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b-Birkhoff orthogonal elements in 2-normed linear spaces. Moreover, we obtain some charac-
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1. Introduction and preliminaries

The concept of 2-normed linear spaces has been investigated by Gähler in 1960’s [7]
and has been developed extensively in different subjects by many authors (for example,
see [11–13]).

Let X be a linear space of dimension greater than 1. Suppose ∥., .∥ is a real-valued
function on X ×X satisfying the following conditions:

(1) ∥x, y∥ = 0 if and only if x and y are linearly dependent vectors,
(2) ∥x, y∥ = ∥y, x∥ for all x, y ∈ X,
(3) ∥λx, y∥ = |λ|∥x, y∥ for all λ ∈ R and all x, y ∈ X,
(4) ∥x+ y, z∥ ⩽ ∥x, z∥+ ∥y, z∥ for all x, y, z ∈ X.
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Then ∥., .∥ is called a 2-norm on X and (X, ∥., .∥) is called a 2-normed linear space. A
2-norm is non-negative and the basic property of a 2-norm is ∥x, y+αx∥ = ∥x, y∥ for all
x, y ∈ X and all α ∈ R. Note that (X, ∥., .∥) with the formula ∥x, y∥ = ∥x∥∥y∥ for each
x, y ∈ X is not a 2-normed space. So the relationship ∥x, y + αx∥ = ∥x, y∥ is not valid.
For example, let x ̸= 0 and α ̸= 0. Then

0 = ∥x, 0∥ = ∥x, 0 + αx∥ = ∥x, αx∥ = ∥x∥∥αx∥ = |α|∥x∥2 > 0.

Example 1.1 [19] Let X = R3 with 2-norm defined as follow:

∥(x1, x2, x3), (y1, y2, y3)∥ = |x1y2 − x2y1|+ |x1y3 − x3y1|+ |x2y3 − x3y2|

for all (x1, x2, x3), (y1, y2, y2) ∈ X. Let vector addition and scalar multiplication be de-
fined componentwise. Then the 2-norm properties are satisfied.

Example 1.2 Let X = E3 be an Euclidean 3-dimensional linear space. The formula
∥x, y∥ = |x× y| defines a 2-norm on X, where x, y are two vector in E3 and x× y means
the vector product of x and y.

The following elementary proposition is proved in [10].

Proposition 1.3 Let (X, ∥., .∥) be a 2-normed space. Then

(1) ∥x+ y, x∥ = ∥x, y∥ for all x, y in X,
(2) if for two linearly independent x and y in E, ∥z, x∥ = ∥z, y∥ = 0 for z ∈ X, then

z = 0.

Every 2-normed space is a locally convex topological vector space. In fact, for a fixed
b ∈ X, pb(x) = ∥x, b∥ for all x ∈ X is a semi-norm and the family P = {pb : b ∈ X} of
semi-norms generates a locally convex topology onX. As an example of a 2-normed space,
take X = ℜ2 equipped with ∥x, y∥ = which is defined as the area of the parallelogram
spanned by the vectors x and y (i.e. the parallelogram whose adjacent sides are the
vectors a and b) which may be given explicitly by the formula ∥x, y∥ =| x1y2 − x2y1 |,
where x = (x1, x2), y = (y1, y2) ([16]).

Along with the 2-norm, we have the standard 2-inner product space. Let X be a real
vector space of dimension⩾ 2. The real-valued function ⟨., .|.⟩ : X ×X ×X → R, which
satisfies the following properties on X3 is called 2-inner product on X:

(1) ⟨x, x|z⟩ ⩾ 0 for every x, z ∈ X and ⟨x, x|z⟩ = 0 if and only if x and z are linearly
dependent,

(2) ⟨x, y|z⟩ = ⟨y, x|z⟩ for every x, y, z ∈ X,
(3) ⟨x, x|z⟩ = ⟨z, z|x⟩ for every x, z ∈ X,
(4) ⟨αx, y|z⟩ = α⟨x, y|z⟩ for every x, y, z ∈ X and α ∈ R,
(5) ⟨x1 + x2, y|z⟩ = ⟨x1, y|z⟩+ ⟨x2, y|z⟩ for every x1, x2, y, z ∈ X.

Under these conditions, the pair (X, ⟨., .|.⟩) is called an inner product space [3, 4, 6].
Also, by the formula

⟨x, y|z⟩ :=
∣∣∣∣⟨x, y⟩ ⟨x, z⟩⟨z, y⟩ ⟨z, z⟩

∣∣∣∣ ,
we observe that ∥x, y∥ = ⟨x, x|y⟩1/2 and the Cauchy-Schwarz inequality ⟨x, y|z⟩2 ⩽
∥x, z∥2∥y, z∥2 for every x, y, z ∈ X is valid.
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Now, let (X, ∥., .∥) be a 2-normed space and W1 and W2 be two subspaces of X. A
map f : W1 ×W2 → R is called a bilinear 2-functional ([15]) on W1 ×W2 whenever for
all x1, x2 ∈ W1, y1, y2 ∈ W2 and all λ1, λ2 ∈ R, we have

(1) f(x1 + x2, y1 + y2) = f(x1, y1) + f(x2, y2) + f(x2, y1) + f(x2, y2),
(2) f(λ1x1, λ2y1) = λ1λ2f(x1, y1).

A bilinear 2-functional f : W1×W2 → R is called bounded if there exists a non-negative
real number M (M is called a Lipschitz constant for f) such that |f(x, y)| ⩽ M∥x, y∥
for all x ∈ W1 and all y ∈ W2. Also, the norm of a bilinear 2-functional is defined by

∥f∥ = inf{M ⩾ 0 : M is aLipschitz constant for f}.

It is known that [12]

∥f∥ = sup{|f(x, y)| : (x, y) ∈ W1 ×W2, ∥x, y∥ ⩽ 1}

= sup{|f(x, y)| : (x, y) ∈ W1 ×W2, ∥x, y∥ = 1}

= sup{|f(x, y)|/∥x, y∥ : (x, y) ∈ W1 ×W2, ∥x, y∥ ̸= 0}.

For a 2-normed space (X, ∥., .∥) and 0 ̸= b ∈ X, we denote by X∗
b the Banach space of

all bounded bilinear 2-functionals on X × ⟨b⟩, where ⟨b⟩ is the subspace of X generated
by b ([12]).

Example 1.4 [19] Let (E3, ∥, ∥) be the 2-normed space with ∥x, y∥ = |x × y|. Define
f(x, y) = x · y, where x · y is the dot product of vector analysis. Then f is an unbounded
linear 2-functional. Now, define

f(x, y) = (|x|2|y|2 − |(x.y)|2)
1

2 ,

where |a| denotes the length of a. Since |x|2|y|2−|(x.y)|2 = |x× y|2, then f is a bounded
2-functional

2. Types of orthogonality

When we say that a normed linear space is Euclidean, we mean that it is an inner
product space. In particular, a two-dimensional (real) inner product space is referred
to as the Euclidean plan. There are many different ways to characterize inner product
spaces among normed linear spaces ([1]).

In a real normed space (X, ∥.∥) one can define orthogonality of two vectors x and y
in many different ways. For example, the following definitions of Pythagorean, Isosceles,
and the Birkhoff-James orthogonality are known [5, 17].

P-orthogonality: x is P-orthogonal to y (denoted by x ⊥P y) if and only if

∥x+ y∥2 = ∥x∥2 + ∥y∥2.

I-orthogonality: x is I-orthogonal to y (denoted by x ⊥I y ) if and only if

∥x+ y∥ = ∥x− y∥.

BJ-orthogonality: x is BJ-orthogonal to y (x ⊥BJ y) if and only if ∥x+ αy∥ ⩾ ∥x∥
for every α ∈ R.
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Note that in an inner product space (X, ⟨., .⟩); x ⊥P y, x ⊥I y, and x ⊥BJ y are all
equivalent to the condition ⟨x, y⟩ = 0 for which we have the usual orthogonality in a
normed space which is not an inner product space, however, one does x ⊥ y. not imply
another. For further properties of these orthogonalities and related results (for example,
see [5, 17]).

Cho and Kim [2] defined the condition of G-orthogonality of two vectors in a 2-inner
product space of dimension 3 or higher as follows:

In an arbitrary 2-inner product space (X, ⟨., .|.⟩); x ⊥P y, x ⊥I y and x ⊥BJ y are
equivalent to the condition

⟨x, y|z⟩ = 0, for every x /∈ span{x, y}. (1)

In [9], Khan and Siddiqui defined the notion of P, I and BJ-orthogonality in 2-normed
spaces (X, ∥., .∥) as follows:

P-orthogonality: x ⊥P y if only if ∥x+ y, z∥2 = ∥x, z∥2 + ∥y, z∥2 for every z.
I-orthogonality: x ⊥I y if only if ∥x+ y, z∥ = ∥x− y, z∥ for every z ̸= 0.
BJ-orthogonality: x ⊥BJ y if only if ∥x+αy, z∥ ⩾ ∥x, z∥ for every z ̸= 0 and α ∈ R.
Also we have the following definition [15].

Definition 2.1 Let (X, ∥., .∥) be a 2-normed space and x, y ∈ X. If there exists b ∈ X
such that ∥x, b∥ = 0 and ∥x, b∥ ⩾ ∥x+αy, b∥ for each scalar α ∈ ℜ, then x is b-orthogonal
to y (denoted by x ⊥b y).

In this paper, we discuss the relationships between 2-functionals and existence of b-
Birkhoff orthogonal elements in 2-normed linear spaces. Moreover, we obtain some char-
acterizations of 2-inner product spaces by b-Birkhoff orthogonality. Then we study the
operators reversing b-Birkhoff orthogonality in 2-normed linear spaces.

3. 2-functionals in 2-normed linear spaces and existence of b-Birkhoff
orthogonal elements

Let X be a 2-normed linear space. Also, let 0 ̸= b ∈ X and 0 ̸= f be a nonzero
bilinear 2-functional on X × ⟨b⟩. Then we define the 2-hyperplane H through the origin
by H = {x ∈ X; f(x, b) = 0}.

We start this section with the following useful theorem.

Theorem 3.1 Under the above conditions, |f(x, b)| = ∥f∥∥x, b∥ if and only if x ⊥b H,
where H is a 2-hyperplane of all h for which f(h, b) = 0.

Proof. Let H be the 2-hyperplane consisting of all elements h for which f(h, b) = 0.
Also, let |f(x, b)| = ∥f∥∥x, b∥. Since f(h, b) = 0, we have f(αh, b) = 0 for each α ∈ R.
So, we have

|f(x+ αh, b)| = |f(x, b) + f(αh, b)| = |f(x, b)| = ∥f∥∥x, b∥.

On the other hand,

f(x+ αh, b)| ⩽ ∥f∥∥(x+ αh, b)∥, ∀α ∈ R.

So, we have

∥x+ b∥ ⩽ ∥x+ αh, b∥, ∀h ∈ H, ∀α ∈ R.
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That is x ⊥b H. Conversely, suppose x ⊥b H and |f(x, b)| = a∥x, b∥. So

∥x, b∥ ⩽ ∥x+ αh, b∥, ∀h ∈ H,∀α ∈ R.

Hence, for each h ∈ H and α ∈ R, we have

|f(x+ αh, b)| = |f(x, b)| = a∥x, b∥ ⩽ a∥x+ αh, b∥.

Since H is a hyperplane through the origin, it follows that

|f(y, b)| ⩽ a∥y, b∥, ∀y ∈ X.

That is a = ∥f∥ and |f(x, b)| = ∥f∥∥x, b∥. ■

Example 3.2 Let X = (E3, ∥, ∥) be the 2-normed space with ∥x, y∥ = |x× y|. Suppose
b = (1, 0, 0) and define f : X× < b >→ R with f(x, y) = |x × y|, where x ∈ X and
y ∈< b >. So ∥f∥ = 1 so for each x ∈ X, we have |f(x, b)| = ∥f∥∥x, b∥. On the other
hand, the 2-hyperplane H through the origin is as follows:

H = {x ∈ X; f(x, b) = 0} = {x ∈ X; |x× b| = 0} = {x ∈ X;x = (a, 0, 0), ∀a ∈ R}.

Now, for each α ∈ R, (x, y, z) ∈ X and h = (a, 0, 0) ∈ H, we have

∥x+ αh, b∥ = ∥(x+ αa, y, z), (1, 0, 0)∥ =
√

z2 + y2 = ∥x, b∥.

That means x ⊥b H.

Now, let X be a 2-normed linear space. For X0 ⊆ X, put

M b
X0

= {f ∈ X∗
b ; ∥f∥ = 1, f(x, b) = ∥x, b∥, ∀x ∈ X0}.

One can find the proof of the following theorem in [15].

Theorem 3.3 Let X be a 2-normed linear space, b ∈ X, y ∈ X and x ∈ X \ ⟨b⟩. Then
x ⊥b y if and only if there exists f ∈ M b

x such that f(y, b) = 0.

Example 3.4 Let X = R3, W = {(0, x, x), x ∈ R} and

∥(x1, x2, x3), (y1, y2, y3)∥ = max{|x1y2 − x2y1|+ |x1y3 − x3y1|, |x1y2 − x2y1|+ |x2y3 − x3y2|}

for all (x1, x2, x3), (y1, y2, y2) ∈ X. Then ∥·, ·∥ is a 2-norm on X. If x = (1, 0, 1) and
b = (2, 2, 0), it is clear that x ⊥b W .

In the following theorem we will show that there is an analogical relation between the
existence of element orthogonal to given closed subsets and the existence of elements x
with |f(x, b)| = ∥f∥∥x, b∥ for given linear functionals f .

Theorem 3.5 Let X be a 2-normed linear space and (0 ̸=)b ∈ X. Then there exist an
element b-orthogonal to each closed 2-linear subset of X if and only if for each bilinear
2-functional f defined on X × ⟨b⟩, there is an element x with f(x, b) = ∥f∥∥x, b∥.

Proof. Let ∥f∥ ̸= 0 and set H = {x ∈ X; f(x, b) = 0}. Then H is a closed linear subset
of X. By Theorem 3.1, each element x orthogonal to this set is such that |f(x, b)| =
∥f∥∥x, b∥.
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Conversely, suppose H is any closed linear subset of X. Define the 2-functional F as
follow:

F (h, b) = 0, ∀h ∈ H,

F (x0, b) = 1, for somex0 /∈ H.

So ∥F∥ = 1 and F is additive over the space obtained adjoining x to H. Since H is
closed, F is continuous. Now, by Theorem 5.1 in [18], there is a bilinear 2-functional
f over X × ⟨b⟩ such that f(x, b) = F (x, b) for all (x, b) for which F is defined. Also
∥f∥ = ∥F∥ = 1. If there is an element x for which f(x, b) = ∥f∥∥x, b∥, then we have
x ⊥b H (by Theorem 3.3). ■

Using Theorem 3.1, the above theorem says that if X is a 2-normed linear space with
dimX = 3 and x1, x2 ∈ X, then there is an element y ∈ X b-orthogonal to the ⟨x1, x2⟩,
where ⟨x1, x2⟩ is the linear span of x1 and x2.

Corollary 3.6 Any element of a 2-normed linear space X is b-orthogonal to some
hyperplane through the origin for 0 ̸= b ∈ X.

4. Characterization of 2-Inner Product Spaces by b-Birkhoff
Orthogonality

First we define the notion of bilinear 2-operator as follow:

Definition 4.1 Let (X, ∥., .∥), (Y, ∥., .∥) be two 2-normed spaces, and W1 and W2 be
two subspaces of X. A map T : W1×W2 −→ Y is called a bilinear 2-operator on W1×W2

whenever for all x1, x2 ∈ W1 and y1, y2 ∈ W2 and all λ1, λ2 ∈ R,

i) T (x1 + x2, y1 + y2) = T (x1, y1) + T (x1, y2) + T (x2, y1) + T (x2, y2),
ii) T (λ1x1, λ2y2) = λ1λ2T (x1, y1).

Note that if Y = R, then T is called a bilinear 2-functional. Also, a bilinear 2-operator
T is called a 2-projection if T 2 = T .

The authors in [14] showed that a 2-normed space X is 2-inner product if and only if
for all x, y, z ∈ X,

∥x+ y, z∥2 + ∥x− y, z∥2 = 2(∥x, z∥2 + ∥y, z∥2). (2)

On the other hand, a quite elementary proof similar to the proof given in [8] show that
the relation (2) holds if and only if there is a 2-projection of norm 1 on any given closed
linear subspace of X.

Theorem 4.2 Let X be a 2-normed linear space and (0 ̸= b) ∈ X. For any x, y ∈ X,
there exists a number a such that ax+ y ⊥b x. This number a is a value of k for which
∥kx+ y, b∥ takes on its absolute minimum.

Proof. By Definition 2.1, ax+ y ⊥b x if and only if

∥(ax+ y) + kx, b∥ ⩾ ∥ax+ y, b∥ ∀k,

or if and only if ∥ax + y, b∥ is the smallest value of ∥kx + y, b∥. Since ∥kx + y, b∥ is
continuous in k, it must take on its minimum. ■



R. Pirali and M. Momeni / J. Linear. Topological. Algebra. 09(04) (2020) 291-299. 297

Now we can prove the following theorem.

Theorem 4.3 Let X be a 2-normed space and 0 ̸= b ∈ X. If dimX ⩾ 3, then b-
orthogonality is symmetric if and only if a 2-inner product can be defined in X.

Proof. Suppose that dimX0 = 3, where X0 is a subspace of X. Also, let x1 and x2 be
any two elements of X0 \ (⟨b⟩) and H0 be the linear hull of x1 and x2. By Theorem 3.1
and Theorem 3.5, there is an element y ∈ X0 that is b-orthogonal to H0. Conversely,
suppose that b-orthogonality is symmetric. Then H0 ⊥b y and by Theorem 4.2, there is
a number az such that we can define P : X0 × ⟨b⟩ −→ H0 × ⟨b⟩ by P (z, b) = (z − azy, b)
for each z ∈ X0. So P is a bilinear 2-operator. Also, since H0 is the linear hull of x1 and
x2 and H0 ⊥b y, we have

∥P (z, b)∥ = ∥z − azy, b∥ ⩽ ∥z, b∥ ∀z ∈ X0.

Thus, ∥P∥ = 1. In addition, since P (azy, b) = 0 for each z ∈ X0, we have

P 2(z, b) = P (P (z, b)) = P (z − azy, b) = P (z, b)− P (azy, b) = P (z, b).

Therefore, P is a 2-projection of X0 × ⟨b⟩ on H0 × ⟨b⟩ with ∥P∥ = 1. Now, according to
the points stated before this theorem, a 2-inner product can be defined in a 2-normed
linear space of three or more dimensions if there is a 2-projection of norm 1 on any given
closed linear subspace. Thus a 2-inner product can be defined in any three-dimensional
subspace of X and hence in X itself. ■

Corollary 4.4 Let x and y be in a 2-normed space X with dimX ⩾ 3, and 0 ̸= b ∈ X.
If there exists a nonzero bilinear 2-functional f with f(x, b) = ∥f∥∥x, y∥ and f(y, b) = 0,
then there exists a nonzero bilinear 2-functional g such that g(y, b) = ∥g∥∥y, b∥ and
g(x, b) = 0.

Proof. Combine Theorem 4.3 and Theorem 3.5. ■

Corollary 4.5 Let X be a 2-normed space and 0 ̸= b ∈ X, and x, y ∈ X. If f is a
bilinear 2-functional such that f(x, b) = ∥f∥∥x, b∥, then ∥ax + y, b∥ is minimum when

a = − f(y,b)
f(x,b) .

Proof. Combine Theorem 4.3 and Theorem 2.7 in [15]. ■

5. Operators reversing b-Birkhoff orthogonality in 2-normed linear
spaces

Definition 5.1 Let X and Y be two 2-normed linear spaces and 0 ̸= b ∈ X. Also, let
T : X −→ Y be a nonzero linear operator. If

x ⊥b y ⇒ T (y) ⊥T (b) T (x)

for each x, y ∈ X, then we say that T reverses b-Birkhoff orthogonality.

Definition 5.2 Let X be a 2-normed space and 0 ̸= b ∈ X. The subset Sb
X = {x ∈

X; ∥x, b∥ = 1} is called the 2-unit sphere of X.

Lemma 5.3 Let X and Y be two 2-normed linear spaces and 0 ̸= b ∈ X. If T : X −→ Y
is a non-zero linear operator reversing b-Birkhoff orthogonality, then T is injective.
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Proof. Since T is non-zero, there exists 0 ̸= z ∈ X such that T (z) ̸= 0. Set x = z
∥z,b∥

(note that z and b are non-zero, thus, ∥z, b∥ ̸= 0). Therefore,

∥x, b∥ = ∥ z

∥z, b∥
, b∥ =

1

∥z, b∥
∥z, b∥ = 1.

So, x ∈ Sb
X and T (x) ̸= 0.

Now, suppose that T is not injective. Thus there exists x1, x2 ∈ X such that x1 ̸= x2
and T (x1) = T (x2). So T (x1)−T (x2) = T (x1−x2) = 0. Since x1 ̸= x2, then ∥x1−x2, b∥ ̸=
0. Set y = x1−x2

∥x1−x2,b∥ . Then ∥y, b∥ = 1 and therefore y ∈ Sb
X and T (y) = 0.

Now, set L = span{x, y}. Let u ∈ Sb
L be a point satisfying ∥u− y, b∥ = 1

2 . Then u and
y are linearly independent. Because, if there exists 0 ̸= α ∈ R such that u = αy, then
u = rx+ sy = αy for some r, s ∈ R. Since T (y) = 0, we have rT (x) = 0. But T (x) ̸= 0.
Therefore r = 0 and u = sy. On the other hands, ∥y, b∥ = 1 implies that

|s− 1| = |s− 1|∥y, b∥ = ∥(s− 1)y, b∥ = ∥sy − y, b∥ = ∥u− y, b∥ =
1

2
.

Thus, s = 1
2 or s = 3

2 . If s = 1
2 then we have 1 = ∥u, b∥ = ∥sy, b∥ = 1

2∥y, b∥ = 1
2 .

That is a contradiction. Similarly s = 3
2 leads to a contradiction. So u, y are linearly

independent. Also, u��⊥by, because for λ = −1 we have 1 = ∥u, b∥ > ∥u− y, b∥ = 1
2 . Now,

by Corollary 3.6 (also Theorem 2.7 in [15]), there is v ∈ Sb
L such that u ⊥b v, that means

∥u + αv, b∥ ⩾ ∥u, b∥ for each α ∈ R. We claim that v and y are linearly independent.
Because if for some r, s ∈ R, v = cy, choosing α = −1

c we have

∥u+ αv, b∥ = ∥u− 1

c
(cy), b∥ = ∥u− y, b∥ =

1

2
< ∥u, b∥ = 1,

which is a contradiction with u ⊥b v. So v and y are linearly independent and there exist
two numbers α, β (not both zero) such that y = αu+ βv. It follows that T (u) and T (v)
are non-zero and T (v) ⊥T (b) T (u). Now, T (u) and T (v) are linearly independent. On the
other hands, 0 = T (y) = αT (u) + βT (v). That means T (u) and T (v) are dependent. It
is a contradiction and therefore T is injective. ■

Theorem 5.4 Let X and Y be two 2-normed linear spaces whose dimensions are at
least 3 for 0 ̸= b ∈ X. Then there exists a non-zero linear operator T : X −→ Y reverses
b-orthogonality if and only if T (X) \ ⟨T (b)⟩ is a 2-inner product space.

Proof. Let T : X −→ Y be a non-zero linear operator and T reverses b-orthogonality
0 ̸= b ∈ X. Without loss of generality, we may assume that T is surjective. So, by
Lemma 5.3, T is bijective. By Theorem 4.3, it is suffices to show that b-orthogonality is
symmetric in Y .

Let 0 ̸= y0 ∈ Y . We can suppose y0 ∈ S
T (b)
Y . So ∥y0, T (b)∥ = 1 and since T is injective,

T−1(y0) ̸= 0. By Corollary 3.6, there exists a closed 2-hyperplane H ′ through the origin
such that T−1(y0) ⊥b H ′. Since T reverses b-orthogonality, we have T (H ′) ⊥b y0. Set
H = T (H ′). Since T is linear and bijective, then H is a 2-hyperplane in Y such that
H ⊥b y0.

On the other hands, similar to the proof of the Theorem 3.5, we can define a bilinear
2-functional f on Y such that ∥f∥ = 1 and f(y0, T (b)) = ∥f∥∥y0, T (b)∥. Therefore, by the
Theorem 3.3, y0 ⊥b H. That means Y = T (X) is symmetric. Conversely, If T (X)\⟨T (b)⟩
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is a 2-inner product space, then the b-orthogonality relation is symmetric and the identity
mapping satisfies desired property. ■
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