7an>1‘2 sup ‘<K2*gagl|b27"‘7bn>2’2
| fraz2,,anli=1 lg1,b2,,bnll2=1
= sup ‘<f,K1f1‘G2,"-,an>1‘2 sup ’<97K291‘b2a"'abn>2’2
| f1a2,,anl1=1 lg1,b2,,bnll2=1
oo 2 00 2
= sup <f, > cifilag, -+, an sup 9. Y djgjlba, -, bn>
| f1, a2, an[1=1 i=1 1 lgasbay e bnfla=1 j=1 9
00 2 0o 2
= sup Ea<f7 fi|a27"'7an>1 sup Zdj<ga gj|b27"'7bn>2
1f1, a2, ,anll,=1 i=1 Il g1, b2, bn [|l2=1 j=1
oo 0
< sup {Z|Ci|22‘<fafi|a2a"‘aan>1|2}X
I fi,a2,,an|,=1 i=1 i=1

sup ST 12 [ (g, 9512, by |

91,62, bnl2=1 | ;=4 j=1

o
g sup {012Hfl,G/Q,"',anH%Z‘<f,fi’a2,"',an>1|2}X

[ fi,a2,anl, =1 i=1
- 2
sup 022 Hglab277bn“122|<gvg]‘b277bn>2‘
lg1,ba, bl =1 et
= 2
2012022 Z ‘<f7fi|a27"'aan>1|2‘<gagj|b27"'7bn>2|
i,j=1
oo
=CP2C3 Y [(f@g fi®gjlay @by -+, an®by)|* [by @)].
i,j=1
iwH(K1®K2)*(f®g),a2®b2,~-,an®bn|!2
1“2
oo
<> Hf®g fi®gjlaz®by, -, an ®by)|?.
i,j=1
This completes the proof. [ ]

4. Conclusion

In this paper, in the setting of n-Hilbert space, we give the idea of atomic system
and establish some characterizations of them. Yet it remains to establish another few
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important concepts of frame theory like, perturbation, stability etc. in the setting of
n-Hilbert space.
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