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Abstract. The phenomenon of defectless extensions is a classical notion in the framework of
valued fields and valued vector spaces in valuation theory. The aim of this paper is to study
various results regarding this concept and its applications.
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1. Introduction and preliminaries

In valuation theory, the notion of defectlessness plays an important role in several ap-
plications; specially, it is helpful to have equivalent characterizations because it makes the
tight connection between valued fields, their invariants, value groups and residue fields.
Moreover, it is one of the important tools of valuation theory which is used extensively
in generalizing some results or making counterexamples. In this paper, we discuss the
role that this concept plays in obtaining some important results in valuation theory. We
compare the results of various research papers related to this concept, and state their
findings in a logical and historical sequence. Moreover, we will attempt to state briefly
some of applications of these results in two contexts of valued fields and valued vector
spaces. In fact, this study includes two sections. In the first section, we deal with defect-
less extensions of valued fields, and in the second section, we treat defectless extensions
in the context of valued vector spaces.

Let us first recall some basic notions. We refer the reader to [15, 16, 30, 33] for the
elementary definitions and the basic facts of valuation theory.
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Let v be a valuation on a field K. The value group and the valuation ring of v denoted
by G(K) and OK , respectively. OK is a local ring with the maximal ideal MK , and
OK/MK is the residue field of v denoted by R(K). For any β in OK , β∗ will denote its
v-residue, i.e., the image of β under the residue map from the valuation ring of v onto
its residue field.

Let K ′/K be an extension of fields. A valued field (K ′, v′) is called an extension
of a valued field (K, v) if v′|K = v. This statement is denoted by (K ′, v′)/(K, v) or
(K, v) ⊆ (K ′, v′). We may denote briefly it byK ′/K when there is no chance of confusion.

For a valued field extension (K ′, v′)/(K, v), there is a natural embedding of the value
group G(K) in the value group G(K ′), and a natural embedding of the residue field
R(K) in the residue field R(K ′). If both embeddings are onto (which we just express by
writing G(K) = G(K ′) and R(K) = R(K ′)), then the extension (K ′, v′)/(K, v) is called
immediate. A valued field is called maximal if it does not admit any nontrivial immediate
extensions.

Take (K ′, v′)/(K, v) to be finite. Then R(K ′)/R(K) is a finite extension, and the
number f(K ′/K) = [R(K ′) : R(K)] is called the residue degree (inertia degree) of K ′/K.
Moreover, the quotient group G(K ′)/G(K) is finite, and its index denoted by e(K ′/K)
is called the ramification index of K ′/K (see [16, Corollary 3.2.3]). It is known that

[K ′ : K] ⩾ [G(K ′) : G(K)][R(K ′) : R(K)].

In fact, if v′1, v
′
2, . . . , v

′
m are the distinct extensions of the valuation v on K to the field

K ′, the so-called Lemma of Ostrowski (see [33, Chapter VI, §12, Corollary to Theorem
25]) establishes that

[K ′ : K] =

m∑
i=1

pni [Gi(K
′) : G(K)][Ri(K

′) : R(K)]; (1)

where Gi(K
′) and Ri(K

′) are respectively the value group and the residue field of v′i, and
p denotes the characteristic exponent of R(K) (that is, p = charR(K) if it is positive,
and p = 1 otherwise), and for each i ∈ {1, 2, . . .m}, ni is a non-negative integer. We now
give some definitions using the identity stated in (1).

Definition 1.1 Let (K ′, v′)/(K, v) be as above. For each i ∈ {1, . . .m}, the factor pni

in (1) is called the defect of the valued field extension (K ′, v′i)/(K, v). When pni = 1 for
all i ∈ {1, . . .m}, we say that K ′ is a defectless field extension of (K, v). Otherwise we
call it a defect extension.

The multiplicativity of the degree of filed extensions, the ramification indexes and
inertia degrees obviously implies that the defect is multiplicative. Consequently, every
subextension of a finite defectless extension is again defectless. We usually center our
study of defectless extensions to the particular case where m = 1, that is, where the
valuation v extends uniquely to K ′. Recall that a valued field (K, v) is called henselian
if v has a unique extension to every algebraic extension of K. This holds if and only if
(K, v) satisfies Hensel’s Lemma (see [16, Theorem 4.1.3]), that is, if f is a polynomial with
coefficients in the valuation ring OK of (K, v) and there is b ∈ OK such that v(f(b)) > 0
and v(f ′(b)) = 0, then there exists a ∈ OK such that f(a) = 0 and v(b− a) > 0.

Definition 1.2 An infinite algebraic extension (K ′, v′)/(K, v) such that the valuation v
admits a unique extension from K to K ′ is called defectless if every finite subextension
of (K ′, v′)/(K, v) is defectless.
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Definition 1.3 A valued field (K, v) is called a defectless valued field (or briefly a
defectless field) if every finite extension of K is defectless.

Observe that by the Lemma of Ostrowski, any valued field (K, v) of residue character-
istic zero is a defectless field. Moreover, the property of defectlessness is transitive:

Proposition 1.4 [22, Lemma 11.6] Let (K, v) be an arbitrary valued field, K ′/K a finite
extension and E/K a subextension of K ′/K. Let v1, . . . , vm be all extensions of v from
K to E. Then (K, v) is defectless in K ′ if and only if (K, v) is defectless in E and (E, vi)
is defectless in K ′ for 1 ⩽ i ⩽ m.

Every finite valued field extension of a defectless field is again defectless. More precisely,

Proposition 1.5 [22, Lemma 11.9] If v1, . . . , vm are all extensions of the valuation v
from K to a finite extension K ′, then (K, v) is a defectless field if and only if (K, v) is
defectless in K ′ and (K ′, vi) are defectless fields for all i = 1, . . . ,m.

2. Defectless extensions of valued fields

In this section, we study the concept of defectlessness in the context of valued fields.
We see that how it has been extensively used to solve some problems, establishing clas-
sifications, and developing some results concerned with valued fields.

Throughout this section, unless otherwise stated, v is a valuation of a field K and v̄ is
a fixed extension of v to an algebraic closure K of K. For any overfield K ′ of K contained
in K, we will denote by G(K ′) and R(K ′) respectively the value group and the residue
field of the valuation v′ of K ′ obtained by restricting v̄ to K ′.

2.1 Complete distinguished chains

Since one of the applications of the concept of defectlessness has been to generalize
some results in the context of complete discrete rank one valued fields (also named local
fields) to valued fields of arbitrary rank, we start by considering a paper including the
important results about local fields.

In [29], Popescu and Zaharescu defined some invariants associated to an irreducible
polynomial to investigate the structure of irreducible polynomials. More precisely, they
defined the notion of “lifting polynomial” relative to a residual transcendental extension
of the local field (K, v) to the rational function field K(x) over K in an variable x.
There they prove that every lifting of an irreducible polynomial over a local field is
also irreducible [29, Theorem 2.1]. This leads to some known criteria of irreducibility
and also gives new criteria which generalized the usual Eisenstein irreducibility criterion
[29, Proposition 2.2]. Khanduja and Saha generalized the notion of lifting polynomials
over valuations of arbitrary rank in [20]. More precisely, they applied it to extend the
irreducibility criterion presented in [29] to polynomials with coefficients from a valued
field (K, v), where v is a valuation of any rank. In what follows, we give a description of
lifting polynomials:

Definition 2.1 A pair (α, δ) in K×G(K) is said to be minimal (with respect to (K, v))
if whenever β ∈ K satisfies v̄(α− β) ⩾ δ, then [K(α) : K] ⩽ [K(β) : K].

If f(x) is a fixed nonzero polynomial in K[x], then using the Euclidean algorithm,
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each F (x) ∈ K[x] can be uniquely represented as a finite sum
∑
i⩾0

Fi(x)f(x)
i, where for

any i, the polynomial Fi(x) is either 0 or has degree less than that of f(x). The above
representation will be referred to as the f -expansion of F (x).

For a pair (α, δ) ∈ K ×G(K), the valuation wα,δ of K(x) defined on K[x] by

wα,δ

(∑
i

ci(x− α)i

)
= min

i
{v̄(ci) + iδ}, ci ∈ K, (2)

will be referred to as the valuation defined by the pair (α, δ). If f(x) is the minimal
polynomial of α over K of degree n with wα,δ(f(x)) = λ and e is the smallest positive
integer such that eλ ∈ v̄(K(α)), say eλ = v̄(h(α)), h(x) ∈ K[x], deg h(x) < n, then the

wα,δ-residue

(
f(x)e

h(x)

)∗
of

(
f(x)e

h(x)

)
is transcendental over R(K(α)) and the residue field

of wα,δ is canonically isomorphic to R(K(α))

((
f(x)e

h(x)

)∗)
(see [5, Theorem 2.1]).

Definition 2.2 For a (K, v)-minimal pair (α, δ), let f(x), n, λ, and e be as above. A
monic polynomial F (x) belonging to K[x] is said to be a lifting of a monic polynomial
Q(Y ) belonging to R(K(α))[Y ] having degree m ⩾ 1 with respect to (α, δ) if there exists
h(x) ∈ K[x] of degree less than n such that

(i) degF (x) = emn,
(ii) wα,δ(F (x)) = mwα,δ(h(x)) = emλ,
(iii) the wα,δ-residue of F (x)/h(x)m is Q((f e/h)∗).

The concept of lifting of polynomials is now one of the most important tools of valu-
ation theory in studying the properties of irreducible polynomials with coefficients in a
valued field (K, v) (see for example [3, 9, 10, 13]).

In [29], it was also defined the notions of “distinguished pairs” and “complete distin-
guished chains” (also called saturated distinguished chains) which lead to a sequence of
invariants of an irreducible polynomial. These invariants are characteristic, i.e., by using
them, we may describe the set of irreducible polynomials over a local field [29, Theorem
4.6]. As an application, these invariants may be used to understand sufficiently well the
extension of the natural valuation of a local field K to the field given by the considered
polynomial. The notion of distinguished pairs originates from an invariant δK(θ) referred
to as the main invariant of an algebraic element θ over K. δK(θ) was defined for algebraic
elements θ ∈ K \K when (K, v) is a complete discrete rank one valued field [29]. By the
main invariant of an algebraic element θ is the supremum of the set M(θ,K) defined by

M(θ,K) = {v̄(θ − ξ)| ξ ∈ K, [K(ξ) : K] < [K(θ) : K]},

where, for the sake of definition of supremum, G(K) may be viewed as a subset of its
Dedekind order completion. Popescu and Zaharescu proved that if (K, v) is a local field,
then M(θ,K) has an upper bound in G(K), and moreover, δK(θ) ∈ M(θ,K) for each
θ ∈ K \ K [28, p. 74]. However, there are instances when δK(θ) ∈ G(K) but fails to
belong to M(θ,K) (see [2, Example 2.1]). This arose a question of how to characterize
those valued fields (K, v) for which to each θ ∈ K \K, there corresponds ξ ∈ K satisfying
[K(ξ) : K] < [K(θ) : K] and δK(θ) = v̄(θ − ξ).

Aghigh and Khanduja solved this problem by using defectless extensions over henselian
valued fields as follows:
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Theorem 2.3 [2, Theorem 1.1] Let v be a henselian valuation of a field K and K be the
algebraic closure of K with valuation v̄. The following two statements are equivalent:

(i) To each α ∈ K \K, there corresponds β ∈ K with [K(β) : K] < [K(α) : K] such
that δK(α) = v̄(α− β).

(ii) For each θ ∈ K, K(θ)/K is a defectless extension with respect to the valuation
obtained by restricting v̄.

When M(θ,K) has a maximum element for θ ∈ K \ K, we may choose an element
ξ ∈ K of smallest degree over K such that v̄(θ − ξ) = δK(θ). This forms a pair (θ, ξ)
which is referred to as distinguished pairs:

Definition 2.4 A pair (θ, ξ) of elements ofK is called a distinguished pair if the following
three conditions are satisfied:

(i) v̄(θ − ξ) = δK(θ),
(ii) [K(θ) : K] > [K(ξ) : K],
(iii) if γ belonging to K has degree less than that of ξ, then v̄(θ − γ) < v̄(θ − ξ).

Distinguished pairs give rise to distinguished chains in a natural manner:

Definition 2.5 A chain θ = θ0, θ1, . . . , θr of elements of K will be called a complete
distinguished chain for θ if (θi, θi+1) is a distinguished pair for 0 ⩽ i ⩽ r− 1 and θr ∈ K.

Popescu and Zaharescu [29] proved the existence of a complete distinguished chain for
each θ ∈ K \K in case (K, v) is a local field, and also gave some invariants associated
to a chain for θ, and Ota [27] gave a method to determine these invariants in this case.
Aghigh and Khanduja again used the concept of defectlessness to generalize these results
to henselian valued fields of arbitrary rank. They proved:

Theorem 2.6 [1, Theorem 1.2] Let (K, v) and (K, v̄) be as in Theorem 2.3. An element
θ ∈ K \K has a complete distinguished chain if and only if K(θ)/K is defectless.

They also showed that complete distinguished chains for an element θ ∈ K \K give
rise to several invariants associated with θ which satisfy some fundamental relations (see
[1, Theorems 1.4 and 1.5]):

Theorem 2.7 Let (K, v) be a henselian valued field, and v̄ be the unique extension of
v to a fixed algebraic closure K of K. If θ = θ0, θ1, . . . , θr and θ = η0, η1, . . . , ηs are two
complete distinguished chains for θ ∈ K \K, then r = s and [K(θi) : K] = [K(ηi) : K]
for 1 ⩽ i ⩽ s.

Theorem 2.8 With (K, v) and (K, v̄) as above, let θ = θ0, θ1, . . . , θs and θ =
η0, η1, . . . , ηs be two complete distinguished chains for an element θ ∈ K \K. If fi(x) and
gi(x) denote respectively the minimal polynomials of θi and ηi over K, then the following
hold for 1 ⩽ i ⩽ s:

(i) G(K(θi)) = G(K(ηi)),
(ii) R(K(θi)) = R(K(ηi)),
(iii) v̄(θi−1 − θi) = v̄(ηi−1 − ηi),
(iv) v̄(fi(θi−1)) = v̄(gi(ηi−1)).

Theorems 2.7 and 2.8 show that the invariants associated with θ happen to be the same
for all K-conjugates of θ and hence are invariants of the minimal polynomial of θ over
K. Consequently, complete distinguished chains has been used to obtain results about
irreducible polynomials over valued fields. There have been described some methods of
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constructing complete distinguished chains for algebraic elements over valued fields (see
[4, 31] for example).

2.2 Defectless polynomials

Continuing to examine the importance of the notion of defectlessness, it is worthwhile
to study defectless polynomials and tame polynomials.

Definition 2.9 A polynomial h(x) ∈ K[x] is called defectless over a valued field (K, v)
if it has a root α such that deg h is the product of the ramification index and the residue
degree of some extension of v to K[α].

Definition 2.10 A polynomial h(x) ∈ K[x] is called tame if it is defectless and admits
a root α such that the characteristic of R(K) does not divide the ramification index of
the field extension K[α]/K, and the residue class field extension of K[α]/K is separable.

In 2009, Ron Brown [12] introduced a strict system of polynomial extensions over a
valued field (K, v) as follows:

We denote by QG(K) a fixed divisible hull of the value group G(K) of v. By an
extension w of v to K[x], we mean a mapping

w : K[x] → QG(K) ∪ {∞}

satisfying w(f + g) ⩾ min{w(f), w(g)}, w(fg) = w(f) + w(g) for all f, g ∈ K[x], with
w−1(∞) not necessarily the zero ideal. If w−1(∞) is a nonzero (prime) ideal I, then w
gives rise to a valuation wI of the field K[x]/I. We shall denote by Kw the residue field
of wI and by τw : K[x] → Kw ∪ {∞} the associated place.

Definition 2.11 Suppose that n ⩾ 0. A strict system of polynomial extensions over
(K, v) of length n+ 1 is a finite sequence (g0, w0, γ0), . . . ,
(gn+1, wn+1, γn+1), where each wi is an extension of v to K[x] and γi ∈ QG(K)∪ {−∞}
such that the following properties are satisfied:
(A) g0 = x−a, a ∈ K, γ0 = −∞, w0(h) = v(h(a)) for every h ∈ K[x]; and for 0 ⩽ i ⩽ n:
(B) deg gi+1 > deg gi, deg gi divides deg gi+1;
(C) γi+1 = wi(gi+1);
(D) wi+1(gi+1) = ∞;

(E) The gi-expansion of gi+1 given by gi+1 = gdi

i +
∑
r<di

Arg
r
i (degAr < deg gi) satisfies

wi(Ar)
di−r ⩾ wi(A0)

di
> γi for all r < di;

(F) If ei is the least positive integer such that eiwi(A0) ∈ diwi(K[x]) and li = di/ei, then
the polynomial

Y li +
∑
r<li

τwi
(sli−rAeir)Y

r

is irreducible over Kwi
for all s in K[x] with wi(A0s

li) = 0.

Notation : We let P(K) denote the set of all polynomials h with h = gn+1 for some
strict system g as in Definition 2.11.

The class P(K) of polynomials first arose as the class of “key polynomials” in
MacLane’s seminal construction [23], in the case that v is discrete rank one, of the
extensions of v to a rank one valuation on the polynomial ring K[x]. His construction
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gave rise to a vast generalization of many known irreducibility criteria (see the list in [25,
p. 232]). In work related to MacLane’s, Brown studied the class P(K) of polynomials
in full generality; he showed that for maximal fields the extensions of v to K[x] were
bijective with a class of objects defined purely in terms of the residue class field and
value group of v (certain “signatures”); a corresponding computation was given for the
irreducible polynomials. In an effort to make a part of this material more accessible, he
introduced the notion of a “strict system of polynomial extensions” (Definition 2.11) by
adapting the notion of an “extension of a polynomial” [11, Definition (5.5)and Sec. 7].
Another approach to the study of extensions of v to K(x), particularly for local fields,
was developed by N. Popescu and several collaborators (see for example [29]), and then
generalized and strikingly applied by Khanduja and her collaborators by using the no-
tion of defectless extensions (see for example [1, 8, 32]). In [12] and [13], Brown and
Merzel established strong connections between strict systems of polynomial extensions
and complete distinguished chains of polynomials, and used these connections to make
applications to both. We here explain some of their results:

As one of the most important results of Brown’s work [12], it may be worth mentioning
some results showing in case that (K, v) is a maximal field, then P(K) is the set of all
monic nonlinear irreducible polynomials over K; if (K, v) is discrete rank one, then P(K)
is the set of monic polynomials overK which are irreducible over the completion of (K, v),
and if (K, v) is maximally complete ([30, Definition 9, p. 36]), then P(K) is the set of
all monic irreducible polynomials over K. Moreover, the following theorem shows that
if (K, v) is henselian, then every complete distinguished chain of polynomials in K[x] in
the sense of [1, 29] is a strict system of polynomial extensions.

Theorem 2.12 [13, Theorem 9.1] Suppose that (gn+1, . . . , g0) is a complete distin-
guished chain over a henselian valued field (K, v). Let γ0 = −∞. For each 0 ⩽ i ⩽ n+1,
let wi denote the unique extension of v to K[x] with wi(gi) = ∞ and for each 0 ⩽ i ⩽ n
set γi+1 = wi(gi+1). Then the sequence g = ((gi, wi, γi))i⩽n+1 is a strict system of poly-
nomial extensions over (K, v).

An very important application of Theorem 2.12 shows that if (K, v) is henselian, then
P(K) consists precisely of the monic nonlinear defectless polynomials over (K, v) [13,
Theorem 9.3]:

Theorem 2.13 If (K, v) is henselian, then P(K) consists exactly of the monic nonlinear
defectless polynomials over (K, v).

Brown and Merzel [13] also studied the rich sequences of invariants of defectless polyno-
mials which arise naturally in both approaches of strict systems of polynomial extensions
and complete distinguished chains of polynomials; these sequences are often essentially
identical. They particularly dealt with tame polynomials in K[x]. For such polynomials
which are a special case of defectless polynomials (see Definition 2.10), we can present
the following main result:

Theorem 2.14 [13, Theoem 2.3] Let h be a tame polynomial in K[x] and that α is a
root of h in the algebraic closure K. Suppose that h ∈ P(K) with h = gn+1 for some
strict system g as in Definition 2.11. Then for each integer r with 0 ⩽ r ⩽ n, the set

Sr = {β ∈ K : v̄(α− β) = mr, h(β) = 0}

has (dr − 1)
n∏

i=r+1
di elements.
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Theorem 2.14 can be regarded as a description of the Newton polygon of h(x+α) (see
Remark 3.1 of [13]). In fact, it implies that

|{α}|+
n∑

r=0

|Sr| = d0 · · · dn = deg h,

where |A| denotes the number of elements in any finite set A. Since themr are all distinct,
the sets Sr are pairwise disjoint and hence Theorem 2.14 also implies that

{β ∈ K : h(β) = 0} = {α} ∪ S0 ∪ · · · ∪ Sn.

As β ranges over the roots of h in K the differences β − α are exactly the roots of
h(x+α), and therefore the values v̄(β−α) are exactly the slopes of the Newton polygon
of h(x+ α), regarded as a polynomial over the valued field (K, v̄).

Let h be an element of P(K) and that h = gn+1 where g is a strict system as in
Definition 2.11, and let α ∈ K denote a root of h. We remark some familiar invariants
associated to h as follows:

Definition 2.15 The Krasner constant of h, denoted ωK(h), is the maximum of the set

{v̄(α− α′) : α ̸= α′ ∈ K and h(α′) = 0}.

This set is independent of the choice of α, so ωK(h)-often called the Krasner constant
of α-is an invariant of h.

Definition 2.16 The minimum of the above set is called the diameter of h and denoted
by ΩK(h).

Note that ΩK(h) was studied by Ax [6] and later by Khanduja [18], and was called
the diameter of h in [13].

Definition 2.17 The maximum of the following set is called the separant of h:

{v̄(h′(α)(α− α′)) : α ̸= α′ ∈ K,h(α′) = 0}.

One of the applications of Theorem 2.14 is to calculate the invariants of a tame poly-
nomial h ∈ P(K) such as simple formulas for the Krasner constant and the separant of
h as well as the diameter of h (see Sec. 4 of [13]). We remark that a Krasner constant
of a tame irreducible polynomial can be regarded as the Krasner constant of any of its
roots.

In Sections 5 and 6 of [13], there are important results about roots of tame polynomials
over the valued field (K, v). For example, a result is given showing that a sufficiently good
approximation in an extension field L of K to a root of a defectless polynomial h over
K guarantees the existence of an exact root of h in L. Also in the tame case, a (best
possible) result is given describing when a polynomial is sufficiently close to a defectless
polynomial so as to guarantee that the roots of the two polynomials generate the same
extension fields.

In [19], Khanduja and Khassa completed the work begun by Brown and Merzel toward
establishing a one-to-one correspondence between strict systems of polynomial extensions
and conjugacy classes of complete distinguished chains over henselian valued fields (K, v).
In fact, in the case henselian valued field (K, v), with the help of this equivalence, they
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determined explicitly (see [19, Theorem 1.3 and Corollary 1.4]) the best possible constant
λh associated to any defectless polynomial h(x) over a henselian valued field (K, v)
satisfying the property that whenever v̄(h(β)) > λh, β ∈ K, then some root of h(x)
comes sufficiently close to β; in the particular case when h(x) is a tame polynomial,
then the above result implies that K(β) contains a root of h(x) which yields a result
of Brown proved in [12]. Recall that a finite defectless extension of henselian valued
fields (K ′, v′)/(K, v) is said to be tamely ramified if the residue field of v′ is a separable
extension of the residue field of v and the ramification index of (K ′, v′)/(K, v) is not
divisible by the characteristic of the residue field of v.

Theorem 2.18 Let K(θ) be a defectless extension of a henselian valued field (K, v)
and g(x) be the minimal polynomial of θ over K. If θ = θ0, θ1, . . . , θn is a complete
distinguished chain for θ, then given any β in K with v̄(g(β)) > v̄(g(θ1)), there exists a
K-conjugate θ′ of θ such that v̄(θ′ − β) > δK(θ). Moreover, the constant λg = v̄(g(θ1))
depends only on g(x) and is the least element λ of G(K) such that for any β in K with
v̄(g(β)) > λ, there exists a K-conjugate θ′ of θ satisfying v̄(θ′ − β) > δK(θ).

Corollary 2.19 Let the hypothesis be as in Theorem 2.18. Assume in addition that
either K(θ) or K(β) is a tamely ramified extension of (K, v). Then K(β) contains a root
of g(x).

In the end of this section, we note that recently Moraes De Oliveira and Nart have pre-
sented constructive methods to produce approximations to defectless prime polynomials
[26]. They have used key polynomials for inductive valuations that are the important
tools of valuation theory introduced by MacLane in [23, 24].

3. Vector-space defectless extensions of valued fields

In this section we consider the valued field extension (K, v) ⊆ (K ′, v′) as (K, v) ⊆
(K ′, v) (or briefly (K ′/K, v)) i.e., v is a valuation on K ′ and K is equipped with the
restriction of v to K, also the notation res for the residue map corresponding to the
valuation v. We will work over a valued field extension (K ′/K, v) unless otherwise stated.

As usual in the field theory, we may view K ′ as a K-vector space. Even more, we
may view (K ′, v) as a valued K-vector space. In this section, we examine the notion of
defectlessness in the context of valued vector spaces. Let us start with recalling some
concepts on the vector pace defectless (or briefly vs-defectless) extensions.

Let W ⊆ V be K-vector spaces with V ⊆ K ′. The valuation and the residue map
induce respectively a totally ordered subset vV := v(V ) \ {∞} of G(K ′) and a R(K)-
vector subspace V v := res(OV ) of R(K ′) where OV := {a ∈ V | v(a) ⩾ 0}. We say that
the K-vector space extension W ⊆ V is finite if dimK V/W is finite.

Definition 3.1 A subset B ⊆ V \ {0} is (K, v)-valuation independent over W if for

every finite K-linear combination
n∑

i=1
cibi of (pairwise distinct) elements bi ∈ B and

every a ∈ W , we have that

v

(
n∑

i=1

cibi + a

)
= min

1⩽i⩽n
{v(cibi), v(a)}.

Remark 1 Note that if B is (K, v)-valuation independent over W , then it is K-linearly
independent over W . Indeed, for any a ∈ W and a finite K-linear combination b :=
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n∑
i=1

cibi with bi ∈ B and ci ∈ K such that b+ a = 0 we have that

∞ = v(0) = v

(
n∑

i=1

cibi + a

)
= min

1⩽i⩽n
{v(cibi), v(a)},

which imposes that a = 0 and all ci = 0.

Definition 3.2 Given a (K, v)-valuation independent set B ⊆ V , if V = SpankK(B)⊕
W , B is called a (K, v)-valuation basis of V over W . The set B is (K, v)-valuation
independent (resp. a (K, v)-valuation basis of V ) if it is (K, v)-valuation independent
over W = {0} (resp. a (K, v)-valuation basis of V over {0}). It is called (K, v)-valuation
dependent over W if it is not (K, v)-valuation independent over W .

Note that when the valued field (K, v) in consideration is clear from the context, we
will often omit (K, v) and simply say K-valuation independent, K-valuation basis, etc.

Definition 3.3 The extension (K ′/K, v) is called vs-defectless if every finitely generated
K-vector subspace of K ′ has a K-valuation basis.

Note that the previous definition is due to Baur [7], who originally called such ex-
tensions separated extensions. Unfortunately, the choice of terminology conflicts with
standard vocabulary from other areas of mathematics which have a strong connection
to valuation theory (in particular, algebraic geometry and model theory). The term “vs-
defectless” chosen in this article was coined during the eighties by Roquette’s group in
Heidelberg. Green, Matignon and Pop in [17] introduced a vector space defect for valued
function fields in one variable; it is trivial if and only if the function field is a vs-defectless
extension.

In view of the fact that valued fields are ordinary valued vector spaces, we have the
following transitivity of vs-defectless extensions:

Proposition 3.4 [22, Lemma 6.5] Let (K ′/K, v) be an extension of valued fields and
E/K an arbitrary subextension of K ′/K. If (K ′/K, v) is a vs-defectless extension, then
so is (E/K, v). Conversely, if (K ′/E, v) and (E/K, v) are vs-defectless extensions, then
so is (K ′/K, v).

Algebraic vs-defectless extensions may be characterized as follows:

Proposition 3.5 [22, Lemma 6.6] An algebraic extension (K ′/K, v) of valued fields is
vs-defectless if and only if every finite subextension (E/K, v) of (K ′/K, v) is vs-defectless.

The vs-defectless extensions are anti-immediate in the sense that if (K ′/K, v) is a
vs-defectless extension and b ∈ K ′ \K, then the set v(b−K) = {v(b− c) | c ∈ K} has a
maximum. They are anti-immediate also in the sense that they are linearly disjoint from
all immediate extensions:

Proposition 3.6 [22, Lemma 6.8] Let (Ω/K, v) be an arbitrary valued field extension
with (K ′/K, v) a vs-defectless and (F/K, v) an immediate subextension. Then K ′/K is
linearly disjoint from F/K, the extension (K ′.F/K ′, v) is immediate and the valuation
on K ′.F is uniquely determined by the valuations on K ′ and F . If b1, . . . , bn ∈ K ′ are
K-valuation independent, then they are also F -valuation independent.

Corollary 3.7 If (K ′/K, v) is a vs-defectless and (F/K, v) is an immediate extension,
then the compositum of (K ′, v) and (F, v) is unique up to isomorphism of valued fields
over K.
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Corollary 3.8 Let (K ′/K, v) be a vs-defectless extension. If (K ′, v) is a maximal field,
then so is (K, v).

In [21], Kovacsics, Kuhlmann and Rzepka have studied vs-defectless extensions of
valued fields and settled two open questions regarding such extensions. They use the
notion of standard K-valuation basis to give a characterization of defectless extensions
as follows:

For a subset X of the field K ′ and a ∈ K ′, we set

res(X, a) := {res(a′/a) | a′ ∈ X and v(a′) = v(a)}.

Also, we let Res(X, a) denote the multiset {res(a′/a) | a′ ∈ X and v(a′) = v(a)}, that
is, we allow repetition of elements. This distinction between res(X, a) and Res(X, a)
will be particularly useful concerning linear independence, as it may well be the case
that res(X, a) is a K-linearly independent set while Res(X, a) is not (for instance when
res(X, a) contains a unique element which is repeated in Res(X, a)).

By the notation above, we give an important example of a valuation independent set:

Lemma 3.9 [16, Lemma 3.2.2] Let X ⊆ K ′ such that for any two elements in X, their
image under the valuation belong to distinct cosets modulo G(K). Let Y ⊆ OK′ be such
that Res(Y, 1) is R(K)-linearly independent. Then the set B := {xy | x ∈ X, y ∈ Y } is
K-valuation independent.

Definition 3.10 Let X,Y and B be as in Lemma 3.9. If in addition 1 ∈ X and 1 ∈ Y ,
then the set B is called a standard K-valuation independent set. When SpanK(B) = K ′

we say that B is a standard K-valuation basis of K ′.

We now present the following characterization of finite vs-defectless extensions showing
the relation between defectless and vs-defectless extensions [21, Proposition 3.4]:

Proposition 3.11 Assume that the extension (K ′/K, v) is finite. Then the following
conditions are equivalent:

(i) [K ′ : K] = [G(K ′) : G(K)][R(K ′) : R(K)],
(ii) (K ′/K, v) admits a standard K-valuation basis,
(iii) (K ′/K, v) admits a K-valuation basis,
(iv) (K ′/K, v) is a vs-defectless extension.

Let us remark that every K-valuation independent set in a valued field extension
(K ′/K, v) can be transformed by multiplication with elements from K into a valuation
independent set where every two elements have already equal value if their values belong
to the same coset modulo G(K). Moreover, note that condition (i) of the proposition
above implies that the valuation v extends in a unique way from K to K ′ and that
(K ′/K, v) is defectless:

Corollary 3.12 Assume that the extension K ′/K is algebraic. Then (K ′/K, v) is vs-
defectless if and only if v extends in a unique way from K to K ′ and (K ′/K, v) is
defectless.

In [21], it is proved a main result about arbitrary vs-defectless extensions (not neces-
sarily finite). In particular, it is studied the implications between the following properties
of a valued field extension:

Theorem 3.13 [21, Theorem 3.7] Consider the following properties of a valued field
extension (K ′/K, v):
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(A) the extension (K ′/K, v) is vs-defectless,
(B) for every K-vector space V ⊆ K ′ of finite dimension and every a ∈ K ′, the set

{v(a− x) | x ∈ V } has a maximal element,
(C) K ′ is linearly disjoint over K from every immediate extension M of K in every

common field extension.

Then (A)⇔(B)⇒(C).

In [14], Delon proved that for any valued field extension (K ′/K, v), (B)⇒(A)⇒(C).
Delon’s proof of (A)⇒(C) uses tools from the model theory of pairs of valued fields as
studied by Baur in [7]. It remained open whether implications (A)⇒(B) and (C)⇒(A)
hold in general. Kovacsics et al. in [21] answer both questions by showing that the former
implication does hold in general, while the latter does not. Finally, an example of a valued
field extension that does not satisfy the implication (C)⇒(A) is given in Proposition 3.9
of [21].
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