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1. Introduction and preliminaries

The concept of 2-normed linear spaces has been investigated by Gdhler in 1960’s [7]
and has been developed extensively in different subjects by many authors (for example,
see [11-13]).

Let X be a linear space of dimension greater than 1. Suppose ||.,.|| is a real-valued
function on X x X satisfying the following conditions:

(1) ||z, y|]| = 0 if and only if  and y are linearly dependent vectors,
(2) [z, yll = [ly, z[| for all z,y € X,

(3) || Az, y|| = |\|||z,y|| for all A € R and all z,y € X,

(4) llz+y, 2l <z, 2l + [ly, 2[| for all z,y,z € X.
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Then |.,.|| is called a 2-norm on X and (X, ||.,.]|) is called a 2-normed linear space. A
2-norm is non-negative and the basic property of a 2-norm is ||z, y + azx| = ||z, y|| for all
z,y € X and all @ € R. Note that (X, ||.,.||) with the formula ||z, y| = ||z|/||y| for each
x,y € X is not a 2-normed space. So the relationship ||z,y + az|| = ||z, y| is not valid.
For example, let x # 0 and « # 0. Then

0= l,0] = 2,0 + az|| = ||z, az|| = |[«[|az| = |af||z[|* > 0.
Ezxzample 1.1 [19] Let X = R? with 2-norm defined as follow:

(@1, 22, 23), (Y1, 2, ¥3) || = |T1Y2 — T2t | + |T1y3 — x3y1| + |T2Y3 — T390

for all (z1,x9,23), (y1,y2,y2) € X. Let vector addition and scalar multiplication be de-
fined componentwise. Then the 2-norm properties are satisfied.

Example 1.2 Let X = E® be an Euclidean 3-dimensional linear space. The formula
|z, y|| = | x y| defines a 2-norm on X, where z,y are two vector in E3 and = x y means
the vector product of x and y.

The following elementary proposition is proved in [10].
Proposition 1.3 Let (X, ||.,.||) be a 2-normed space. Then

(1) [l +y, || = ||z, y[| for all z,y in X,
(2) if for two linearly independent x and y in E, ||z, z|| = ||z, y| = 0 for z € X, then
z = 0.

Every 2-normed space is a locally convex topological vector space. In fact, for a fixed
be X, pp(z) = |x,b] for all z € X is a semi-norm and the family P = {p, : b € X} of
semi-norms generates a locally convex topology on X. As an example of a 2-normed space,
take X = R? equipped with ||z, y| = which is defined as the area of the parallelogram
spanned by the vectors z and y (i.e. the parallelogram whose adjacent sides are the
vectors a and b) which may be given explicitly by the formula ||z,y| =| z1y2 — 21 |,
where z = (z1,%2), y = (y1,y2) ([16]).

Along with the 2-norm, we have the standard 2-inner product space. Let X be a real
vector space of dimension> 2. The real-valued function (.,.|.) : X x X x X — R, which
satisfies the following properties on X3 is called 2-inner product on X:

(1) (z,z|z) >0 for every z,z € X and (z,z|z) = 0 if and only if x and z are linearly
dependent,

) (z,y|z) = (y, z|z) for every z,y,z € X,

) (z,x|z) = (2, z|z) for every z,z € X

) (ax,ylz) = alz,y|z) for every x,y,z € X and a € R,

Under these conditions, the pair (X, (.,.|.)) is called an inner product space [3, 4, 6].
Also, by the formula

— (@) (z,2)
UG )]
we observe that |z,y|| = (x,z|y)'/? and the Cauchy-Schwarz inequality (z,y|z)? <

|z, z||2||y, z||? for every z,y,z € X is valid.
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Now, let (X,].,.]|) be a 2-normed space and W; and Ws be two subspaces of X. A
map f: Wi x Wy — R is called a bilinear 2-functional ([15]) on W; x Wy whenever for
all z1, 9 € Wi, y1,y2 € W and all A1, A2 € R, we have

(1) f(x1+ 22,91 +y2) = f(1,91) + f(22,92) + f(22,91) + f(72,92),
(2) f(\izn, Aawn) = Mdef(xr,y1).

A bilinear 2-functional f : W1 x Wy — R is called bounded if there exists a non-negative
real number M (M is called a Lipschitz constant for f) such that |f(z,y)| < M|z, y||
for all x € W7 and all y € Ws. Also, the norm of a bilinear 2-functional is defined by

|| fll = inf{M > 0: M isa Lipschitz constant for f}.
It is known that [12]

1f1l = sup{|f(z,y)| : (z,y) € W1 x Wy, ||z, y[| < 1}
= sup{|f(m,y)| : (:E,y) € Wl X W2a ||$7y|| = 1}
= sup{[f (@, y)|/llz, y|l : (z,y) € W1 x Wy, |2,y # 0}.

For a 2-normed space (X, ||.,.||) and 0 # b € X, we denote by X; the Banach space of
all bounded bilinear 2-functionals on X x (b), where (b) is the subspace of X generated
by b ([12]).

Exzample 1.4 [19] Let (E3,||,||) be the 2-normed space with ||z,y|| = |x x y|. Define
f(z,y) =z -y, where z -y is the dot product of vector analysis. Then f is an unbounded
linear 2-functional. Now, define

F,y) = (2Pl = |()*)2,

where |a| denotes the length of a. Since |z|?|y|? — |(z.y)|? = |z x y|?, then f is a bounded
2-functional

2. Types of orthogonality

When we say that a normed linear space is Euclidean, we mean that it is an inner
product space. In particular, a two-dimensional (real) inner product space is referred
to as the Euclidean plan. There are many different ways to characterize inner product
spaces among normed linear spaces ([1]).

In a real normed space (X, ||.||) one can define orthogonality of two vectors x and y
in many different ways. For example, the following definitions of Pythagorean, Isosceles,
and the Birkhoff-James orthogonality are known [5, 17].

P-orthogonality: z is P-orthogonal to y (denoted by = L p y) if and only if

lz +ylI* = [lz[* + [ly]1*.
I-orthogonality: x is I-orthogonal to y (denoted by = L7y ) if and only if
lz +yll = llz —yll.

BJ-orthogonality: x is BJ-orthogonal to y (x Lpy y) if and only if ||z + ay|| > ||zl
for every a € R.
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Note that in an inner product space (X, (.,.)); z Lpy, x L;y, and = Lp; y are all
equivalent to the condition (x,y) = 0 for which we have the usual orthogonality in a
normed space which is not an inner product space, however, one does x L y. not imply
another. For further properties of these orthogonalities and related results (for example,
see [5, 17]).

Cho and Kim [2] defined the condition of G-orthogonality of two vectors in a 2-inner
product space of dimension 3 or higher as follows:

In an arbitrary 2-inner product space (X, (.,.|.)); z Lpy, x L7 y and = Lp; y are
equivalent to the condition

(x,y|z) =0, for every z ¢ span{x,y}. (1)

In [9], Khan and Siddiqui defined the notion of P, T and BJ-orthogonality in 2-normed
spaces (X, ||.,.||) as follows:

P-orthogonality: = Lp y if only if || + y, 2||? = ||z, 2||? + ||y, 2||* for every z.

I-orthogonality: = L; y if only if ||z + v, 2| = ||z — y, z|| for every z # 0.

BJ-orthogonality: x L gy y if only if ||z +ay, z|| > ||z, z|| for every z # 0 and o € R.

Also we have the following definition [15].

Definition 2.1 Let (X, ||.,.||) be a 2-normed space and z,y € X. If there exists b € X
such that ||z, b|| = 0 and ||z, b|| > ||x+ay, b|| for each scalar a € R, then z is b-orthogonal
to y (denoted by = Ly y).

In this paper, we discuss the relationships between 2-functionals and existence of b-
Birkhoff orthogonal elements in 2-normed linear spaces. Moreover, we obtain some char-
acterizations of 2-inner product spaces by b-Birkhoff orthogonality. Then we study the
operators reversing b-Birkhoff orthogonality in 2-normed linear spaces.

3. 2-functionals in 2-normed linear spaces and existence of b-Birkhoff
orthogonal elements

Let X be a 2-normed linear space. Also, let 0 # b € X and 0 # f be a nonzero
bilinear 2-functional on X x (b). Then we define the 2-hyperplane H through the origin
by H = {z € X; f(z,b) = 0}.

We start this section with the following useful theorem.

Theorem 3.1 Under the above conditions, |f(x,b)| = || fl|||z,b| if and only if x L, H,
where H is a 2-hyperplane of all h for which f(h,b) = 0.

Proof. Let H be the 2-hyperplane consisting of all elements h for which f(h,b) = 0.
Also, let |f(z,b)| = ||f||l|z,b||. Since f(h,b) = 0, we have f(ah,b) = 0 for each o € R.
So, we have

|f(z + ah,b)| = |f(z,b) + f(ah,b)| = |f(z,b)] = || f[||[=,b]].
On the other hand,
f@+ah,b)| < fllll(z + ah,b)[, VaecR.

So, we have

|z + b|| < ||l + ah,bl|, Vhe H,VaeR.
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That is « L, H. Conversely, suppose z L, H and |f(z,b)| = al|lx,b||. So
|z, b|| < ||z + ah,b|, Vhe H,VaeR.
Hence, for each h € H and « € R, we have
[f(z +ah,b)| = [f(z,b)] = allz,b]| < allz + ah, b].
Since H is a hyperplane through the origin, it follows that

If(y,b)| <aly,bll, VyeX.

That is a = || f[| and [f(z, )] = [|f][]|z, l]- u

Exzample 3.2 Let X = (E3,]|,||) be the 2-normed space with ||z, y|| = |z x y|. Suppose
b= (1,0,0) and define f : Xx < b >— R with f(x,y) = |z X y|, where x € X and
y €< b >. S0 ||f|l =1 so for each x € X, we have |f(z,b)| = || f||||z,b]|. On the other
hand, the 2-hyperplane H through the origin is as follows:

H={zeX;f(z,b) =0} ={r € X;|z xb =0} ={zr € X;z=(a,0,0),Va € R}.

Now, for each a € R, (z,y,2) € X and h = (a,0,0) € H, we have

[z + ah, bl = [[(z + aa,y,2),(1,0,0)| = V2% +y? = [l b].

That means x L, H.
Now, let X be a 2-normed linear space. For Xy C X, put

My, ={f € X3 | £l =1, f(2,b) = |l bl|, Vo € Xo}.

One can find the proof of the following theorem in [15].

Theorem 3.3 Let X be a 2-normed linear space, b € X, y € X and z € X \ (b). Then
x L1y y if and only if there exists f € M2 such that f(y,b) = 0.

Example 3.4 Let X =R3 W = {(0,z,2),z € R} and

(21, 22, 23), (Y1, Y2, ¥3) || = max{|r1ye — z2y1| + |21Y3 — T3Y1, [T1Y2 — 2y1| + |T2y3 — 2392}

for all (z1,x2,23), (y1,y2,y2) € X. Then ||-,-|| is a 2-norm on X. If z = (1,0,1) and
b=(2,2,0), it is clear that 1, W.

In the following theorem we will show that there is an analogical relation between the
existence of element orthogonal to given closed subsets and the existence of elements x
with | f(x,0)] = || f]|||x, || for given linear functionals f.

Theorem 3.5 Let X be a 2-normed linear space and (0 #)b € X. Then there exist an
element b-orthogonal to each closed 2-linear subset of X if and only if for each bilinear
2-functional f defined on X x (b), there is an element x with f(x,b) = ||f||||z, b||.

Proof. Let || f|| # 0 and set H = {z € X f(x,b) = 0}. Then H is a closed linear subset
of X. By Theorem 3.1, each element z orthogonal to this set is such that |f(z,b)| =

L [Hl, o]
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Conversely, suppose H is any closed linear subset of X. Define the 2-functional F' as
follow:

F(h,b) =0, Vh e H,
F(xo,b) =1, forsomexo ¢ H.

So ||F|| = 1 and F is additive over the space obtained adjoining = to H. Since H is
closed, F' is continuous. Now, by Theorem 5.1 in [18], there is a bilinear 2-functional
f over X x (b) such that f(x,b) = F(z,b) for all (x,b) for which F' is defined. Also
Ifll = ||F|| = 1. If there is an element x for which f(x,b) = | f]||lx,b||, then we have
x 1y H (by Theorem 3.3). [ |

Using Theorem 3.1, the above theorem says that if X is a 2-normed linear space with
dimX = 3 and z1,22 € X, then there is an element y € X b-orthogonal to the (z1, z2),
where (z1, z9) is the linear span of x; and zs.

Corollary 3.6 Any element of a 2-normed linear space X is b-orthogonal to some
hyperplane through the origin for 0 #£ b € X.

4. Characterization of 2-Inner Product Spaces by b-Birkhoff
Orthogonality

First we define the notion of bilinear 2-operator as follow:

Definition 4.1 Let (X, |.,.||), (Y,]|.,.]]) be two 2-normed spaces, and W; and W> be
two subspaces of X. A map T : W1 x Wy — Y is called a bilinear 2-operator on Wy x Wy
whenever for all z1,x2 € Wiy and y1,y2 € Ws and all A1, Ao € R,

1) T(z1+ 2,91 +y2) = T2, 1) + T(21,92) + T2, 1) + T2, 2),
i) T(Mw1, Aday) = MAT (1, 1)
Note that if Y = R, then T is called a bilinear 2-functional. Also, a bilinear 2-operator
T is called a 2-projection if T? =T,
The authors in [14] showed that a 2-normed space X is 2-inner product if and only if
for all z,y,z € X,

lz + 5, 217 + llz =, 21> = 2|z, 21* + [ly, 211%). (2)

On the other hand, a quite elementary proof similar to the proof given in [8] show that
the relation (2) holds if and only if there is a 2-projection of norm 1 on any given closed
linear subspace of X.

Theorem 4.2 Let X be a 2-normed linear space and (0 # b) € X. For any z,y € X,
there exists a number a such that ax 4+ y 1y . This number a is a value of k£ for which
|kz + y, b|| takes on its absolute minimum.

Proof. By Definition 2.1, ax + y Ly x if and only if
[(az +y) + kx, bl| > [laz 4y, b]| V&,

or if and only if ||az + y,b|| is the smallest value of ||kz + y,b||. Since |kz + y,b|| is
continuous in k, it must take on its minimum. [ |



R. Pirali and M. Momeni / J. Linear. Topological. Algebra. 09(04) (2020) 291-299. 297

Now we can prove the following theorem.

Theorem 4.3 Let X be a 2-normed space and 0 # b € X. If dimX > 3, then b-
orthogonality is symmetric if and only if a 2-inner product can be defined in X.

Proof. Suppose that dimXy = 3, where Xy is a subspace of X. Also, let z1 and x5 be
any two elements of Xy \ ((b)) and Hy be the linear hull of 21 and z5. By Theorem 3.1
and Theorem 3.5, there is an element y € Xy that is b-orthogonal to Hy. Conversely,
suppose that b-orthogonality is symmetric. Then Hy 1 y and by Theorem 4.2, there is
a number a, such that we can define P : Xy x (b) — Hy x (b) by P(z,b) = (z — a,y,b)
for each z € Xg. So P is a bilinear 2-operator. Also, since Hy is the linear hull of z; and
x9 and Hg 1y y, we have

IPG B = 12 — aay, bl < J12,b] V2 € Xo.
Thus, ||P|| = 1. In addition, since P(a,y,b) = 0 for each z € Xy, we have
P%(z,b) = P(P(2,b)) = P(z — a.y,b) = P(2,b) — P(a.y,b) = P(z,b).

Therefore, P is a 2-projection of Xy x (b) on Hy x (b) with ||P|| = 1. Now, according to
the points stated before this theorem, a 2-inner product can be defined in a 2-normed
linear space of three or more dimensions if there is a 2-projection of norm 1 on any given
closed linear subspace. Thus a 2-inner product can be defined in any three-dimensional
subspace of X and hence in X itself. [ |

Corollary 4.4 Let x and y be in a 2-normed space X with dimX > 3, and 0 # b € X.
If there exists a nonzero bilinear 2-functional f with f(x,b) = || f|l||lx, y|| and f(y,b) =0,

then there exists a nonzero bilinear 2-functional g such that g(y,b) = ||g||||y, bl and

g(z,b) = 0.

Proof. Combine Theorem 4.3 and Theorem 3.5. [ |

Corollary 4.5 Let X be a 2-normed space and 0 %2 b € X, and z,y € X. If fis a

bilinear 2-functional such that f(z,b) = ||f]|||x,b||, then ||az + y,b|| is minimum when
_ _fb)

T Ty

Proof. Combine Theorem 4.3 and Theorem 2.7 in [15]. [ ]

5. Operators reversing b-Birkhoff orthogonality in 2-normed linear
spaces

Definition 5.1 Let X and Y be two 2-normed linear spaces and 0 # b € X. Also, let
T : X — Y be a nonzero linear operator. If

r Lyy=T(y) Lye T(z)
for each z,y € X, then we say that T reverses b-Birkhoff orthogonality.

Definition 5.2 Let X be a 2-normed space and 0 # b € X. The subset S% = {z €
X ||z, b]| = 1} is called the 2-unit sphere of X.

Lemma 5.3 Let X and Y be two 2-normed linear spacesand 0 #b e X. If T: X — Y
is a non-zero linear operator reversing b-Birkhoff orthogonality, then T is injective.
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Proof. Since T is non-zero, there exists 0 # z € X such that T'(z) # 0. Set x = szb”

(note that z and b are non-zero, thus, ||z, b|| # 0). Therefore,

1
1z, 0]

z
[, bl = || bl = 12,0l = 1.
1z, ] |

So, x € S% and T(x) # 0.

Now, suppose that T is not injective. Thus there exists x1,zs € X such that 1 # z9
and T(xl) = T(.CCQ). So T(le)—T(xg) = T(iUl—I‘Q) = 0. Since I 75 o, then ||a:1—x2, bH 75
0. Set y = ﬁ Then ||y, b|| = 1 and therefore y € S4 and T'(y) = 0.

Now, set L = span{z,y}. Let u € S% be a point satisfying ||u — y,b|| = % Then v and
y are linearly independent. Because, if there exists 0 # a € R such that u = ay, then
u = rz + sy = ay for some r,s € R. Since T'(y) = 0, we have rT'(z) = 0. But T'(x) # 0.
Therefore 7 = 0 and u = sy. On the other hands, ||y, b|| = 1 implies that

1
|s =1 =ls = 1lly, bll = [I(s = D), bll = llsy — 9, bl| = fJu =, ]| = 5.

Thus, s = 5 or s = 3. If s =  then we have 1 = [ju,b|| = [[sy, ] = %[lv.b] = 3.
That is a contradiction. Similarly s = % leads to a contradiction. So u,y are linearly
independent. Also, ud}y, because for A = —1 we have 1 = |ju,b|| > ||u — y,b|| = 3. Now,
by Corollary 3.6 (also Theorem 2.7 in [15]), there is v € S% such that u L, v, that means
|lu + av,b|| > ||u,b|]| for each « € R. We claim that v and y are linearly independent.
Because if for some 7, s € R, v = ¢y, choosing a = —% we have

1 1
llu + aw, bl| = Jlu = =(ey), bll = Jlu =y, bl = 5 <llu, b =1,

which is a contradiction with u 1, v. So v and y are linearly independent and there exist
two numbers «, § (not both zero) such that y = au + Sv. It follows that T'(u) and T'(v)
are non-zero and T'(v) Ly T'(u). Now, T'(u) and T'(v) are linearly independent. On the
other hands, 0 = T(y) = aT'(u) + ST (v). That means T'(u) and T'(v) are dependent. It
is a contradiction and therefore T is injective. [ |

Theorem 5.4 Let X and Y be two 2-normed linear spaces whose dimensions are at
least 3 for 0 # b € X. Then there exists a non-zero linear operator 7' : X — Y reverses
b-orthogonality if and only if T'(X) \ (T'(b)) is a 2-inner product space.

Proof. Let T : X — Y be a non-zero linear operator and T reverses b-orthogonality
0 # b € X. Without loss of generality, we may assume that T is surjective. So, by
Lemma 5.3, T is bijective. By Theorem 4.3, it is suffices to show that b-orthogonality is
symmetric in Y.

Let 0 # yo € Y. We can suppose 1y € Sg(b). So [|yo, T'(b)|| = 1 and since T is injective,
T~Y(yo) # 0. By Corollary 3.6, there exists a closed 2-hyperplane H’ through the origin
such that T='(yg) L, H'. Since T reverses b-orthogonality, we have T(H') Ly yo. Set
H = T(H'). Since T is linear and bijective, then H is a 2-hyperplane in Y such that
H 1y yo.

On the other hands, similar to the proof of the Theorem 3.5, we can define a bilinear
2-functional f on Y such that || f|| = 1 and f(yo,T'(b)) = || flllyo, T (b)||. Therefore, by the
Theorem 3.3, yo Ly H. That means Y = T'(X) is symmetric. Conversely, If T'(X)\ (T'(b))
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is a 2-inner product space, then the b-orthogonality relation is symmetric and the identity

mapping satisfies desired property. [ |
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