Journal of Linear and Topological Algebra Vol. 09*, No.* 04*,* 2020*,* 291*-* 299

Operators reversing b-Birkhoff orthogonality in 2-normed linear spaces

R. Pirali^a, M. Momeni^{a,*}

^a*Department of Mathematics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.*

Received 20 June 2020; Revised 25 December 2020; Accepted 30 December 2020.

Communicated by Tatjana Dosenović

Abstract. In this paper, we discuss the relationships between 2-functionals and existence of b-Birkhoff orthogonal elements in 2-normed linear spaces. Moreover, we obtain some characterizations of 2-inner product spaces by b-Birkhoff orthogonality. Then we study the operators reversing b-Birkhoff orthogonality in 2-normed linear spaces.

*⃝*c 2020 IAUCTB. All rights reserved.

Keywords: b-Birkhoff orthogonal, 2-functionals, 2-hyperplane, 2-inner product, 2-normed linear spaces.

2010 AMS Subject Classification: 46C05.

1. Introduction and preliminaries

The concept of 2-normed linear spaces has been investigated by Gähler in 1960's [7] and has been developed extensively in different subjects by many authors (for example, see $[11-13]$.

Let *X* be a linear space of dimension greater than 1. Suppose *∥., .∥* is a real-valued function on $X \times X$ satisfying the following conditions:

- (1) $||x, y|| = 0$ if and only if *x* and *y* are linearly dependent vectors,
- (2) $||x, y|| = ||y, x||$ for all $x, y \in X$,
- (3) $||\lambda x, y|| = |\lambda| ||x, y||$ for all $\lambda \in \mathbb{R}$ and all $x, y \in X$,
- $|(4)$ $||x + y, z|| \le ||x, z|| + ||y, z||$ for all $x, y, z \in X$.

Print ISSN: 2252-0201 *⊙* 2020 IAUCTB. All rights reserved.

Online ISSN: 2345-5934 **buth**://ilta jauctb ac ir

*[∗]*Corresponding author.

E-mail address: reza.pirali@ymail.com (R. Pirali); srb.maryam@gmail.com (M. Momeni).

Then $\| \cdot \|$, $\|$ is called a 2-norm on *X* and $(X, \| \cdot \|)$ is called a 2-normed linear space. A 2-norm is non-negative and the basic property of a 2-norm is $||x, y + \alpha x|| = ||x, y||$ for all $x, y \in X$ and all $\alpha \in \mathbb{R}$. Note that $(X, \|\cdot\|)$ with the formula $\|x, y\| = \|x\| \|y\|$ for each $x, y \in X$ is not a 2-normed space. So the relationship $||x, y + \alpha x|| = ||x, y||$ is not valid. For example, let $x \neq 0$ and $\alpha \neq 0$. Then

$$
0 = ||x,0|| = ||x,0+\alpha x|| = ||x,\alpha x|| = ||x|| ||\alpha x|| = |\alpha| ||x||2 > 0.
$$

Example 1.1 [19] Let $X = \mathbb{R}^3$ with 2-norm defined as follow:

$$
||(x_1, x_2, x_3), (y_1, y_2, y_3)|| = |x_1y_2 - x_2y_1| + |x_1y_3 - x_3y_1| + |x_2y_3 - x_3y_2|
$$

for all (x_1, x_2, x_3) , $(y_1, y_2, y_2) \in X$. Let vector addition and scalar multiplication be defined componentwise. Then the 2-norm properties are satisfied.

Example 1.2 Let $X = E^3$ be an Euclidean 3-dimensional linear space. The formula $||x, y|| = |x \times y|$ defines a 2-norm on *X*, where *x*, *y* are two vector in E^3 and $x \times y$ means the vector product of *x* and *y*.

The following elementary proposition is proved in [10].

Proposition 1.3 Let $(X, \| \cdot, \cdot \|)$ be a 2-normed space. Then

- (1) $||x + y, x|| = ||x, y||$ for all x, y in X,
- (2) if for two linearly independent *x* and *y* in *E*, $||z, x|| = ||z, y|| = 0$ for $z \in X$, then $z=0$.

Every 2-normed space is a locally convex topological vector space. In fact, for a fixed $b \in X$, $p_b(x) = ||x, b||$ for all $x \in X$ is a semi-norm and the family $P = \{p_b : b \in X\}$ of semi-norms generates a locally convex topology on *X*. As an example of a 2-normed space, take $X = \mathbb{R}^2$ equipped with $||x, y|| =$ which is defined as the area of the parallelogram spanned by the vectors x and y (i.e. the parallelogram whose adjacent sides are the vectors *a* and *b*) which may be given explicitly by the formula $||x, y|| = |x_1y_2 - x_2y_1|$, where $x = (x_1, x_2), y = (y_1, y_2)$ ([16]).

Along with the 2-norm, we have the standard 2-inner product space. Let *X* be a real vector space of dimension ≥ 2 . The real-valued function $\langle ., .|. \rangle : X \times X \times X \to \mathbb{R}$, which satisfies the following properties on X^3 is called 2-inner product on X :

- (1) $\langle x, x | z \rangle \geq 0$ for every $x, z \in X$ and $\langle x, x | z \rangle = 0$ if and only if x and z are linearly dependent,
- $\langle x, y | z \rangle = \langle y, x | z \rangle$ for every $x, y, z \in X$,
- (3) $\langle x, x | z \rangle = \langle z, z | x \rangle$ for every $x, z \in X$,
- (4) $\langle \alpha x, y | z \rangle = \alpha \langle x, y | z \rangle$ for every $x, y, z \in X$ and $\alpha \in \mathbb{R}$,
- (5) $\langle x_1 + x_2, y | z \rangle = \langle x_1, y | z \rangle + \langle x_2, y | z \rangle$ for every $x_1, x_2, y, z \in X$.

Under these conditions, the pair $(X, \langle ., .|. \rangle)$ is called an inner product space [3, 4, 6]. Also, by the formula

$$
\langle x,y|z\rangle:=\begin{vmatrix} \langle x,y\rangle\ \langle x,z\rangle\\ \langle z,y\rangle\ \langle z,z\rangle\end{vmatrix},
$$

we observe that $||x, y|| = \langle x, x|y \rangle^{1/2}$ and the Cauchy-Schwarz inequality $\langle x, y|z \rangle^2 \leq$ $||x, z||^2 ||y, z||^2$ for every $x, y, z \in X$ is valid.

Now, let $(X, \|.,.\|)$ be a 2-normed space and W_1 and W_2 be two subspaces of X. A map $f: W_1 \times W_2 \to \mathbb{R}$ is called a bilinear 2-functional ([15]) on $W_1 \times W_2$ whenever for all $x_1, x_2 \in W_1, y_1, y_2 \in W_2$ and all $\lambda_1, \lambda_2 \in \mathbb{R}$, we have

(1)
$$
f(x_1 + x_2, y_1 + y_2) = f(x_1, y_1) + f(x_2, y_2) + f(x_2, y_1) + f(x_2, y_2),
$$

(2) $f(\lambda_1 x_1, \lambda_2 y_1) = \lambda_1 \lambda_2 f(x_1, y_1).$

A bilinear 2-functional $f: W_1 \times W_2 \to \mathbb{R}$ is called bounded if there exists a non-negative real number *M* (*M* is called a Lipschitz constant for *f*) such that $|f(x, y)| \le M ||x, y||$ for all $x \in W_1$ and all $y \in W_2$. Also, the norm of a bilinear 2-functional is defined by

$$
||f|| = \inf \{ M \geq 0 : M \text{ is a Lipschitz constant for } f \}.
$$

It is known that [12]

$$
||f|| = \sup\{|f(x,y)| : (x,y) \in W_1 \times W_2, ||x,y|| \le 1\}
$$

=
$$
\sup\{|f(x,y)| : (x,y) \in W_1 \times W_2, ||x,y|| = 1\}
$$

=
$$
\sup\{|f(x,y)| / ||x,y|| : (x,y) \in W_1 \times W_2, ||x,y|| \ne 0\}.
$$

For a 2-normed space $(X, \|.,.\|)$ and $0 \neq b \in X$, we denote by X_b^* the Banach space of all bounded bilinear 2-functionals on $X \times \langle b \rangle$, where $\langle b \rangle$ is the subspace of X generated by $b([12])$.

Example 1.4 [19] Let $(E^3, \|\, \|\,)$ be the 2-normed space with $\|x, y\| = |x \times y|$. Define $f(x, y) = x \cdot y$, where $x \cdot y$ is the dot product of vector analysis. Then f is an unbounded linear 2-functional. Now, define

$$
f(x,y) = (|x|^2|y|^2 - |(x,y)|^2)^{\frac{1}{2}},
$$

where |a| denotes the length of a. Since $|x|^2|y|^2 - |(x,y)|^2 = |x \times y|^2$, then f is a bounded 2-functional

2. Types of orthogonality

When we say that a normed linear space is Euclidean, we mean that it is an inner product space. In particular, a two-dimensional (real) inner product space is referred to as the Euclidean plan. There are many different ways to characterize inner product spaces among normed linear spaces ([1]).

In a real normed space $(X, \|\cdot\|)$ one can define orthogonality of two vectors x and y in many different ways. For example, the following definitions of Pythagorean, Isosceles, and the Birkhoff-James orthogonality are known [5, 17].

P-orthogonality: *x* is P-orthogonal to *y* (denoted by $x \perp_P y$) if and only if

$$
||x + y||^2 = ||x||^2 + ||y||^2.
$$

I-orthogonality: *x* is I-orthogonal to *y* (denoted by $x \perp y$) if and only if

$$
||x + y|| = ||x - y||.
$$

BJ-orthogonality: *x* is BJ-orthogonal to *y* ($x \perp_{BJ} y$) if and only if $||x + \alpha y|| \ge ||x||$ for every $\alpha \in \mathbb{R}$.

Note that in an inner product space $(X, \langle ., . \rangle); x \perp p y, x \perp y$, and $x \perp_{B,I} y$ are all equivalent to the condition $\langle x, y \rangle = 0$ for which we have the usual orthogonality in a normed space which is not an inner product space, however, one does $x \perp y$, not imply another. For further properties of these orthogonalities and related results (for example, see [5, 17]).

Cho and Kim [2] defined the condition of G-orthogonality of two vectors in a 2-inner product space of dimension 3 or higher as follows:

In an arbitrary 2-inner product space $(X, \langle ., . \rangle)$; $x \perp_P y$, $x \perp_I y$ and $x \perp_{BJ} y$ are equivalent to the condition

$$
\langle x, y | z \rangle = 0, \quad \text{for} \quad \text{every} \quad x \notin \text{span}\{x, y\}. \tag{1}
$$

In [9], Khan and Siddiqui defined the notion of P, I and BJ-orthogonality in 2-normed spaces $(X, \|\,\,\|)$ as follows:

P-orthogonality: $x \perp_P y$ if only if $||x + y, z||^2 = ||x, z||^2 + ||y, z||^2$ for every z . **I-orthogonality**: *x ⊥*_{*I*} *y* if only if $||x + y, z|| = ||x - y, z||$ for every $z \neq 0$. **BJ-orthogonality**: $x \perp_{BJ} y$ if only if $||x + \alpha y, z|| \ge ||x, z||$ for every $z \neq 0$ and $\alpha \in \mathbb{R}$. Also we have the following definition [15].

Definition 2.1 Let $(X, \| \cdot, \cdot \|)$ be a 2-normed space and $x, y \in X$. If there exists $b \in X$ such that $||x, b|| = 0$ and $||x, b|| \ge ||x + \alpha y, b||$ for each scalar $\alpha \in \mathbb{R}$, then *x* is b-orthogonal to *y* (denoted by $x \perp_b y$).

In this paper, we discuss the relationships between 2-functionals and existence of b-Birkhoff orthogonal elements in 2-normed linear spaces. Moreover, we obtain some characterizations of 2-inner product spaces by b-Birkhoff orthogonality. Then we study the operators reversing b-Birkhoff orthogonality in 2-normed linear spaces.

3. 2-functionals in 2-normed linear spaces and existence of b-Birkhoff orthogonal elements

Let X be a 2-normed linear space. Also, let $0 \neq b \in X$ and $0 \neq f$ be a nonzero bilinear 2-functional on $X \times \langle b \rangle$. Then we define the 2-hyperplane *H* through the origin $\forall y \ H = \{x \in X; f(x, b) = 0\}.$

We start this section with the following useful theorem.

Theorem 3.1 Under the above conditions, $|f(x, b)| = ||f|| ||x, b||$ if and only if $x \perp_b H$, where *H* is a 2-hyperplane of all *h* for which $f(h, b) = 0$.

Proof. Let *H* be the 2-hyperplane consisting of all elements *h* for which $f(h, b) = 0$. Also, let $|f(x, b)| = ||f|| ||x, b||$. Since $f(h, b) = 0$, we have $f(\alpha h, b) = 0$ for each $\alpha \in \mathbb{R}$. So, we have

$$
|f(x + \alpha h, b)| = |f(x, b) + f(\alpha h, b)| = |f(x, b)| = ||f|| ||x, b||.
$$

On the other hand,

$$
f(x + \alpha h, b) \le \|f\| \|(x + \alpha h, b)\|, \quad \forall \alpha \in \mathbb{R}.
$$

So, we have

$$
||x+b|| \leq ||x+\alpha h, b||, \quad \forall h \in H, \forall \alpha \in \mathbb{R}.
$$

That is $x \perp_b H$. Conversely, suppose $x \perp_b H$ and $|f(x, b)| = a ||x, b||$. So

$$
||x, b|| \le ||x + \alpha h, b||, \quad \forall h \in H, \forall \alpha \in \mathbb{R}.
$$

Hence, for each $h \in H$ and $\alpha \in \mathbb{R}$, we have

$$
|f(x + \alpha h, b)| = |f(x, b)| = a||x, b|| \le a||x + \alpha h, b||.
$$

Since *H* is a hyperplane through the origin, it follows that

$$
|f(y,b)| \leqslant a||y,b||, \quad \forall y \in X.
$$

That is $a = ||f||$ and $|f(x, b)| = ||f|| ||x, b||$.

Example 3.2 Let $X = (E^3, \|\,|)\$ be the 2-normed space with $\|x, y\| = |x \times y|$. Suppose $b = (1, 0, 0)$ and define $f: X \times \langle b \rangle \rightarrow \mathbb{R}$ with $f(x, y) = |x \times y|$, where $x \in X$ and *y* ∈ $\lt b$ >. So $||f|| = 1$ so for each $x \in X$, we have $|f(x, b)| = ||f|| ||x, b||$. On the other hand, the 2-hyperplane *H* through the origin is as follows:

$$
H = \{x \in X; f(x, b) = 0\} = \{x \in X; |x \times b| = 0\} = \{x \in X; x = (a, 0, 0), \forall a \in \mathbb{R}\}.
$$

Now, for each $\alpha \in \mathbb{R}$, $(x, y, z) \in X$ and $h = (a, 0, 0) \in H$, we have

$$
||x + \alpha h, b|| = ||(x + \alpha a, y, z), (1, 0, 0)|| = \sqrt{z^2 + y^2} = ||x, b||.
$$

That means $x \perp_b H$.

Now, let *X* be a 2-normed linear space. For $X_0 \subseteq X$, put

$$
M_{X_0}^b = \{ f \in X_b^*; ||f|| = 1, f(x, b) = ||x, b||, \forall x \in X_0 \}.
$$

One can find the proof of the following theorem in [15].

Theorem 3.3 Let *X* be a 2-normed linear space, $b \in X$, $y \in X$ and $x \in X \setminus \{b\}$. Then *x* ⊥_{*b*} *y* if and only if there exists $f \text{ } \in M_x^b$ such that $f(y, b) = 0$.

Example **3.4** Let $X = \mathbb{R}^3$, $W = \{(0, x, x), x \in \mathbb{R}\}$ and

$$
||(x_1, x_2, x_3), (y_1, y_2, y_3)|| = max\{|x_1y_2 - x_2y_1| + |x_1y_3 - x_3y_1|, |x_1y_2 - x_2y_1| + |x_2y_3 - x_3y_2|\}
$$

for all (x_1, x_2, x_3) , $(y_1, y_2, y_2) \in X$. Then $\|\cdot, \cdot\|$ is a 2-norm on *X*. If $x = (1, 0, 1)$ and $b = (2, 2, 0)$, it is clear that $x \perp_b W$.

In the following theorem we will show that there is an analogical relation between the existence of element orthogonal to given closed subsets and the existence of elements *x* with $|f(x, b)| = ||f|| ||x, b||$ for given linear functionals *f*.

Theorem 3.5 Let *X* be a 2-normed linear space and $(0 \neq b) \in X$. Then there exist an element b-orthogonal to each closed 2-linear subset of *X* if and only if for each bilinear 2-functional *f* defined on $X \times \langle b \rangle$, there is an element *x* with $f(x, b) = ||f|| ||x, b||$.

Proof. Let $||f|| \neq 0$ and set $H = \{x \in X; f(x, b) = 0\}$. Then *H* is a closed linear subset of *X*. By Theorem 3.1, each element *x* orthogonal to this set is such that $|f(x, b)| =$ *∥f∥∥x, b∥.*

Conversely, suppose *H* is any closed linear subset of *X*. Define the 2-functional *F* as follow:

$$
F(h, b) = 0, \quad \forall h \in H,
$$

$$
F(x_0, b) = 1, \quad \text{for some } x_0 \notin H.
$$

So $||F|| = 1$ and *F* is additive over the space obtained adjoining *x* to *H*. Since *H* is closed, *F* is continuous. Now, by Theorem 5.1 in [18], there is a bilinear 2-functional *f* over $X \times \langle b \rangle$ such that $f(x, b) = F(x, b)$ for all (x, b) for which *F* is defined. Also $||f|| = ||F|| = 1$. If there is an element *x* for which $f(x, b) = ||f|| ||x, b||$, then we have $x \perp_b H$ (by Theorem 3.3).

Using Theorem 3.1, the above theorem says that if *X* is a 2-normed linear space with dim $X = 3$ and $x_1, x_2 \in X$, then there is an element $y \in X$ b-orthogonal to the $\langle x_1, x_2 \rangle$, where $\langle x_1, x_2 \rangle$ is the linear span of x_1 and x_2 .

Corollary 3.6 Any element of a 2-normed linear space *X* is b-orthogonal to some hyperplane through the origin for $0 \neq b \in X$.

4. Characterization of 2-Inner Product Spaces by b-Birkhoff Orthogonality

First we define the notion of bilinear 2-operator as follow:

Definition 4.1 Let $(X, \|\cdot\|), (Y, \|\cdot\|)$ be two 2-normed spaces, and W_1 and W_2 be two subspaces of *X*. A map $T: W_1 \times W_2 \longrightarrow Y$ is called a bilinear 2-operator on $W_1 \times W_2$ whenever for all $x_1, x_2 \in W_1$ and $y_1, y_2 \in W_2$ and all $\lambda_1, \lambda_2 \in \mathbb{R}$,

i) $T(x_1 + x_2, y_1 + y_2) = T(x_1, y_1) + T(x_1, y_2) + T(x_2, y_1) + T(x_2, y_2)$, ii) $T(\lambda_1 x_1, \lambda_2 y_2) = \lambda_1 \lambda_2 T(x_1, y_1)$.

Note that if $Y = \mathbb{R}$, then *T* is called a bilinear 2-functional. Also, a bilinear 2-operator *T* is called a 2-projection if $T^2 = T$.

The authors in [14] showed that a 2-normed space *X* is 2-inner product if and only if for all $x, y, z \in X$,

$$
||x+y, z||2 + ||x - y, z||2 = 2(||x, z||2 + ||y, z||2).
$$
 (2)

On the other hand, a quite elementary proof similar to the proof given in [8] show that the relation (2) holds if and only if there is a 2-projection of norm 1 on any given closed linear subspace of *X*.

Theorem 4.2 Let *X* be a 2-normed linear space and $(0 \neq b) \in X$. For any $x, y \in X$, there exists a number *a* such that $ax + y \perp_b x$. This number *a* is a value of *k* for which *∥kx* + *y, b∥* takes on its absolute minimum.

Proof. By Definition 2.1, $ax + y \perp_b x$ if and only if

$$
||(ax+y)+kx,b|| \ge ||ax+y,b|| \quad \forall k,
$$

or if and only if $||ax + y, b||$ is the smallest value of $||kx + y, b||$. Since $||kx + y, b||$ is continuous in k , it must take on its minimum.

Now we can prove the following theorem.

Theorem 4.3 Let *X* be a 2-normed space and $0 \neq b \in X$. If dim $X \geq 3$, then borthogonality is symmetric if and only if a 2-inner product can be defined in *X*.

Proof. Suppose that $\dim X_0 = 3$, where X_0 is a subspace of X. Also, let x_1 and x_2 be any two elements of $X_0 \setminus (\langle b \rangle)$ and H_0 be the linear hull of x_1 and x_2 . By Theorem 3.1 and Theorem 3.5, there is an element $y \in X_0$ that is b-orthogonal to H_0 . Conversely, suppose that b-orthogonality is symmetric. Then $H_0 \perp_b y$ and by Theorem 4.2, there is a number a_z such that we can define $P: X_0 \times \langle b \rangle \longrightarrow H_0 \times \langle b \rangle$ by $P(z, b) = (z - a_z y, b)$ for each $z \in X_0$. So P is a bilinear 2-operator. Also, since H_0 is the linear hull of x_1 and x_2 and $H_0 \perp_b y$, we have

$$
||P(z,b)|| = ||z - a_zy, b|| \le ||z, b||
$$
 $\forall z \in X_0.$

Thus, $||P|| = 1$. In addition, since $P(a_z y, b) = 0$ for each $z \in X_0$, we have

$$
P^{2}(z,b) = P(P(z,b)) = P(z-a_{z}y,b) = P(z,b) - P(a_{z}y,b) = P(z,b).
$$

Therefore, *P* is a 2-projection of $X_0 \times \langle b \rangle$ on $H_0 \times \langle b \rangle$ with $||P|| = 1$. Now, according to the points stated before this theorem, a 2-inner product can be defined in a 2-normed linear space of three or more dimensions if there is a 2-projection of norm 1 on any given closed linear subspace. Thus a 2-inner product can be defined in any three-dimensional subspace of X and hence in X itself.

Corollary 4.4 Let *x* and *y* be in a 2-normed space *X* with dim $X \ge 3$, and $0 \ne b \in X$. If there exists a nonzero bilinear 2-functional *f* with $f(x, b) = ||f|| ||x, y||$ and $f(y, b) = 0$, then there exists a nonzero bilinear 2-functional *g* such that $g(y, b) = ||g|| ||y, b||$ and $q(x, b) = 0.$

Proof. Combine Theorem 4.3 and Theorem 3.5. ■

Corollary 4.5 Let *X* be a 2-normed space and $0 \neq b \in X$, and $x, y \in X$. If *f* is a bilinear 2-functional such that $f(x, b) = ||f|| ||x, b||$, then $||ax + y, b||$ is minimum when $a = -\frac{f(y,b)}{f(x,b)}$ $\frac{J(y, b)}{f(x, b)}$.

Proof. Combine Theorem 4.3 and Theorem 2.7 in [15]. ■

5. Operators reversing b-Birkhoff orthogonality in 2-normed linear spaces

Definition 5.1 Let *X* and *Y* be two 2-normed linear spaces and $0 \neq b \in X$. Also, let *T* : *X* → *Y* be a nonzero linear operator. If

$$
x \perp_b y \Rightarrow T(y) \perp_{T(b)} T(x)
$$

for each $x, y \in X$, then we say that *T* reverses b-Birkhoff orthogonality.

Definition 5.2 Let *X* be a 2-normed space and $0 \neq b \in X$. The subset $S_X^b = \{x \in X : |f(x)| \leq 1\}$ X ; $||x, b|| = 1$ } is called the 2-unit sphere of *X*.

Lemma 5.3 Let *X* and *Y* be two 2-normed linear spaces and $0 \neq b \in X$. If $T : X \longrightarrow Y$ is a non-zero linear operator reversing b-Birkhoff orthogonality, then *T* is injective.

Proof. Since *T* is non-zero, there exists $0 \neq z \in X$ such that $T(z) \neq 0$. Set $x = \frac{z}{z}$ *∥z,b∥* (note that *z* and *b* are non-zero, thus, $||z, b|| \neq 0$). Therefore,

$$
||x, b|| = ||\frac{z}{||z, b||}, b|| = \frac{1}{||z, b||} ||z, b|| = 1.
$$

So, $x \in S_X^b$ and $T(x) \neq 0$.

Now, suppose that *T* is not injective. Thus there exists $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $T(x_1) = T(x_2)$. So $T(x_1) - T(x_2) = T(x_1 - x_2) = 0$. Since $x_1 \neq x_2$, then $||x_1 - x_2, b|| \neq 0$ 0. Set $y = \frac{x_1 - x_2}{x_1 - x_2}$ $\frac{x_1 - x_2}{\|x_1 - x_2, b\|}$. Then $\|y, b\| = 1$ and therefore $y \in S_X^b$ and $T(y) = 0$.

Now, set $L = \text{span}\{x, y\}$. Let $u \in S_L^b$ be a point satisfying $||u - y, b|| = \frac{1}{2}$ $\frac{1}{2}$. Then *u* and *y* are linearly independent. Because, if there exists $0 \neq \alpha \in \mathbb{R}$ such that $u = \alpha y$, then $u = rx + sy = \alpha y$ for some $r, s \in \mathbb{R}$. Since $T(y) = 0$, we have $r(x) = 0$. But $T(x) \neq 0$. Therefore $r = 0$ and $u = sy$. On the other hands, $||y, b|| = 1$ implies that

$$
|s-1| = |s-1| ||y, b|| = ||(s-1)y, b|| = ||sy - y, b|| = ||u - y, b|| = \frac{1}{2}.
$$

Thus, $s = \frac{1}{2}$ $\frac{1}{2}$ or $s = \frac{3}{2}$ $\frac{3}{2}$. If $s = \frac{1}{2}$ $\frac{1}{2}$ then we have $1 = ||u, b|| = ||sy, b|| = \frac{1}{2}$ $\frac{1}{2}$ ||y, b|| = $\frac{1}{2}$ $\frac{1}{2}$. That is a contradiction. Similarly $s = \frac{3}{2}$ $\frac{3}{2}$ leads to a contradiction. So u, y are linearly independent. Also, $u\angle\!\!\!\angle_b y$, because for $\lambda = -1$ we have $1 = ||u, b|| > ||u - y, b|| = \frac{1}{2}$ $\frac{1}{2}$. Now, by Corollary 3.6 (also Theorem 2.7 in [15]), there is $v \in S_L^b$ such that $u \perp_b v$, that means $||u + \alpha v, b|| \ge ||u, b||$ for each $\alpha \in \mathbb{R}$. We claim that *v* and *y* are linearly independent. Because if for some $r, s \in \mathbb{R}, v = cy$, choosing $\alpha = -\frac{1}{c}$ we have

$$
||u + \alpha v, b|| = ||u - \frac{1}{c}(cy), b|| = ||u - y, b|| = \frac{1}{2} < ||u, b|| = 1,
$$

which is a contradiction with $u \perp_b v$. So *v* and *y* are linearly independent and there exist two numbers α, β (not both zero) such that $y = \alpha u + \beta v$. It follows that $T(u)$ and $T(v)$ are non-zero and $T(v) \perp_{T(b)} T(u)$. Now, $T(u)$ and $T(v)$ are linearly independent. On the other hands, $0 = T(y) = \alpha T(u) + \beta T(v)$. That means $T(u)$ and $T(v)$ are dependent. It is a contradiction and therefore T is injective.

Theorem 5.4 Let *X* and *Y* be two 2-normed linear spaces whose dimensions are at least 3 for $0 \neq b \in X$. Then there exists a non-zero linear operator $T : X \longrightarrow Y$ reverses b-orthogonality if and only if $T(X) \setminus \langle T(b) \rangle$ is a 2-inner product space.

Proof. Let $T: X \longrightarrow Y$ be a non-zero linear operator and T reverses b-orthogonality $0 \neq b \in X$. Without loss of generality, we may assume that *T* is surjective. So, by Lemma 5.3, *T* is bijective. By Theorem 4.3, it is suffices to show that b-orthogonality is symmetric in *Y* .

Let $0 \neq y_0 \in Y$. We can suppose $y_0 \in S_Y^{T(b)}$ $Y^{T^{(0)}}$. So $||y_0, T(b)|| = 1$ and since *T* is injective, $T^{-1}(y_0) \neq 0$. By Corollary 3.6, there exists a closed 2-hyperplane *H'* through the origin such that $T^{-1}(y_0) \perp_b H'$. Since *T* reverses b-orthogonality, we have $T(H') \perp_b y_0$. Set $H = T(H')$. Since *T* is linear and bijective, then *H* is a 2-hyperplane in *Y* such that *H* ⊥_{*b*} *y*₀.

On the other hands, similar to the proof of the Theorem 3.5, we can define a bilinear 2-functional *f* on *Y* such that $||f|| = 1$ and $f(y_0, T(b)) = ||f|| ||y_0, T(b)||$. Therefore, by the Theorem 3.3, $y_0 \perp_b H$. That means $Y = T(X)$ is symmetric. Conversely, If $T(X) \setminus \langle T(b) \rangle$

is a 2-inner product space, then the b-orthogonality relation is symmetric and the identity mapping satisfies desired property.

References

- [1] J. Alonso, H. Martini, S. Wu, On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces, Aequat. Math. 83 (2012), 153-189.
- [2] J. Cho, S. S. Kim, Gateaux derivatives and 2-inner product spaces, Glas. Mat. (Ser. III). 27 (47) (1983), 197-203.
- [3] J. Cho, P. C. S. Lin, S. S. Kim, A. Misiak, Theory of 2-Inner Product Spaces, Nova Science Publishies, New York, 2001.
- [4] J. Cho, M. Matic, J. E. Pecaric, On Gram's determinant in 2-inner product spaces, J. Korean Math. Soc. 38 (6) (2001), 1125-1156.
- [5] C. R. Diminnie, A new orthogonality relation for normed linear spaces, Math. Nachr. 114 (1983), 197-203.
- [6] S. S. Dragomir, J. Cho, S. S. Kim, A. Sofo, Some Boas-Bellman type inequalities in 2-inner product spaces, J. Ine. Pure. Appl. Math. (2005), 6(2):55.
- [7] S. G¨ahler, Lineare 2-normierte R¨aume, Math. Nachr. 28 (1965), 1-43.
- [8] S. Kakutani, Some characterizations of Euclidean space, Japan. J. Math. 16 (1939), 93-97.
- [9] A. Khan, A. Siddiqui, b-orthogonality in 2-normed space, Bull. Calcutta. Math. Soc. 74 (1982), 216-222.
- [10] S. N. Lal, S. Bhattacharya, C. Sreedhar, Complex 2-normed linear spaces and extension of linear 2-functionals, J. Anal. Appl. 20 (1) (2001), 35-53.
- [11] Z. Lewandowska, Generalized 2-normed spaces, Supskie Space Matemayczno Fizyczne. 1 (2001), 33-40.
- [12] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie. 42(90) (4) (1999), 353-368.
- [13] Z. Lewandowska, On 2-normed sets, Glas. Mat. (Ser. III). 38(58) (2003), 99-110.
- [14] R. Malčeski, K. Anevska, About the 2-Banach spaces, Inter. J. Modern Engin. Res. 4 (5) (2014), 28-32.
- [15] H. Mazaheri, S. Golestani Nezhad, Some results on b-orthogonality in 2-normed linear spaces, Int. J. Math. Anal. 14 (1) (2007), 681-687.
- [16] S. A. Mohiuddin, Some new results on approximation in fuzzy 2-normed spaces, Math. Comput. Modelling. 53 (2011), 574-580.
- [17] J. R. Partington, Orthogonality in normed spaces, Bull. Austral. Math. Soc. 33 (1986), 449-455.
- [18] K. Singh, R. Kumar, 2-normed D-modules and Hahn-Banach theorem for D-linear 2-functionals, Fasc. Matematica. Tom XXIII (2) (2016), 117-126.
- [19] T. Ta Swe, Bounded linear 2-functionals in linear 2-normed space, Dagon University Commemoration of 25th Anniversary Silver Jubilee Research Journal. 9 (2) (2019), 203-209.