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Abstract. The main purpose of this article is to introduce the concept of T -contraction type
mappings in the function weighted metric spaces and to obtain some coupled fixed points
theorems in this framework. Also, an example and an application of the existence of a solution
of a system of nonlinear integral equations are considered to protect the main results.
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1. Introduction and preliminaries

In 2006, Bhaskar and Lakshmikantham [7] introduced the concept of a coupled fixed
point in partially ordered metric spaces. Then, other authors generalized this concept in
various ordered metric spaces and obtained several fixed point results in [1, 5, 10, 15, 16],
and reference therein.

On the other hand, Moradi [11] and Morales and Rojas [12] defined a T -contraction
and proved some fixed point results such as Kannan contraction and Zamfirescu operator
concerning this concept. Later, Filipović et al. [8] considered T -Hardy-Rogers contraction
and proved some fixed and periodic point theorems. After that, many authors proved
some new fixed point, coupled fixed point, tripled fixed point, and quadrupled fixed point
theorems for T -contractions on various spaces in [3, 13, 14] and references therein.
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Also, in 2018, Jleli and Samet [9] defined the new concept of metric spaces, which is
called function weighted metric spaces (in summary, F-metric spaces). After that, some
researchers such as Aydi et al. [4], Bera et al. [6] and Alqahtani et al. [2] discussed the
structure of this space and the fixed points of mappings for such spaces.

In this paper, we define the concept of T -contraction in coupled fixed point theory
in F-metric space and establish some new fixed point theorems. Also, we consider an
example and an application to the system of integral equations to support the main
theorems.

We begin with some important definitions and necessary lemmas and notations.

Definition 1.1 [9] A function f : (0,+∞) → R is called a non-decreasing function if for
all s, t ∈ (0,+∞) we have f(s) ⩽ f(t), and is called logarithmic-like if every sequence
{tn} ⊂ (0,+∞) satisfies lim

n→∞
tn = 0 iff lim

n→∞
f(tn) = −∞.

Note that we apply F for the set of all non-decreasing functions that are logarithmic-
like.

Definition 1.2 [2] Consider a mapping δ : X ×X → [0,+∞), a constant B ∈ [0,+∞)
and a f ∈ F so that for every x1, x2 ∈ X

(∆1) (self-distance axiom) δ(x1, x2) = 0 ⇔ x1 = x2;
(∆2) (symmetry axiom) δ(x1, x2) = δ(x1, x2);
(∆3) (Generalized function f -weighted triangle inequality axiom) δ(x1, x2) > 0 implies that

f(δ(x1, x2)) ⩽ f(
N−1∑
i=1

δ(vi, vi+1))+B for every N ∈ N with N ⩾ 2, and for all (vi)
N
i=1 ⊂

X with (v1, vN ) = (x1, x2).

Then, the function δ is named as an F-metric on X, and the pair (X, δ) is called an
F-metric space.

Note that any metric on X is an F-metric on X by considering f(t) = ln t for the
axiom (∆3). Indeed on a account of the triangle inequality, for every distinct x1, x2 ∈ X,
for all N ∈ N with N ⩾ 2 and for all (vi)

N
i=1 ⊂ X with (v1, vN ) = (x1, x2), we find

d(x1, x2) > 0 ⇒ ln
(
d(x1, x2)

)
⩽ ln

(N−1∑
i=1

d(ui, ui+1)
)
.

Definition 1.3 [2] Consider an F-metric space (X, δ) with a sequence {xn} therein.
Then {xn} is a convergent sequence to x ∈ X if lim

n→∞
δ(xn, x) = 0.

Definition 1.4 [2] Consider an F-metric space (X, δ) with a sequence {xn} therein.
Then {xn} is a Cauchy sequence if lim

n,m→∞
δ(xn, xm) = 0.

An F-metric space (X, δ) is complete if each Cauchy sequence in X is convergent to
x ∈ X.

2. Main results

We start with the following definitions in the framework of an F-metric space.

Definition 2.1 Let (X, δ) be an F-metric space. An element (x, y) ∈ X ×X is named
a coupled fixed point of a mapping F : X ×X → X, if F (x, y) = x and F (y, x) = y.
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Definition 2.2 Consider an F-metric space (X, δ) with a self-mapping T on X. Then

(T1) T is sequentially convergent if for each sequence {xn} that {Txn} is convergent, {xn}
also is convergent.

(T2) T is subsequentially convergent if for each sequence {xn} that {Txn} is convergent,
{xn} has a convergent subsequence.

(T3) T is a continuous mapping if lim
n→∞

xn = x induces that lim
n→∞

Txn = Tx for each {xn}
in X.

Theorem 2.3 Consider an F-metric space (X, δ) with a continuous and one to one
self-mapping T on X. Moreover, let F : X ×X → X be a mapping satisfying

δ
(
TF (x, y), TF (x∗, y∗)

)
⩽ αδ(Tx, Tx∗) + βδ(Ty, Ty∗) (1)

for all x, y, x∗y∗ ∈ X, where α, β ⩾ 0 with α+β < 1; that is, F be a T -contraction. Then

i) for each x0, y0 ∈ X, {TFn(x0, y0)} and {TFn(y0, x0)} are Cauchy sequences;
ii) there exist Zx0

, Zy0
∈ X such that

lim
n→∞

TFn(x0, y0) = Zx0
and lim

n→∞
TFn(y0, x0) = Zy0

;

iii) if T is subsequentially convergent, then {TFn(x0, y0)} and {TFn(y0, x0)} have a con-
vergent subsequence;

vi) there exist unique Wx0
,Wy0

∈ X so that

F (Wx0
,Wy0

) = Wx0
and F (Wy0

,Wx0
) = Wy0

,

that is, F has a unique coupled fixed point;
v) if T is sequentially convergent, then the sequence {TFn(x0, y0)} converges to Wx0

∈ X
and the sequence {TFn(y0, x0)} converges to Wy0

∈ X for each x0, y0 ∈ X.

Proof. Let x0, y0 ∈ X and consider{
x1 = F (x0, y0)
y1 = F (y0, x0)

· · ·
{
xn+1 = F (xn, yn) = Fn+1(x0, y0)
yn+1 = F (yn, xn) = Fn+1(y0, x0)

for all n ∈ N∪{0}. First we shall prove that both {Txn} and {Txy} are Cauchy sequences.
Applying (1), we obtain

δ(Txn, Txn+1) = δ
(
TF (xn−1, yn−1), TF (xn, yn)

)
⩽ αδ(Txn−1, Txn) + βδ(Tyn−1, T yn)

(2)

and

δ(Tyn, T yn+1) ⩽ αδ(Tyn−1, T yn) + βδ(Txn−1, Txn). (3)

Consider δn = δ(Txn, Txn+1) + δ(Tyn, T yn+1) and add (2) and (3). Then

δn ⩽ λ
(
δ(Txn−1, Txn) + δ(Tyn−1, T yn)

)
= λδn−1,
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where λ = α+ β. Therefore,

0 ⩽ δn ⩽ λδn−1 ⩽ λ2δn−2 ⩽ . . . ⩽ λnδ0. (4)

If δ0 = 0, then (x0, y0) is a coupled fixed point. Thus, let δ0 > 0 and m,n ∈ N with
n < m. Then

m−1∑
i=n

δi = δn + δn+1 + . . .+ δm−1

⩽ (λn + λn+1 + . . .+ λm−1)δ0

⩽ λn

1− λ
δ0,

where δi = δ(Txi, Txi+1)+δ(Tyi, T yi+1). On the other hand, assume (f,B) ∈ F×[0,+∞)
so that (∆3) is complied. For an arbitrary ϵ > 0 and by (∆3), there is a γ > 0 so that
0 < t < γ induces f(t) < f(ϵ)−B. So we conclude

f
(m−1∑

i=n

δi
)
⩽ f

( λn

1− λ
δ0
)
< f

(
ϵ
)
−B.

Then

f
(m−1∑

i=n

δ(Txi, Txi+1

)
< f

(m−1∑
i=n

δi
)
⩽ f

( λn

1− λ
δ0
)
< f

(
ϵ
)
−B, (5)

f
(m−1∑

i=n

δ(Tyi, T yi+1

)
< f

(m−1∑
i=n

δi
)
⩽ f

( λn

1− λ
δ0
)
< f

(
ϵ
)
−B. (6)

Now, by applying (∆3) together with (5) and (6), we obtain

δ(Txn, Txm) > 0 ⇒ f(δ(Txn, Txm)) ⩽ f
(m−1∑

i=n

δ(Txi, Txi+1)
)
+B < f(ϵ),

δ(Tyn, T ym) > 0 ⇒ f(δ(Tyn, T ym)) ⩽ f
(m−1∑

i=n

δ(Tyi, T yi+1)
)
+B < f(ϵ).

Hence, {Txn} and {Tyn} are cauchy sequence. By completeness of X, there exist
Zx0

, Zy0
∈ X such that

lim
n→∞

TFn(x0, y0) = Zx0
and lim

n→∞
TFn(y0, x0) = Zy0

.

Now if T is subsequentially convergent, then Fn(x0, y0) and Fn(y0, x0) have convergent
subsequences. Thus, there exist Wx0

,Wy0
∈ X and two sequences {xni

} and {yni
} so

that

lim
i→∞

Fni(x0, y0) = Wx0
and lim

i→∞
Fni(y0, x0) = Wy0

.
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Because of the continuity of T , we obtain

lim
n→∞

TFni(x0, y0) = TWx0
and lim

n→∞
TFni(y0, x0) = TWy0

.

So we have TWx0
= Zx0

and TWy0
= Zy0

. Therefore,

δ
(
TF (Wx0

,Wy0
), TWx0

)
= lim

i→∞
[δ
(
TF (Wx0

,Wy0
), TFni(x0, y0)

)
]

= lim
i→∞

[δ
(
TF (Wx0

,Wy0
), TF (xni−1

, yni−1
)
)
]

⩽ lim
i→∞

[αδ(TWx0
, Txni−1) + βδ(TWy0

, T yni−1
)],

which implies that δ
(
TF (Wx0

,Wy0
), TWx0

)
= 0. Thus, TF (Wx0

,Wy0
) = TWx0

. Since T
is one to one, we obtain F (Wx0

,Wy0
) = Wx0

. Similarly, we can obtain F (Wy0
,Wx0

) =
Wy0

. Thus, (Wx0
,Wy0

) is a coupled fixed point of F . Now, we show that Wx0
and Wy0

are unique. Suppose that (Ux0
, Uy0

) is another coupled fixed point. Then, from (1), we
get

δ(TWx0
, TUx0

) ⩽ αδ(TWx0
, TUx0

) + βδ(TWy0
, TUy0

),

δ(TWy0
, TUy0

) ⩽ αδ(TWy0
, TUy0

) + βδ(TWx0
, TUx0

).

Hence,

δ(TWx0
, TUx0

) + δ(TWy0
, TUy0

) ⩽ (α+ β)
(
δ(TWx0

, TUx0
) + δ(TWy0

, TUy0
)
)
,

which implies that

δ(TWx0
, TUx0

) + δ(TWy0
, TUy0

) = 0.

Therefore, TWx0
= TUx0

and TWy0
= TUy0

. Since T is one to one, Wx0
= Ux0

and
Wy0

= Uy0
. Finally, if T is sequentially convergent, then we can replace n by ni. Thus,

we have

lim
n→∞

TFn(x0, y0) = Wx0
and lim

n→∞
TFn(y0, x0) = Wy0

.

Here, the proof ends. ■

Theorem 2.4 Consider an F-metric space (X, δ) with a continuous and one to one
mapping self-mapping T on X. Moreover, let F : X ×X → X be a mapping satisfying

δ
(
TF (x, y), TF (x∗, y∗)

)
⩽ αδ

(
TF (x, y), Tx) + βδ

(
TF (x∗, y∗), Tx∗

)
(7)

for all x, y, x∗y∗ ∈ X, where α, β ⩾ 0 with α+β < 1; that is, F be a T -contraction. Then
the result of Theorem 2.3 hold.

Proof. Let x0, y0 ∈ X and consider{
x1 = F (x0, y0)
y1 = F (y0, x0)

· · ·
{
xn+1 = F (xn, yn) = Fn+1(x0, y0)
yn+1 = F (yn, xn) = Fn+1(y0, x0)
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for all n ∈ N∪{0}. First we shall prove that both {Txn} and {Txy} are Cauchy sequences.
Applying (7), we obtain

δ(Txn, Txn+1) = δ
(
TF (xn−1, yn−1), TF (xn, yn)

)
⩽ αδ

(
TF (xn−1, yn−1), Txn−1

)
+ βδ

(
TF (xn, yn), Txn

) (8)

and

δ(Tyn, T yn+1) ⩽ αδ
(
TF (yn−1, xn−1), T yn−1

)
+ βδ

(
TF (yn, xn), T yn). (9)

Let dn = δ(Txn, Txn+1) + δ(Tyn, T yn+1) and add (8) and (9). Then dn ⩽ αdn−1 + βdn,
which implies that (1− β)dn ⩽ αdn−1. Hence,

dn ⩽ α

1− β
dn−1 ⩽ . . . ⩽ (

α

1− β
)nd0,

where 0 < α
1−β = λ < 1 and n ∈ N. If d0 = 0, then (x0, y0) is a coupled fixed point.

Thus, let d0 > 0 and m,n ∈ N with n < m. Then

m−1∑
i=n

di = dn + dn+1 + . . .+ dm−1

⩽ (λn + λn+1 + . . .+ λm−1)d0

⩽ λn

1− λ
d0.

where di = δ(Txi, Txi+1)+δ(Tyi, T yi+1). On the other hand, assume (f,B) ∈ F×[0,+∞)
so that (∆3) is complied. For an arbitrary ϵ > 0 and by (∆3), there is a γ > 0 so that
0 < t < γ induces f(t) < f(ϵ)−B. So we conclude

f(

m−1∑
i=n

di) ⩽ f(
λn

1− λ
d0) < f(ϵ)−B.

Then

f(

m−1∑
i=n

δ(Txi, Txi+1)) < f(

m−1∑
i=n

di) ⩽ f(
λn

1− λ
d0) < f(ϵ)−B, (10)

f(

m−1∑
i=n

δ(Tyi, T yi+1)) < f(

m−1∑
i=n

di) ⩽ f(
λn

1− λ
d0) < f(ϵ)−B. (11)
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Now, by applying (∆3) together with (10) and (11), we obtain

δ(Txn, Txm) > 0 ⇒ f(δ(Txn, Txm)) ⩽ f
(m−1∑

i=n

δ(Txi, Txi+1)
)
+B < f(ϵ),

δ(Tyn, T ym) > 0 ⇒ f(δ(Tyn, T ym)) ⩽ f
(m−1∑

i=n

δ(Tyi, T yi+1)
)
+B < f(ϵ).

Hence, {Txn} and {Tyn} are cauchy sequence. By completeness of X, there exist
Zx0

, Zy0
∈ X such that

lim
n→∞

TFn(x0, y0) = Zx0
and lim

n→∞
TFn(y0, x0) = Zy0

.

Now if T is subsequentially convergent, then Fn(x0, y0) and Fn(y0, x0) have convergent
subsequences. Thus, there exist Wx0

,Wy0
∈ X and two sequences {xni

} and {yni
} so

that

lim
i→∞

Fni(x0, y0) = Wx0
and lim

i→∞
Fni(y0, x0) = Wy0

.

Because of the continuity of T , we obtain

lim
n→∞

TFni(x0, y0) = TWx0
and lim

n→∞
TFni(y0, x0) = TWy0

.

So we have TWx0
= Zx0

and TWy0
= Zy0

. Therefore,

δ
(
TF (Wx0

,Wy0
), TWx0

) = lim
i→∞

[δ
(
TF (Wx0

,Wy0
), TFni(x0, y0)

)
]

= lim
i→∞

[δ
(
TF (Wx0

,Wy0
), TF (xni−1

, yni−1
)
)
]

⩽ lim
i→∞

[αδ
(
TF (Wx0

,Wy0
), TWx0

)
+ βδ

(
TF (xni−1

, yni−1
), Txni−1

)
],

which induces that δ
(
TF (Wx0

,Wy0
), TWx0

) = 0. Thus, TF (Wx0
,Wy0

) = TWx0
. Since T

is one to one, then F (Wx0
,Wy0

) = Wx0
. Similarly, we can obtain F (Wy0

,Wx0
) = Wy0

.
Thus, (Wx0

,Wy0
) is a coupled fixed point of F . Now, we show that Wx0

and Wy0
are

unique. Suppose that (Ux0
, Uy0

) is another coupled fixed point. Then, from (1), we get

δ(TWx0
, TUx0

) = δ
(
TF (Wx0

,Wy0
), TF (Ux0

, Uy0
)
)

⩽ αδ
(
TF (Wx0

,Wy0
), TWx0

)
+ β

(
TF (Ux0

, Uy0
), TUx0

)
,

which implies that δ(TWx0
, TUx0

) = 0. Thus, TWx0
= TUx0

. Since T is one to one, then
Wx0

= Ux0
. Similarly, we can obtain Wy0

= Uy0
. Thus, (Wx0

,Wy0
) = (Ux0

, Uy0
). Finally

if T is sequentially convergent, then we can replace n by ni. Thus, we have

lim
n→∞

TFn(x0, y0) = Wx0
and lim

n→∞
TFn(y0, x0) = Wy0

.

■
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Example 2.5 LetX = R+. Define δ : X × X → [0,∞) by δ(x, y) = |x − y| for all
x, y ∈ X. Then δ is an F-metric with f(t) = ln t and B = 0. Consider F : X ×X → X
and T : X → X

F (x, y) =
x+ y

4
and T (x) =

x

2
.

Then

δ
(
TF (x, y), TF (x∗, y∗)

)
= δ

(
T (

x+ y

4
), T (

x∗ + y∗

4
)
)

= |x+ y

8
− x∗ + y∗

8
|

= |x− x∗

8
+

y − y∗

8
|

⩽ 1

4
[δ(Tx, Tx∗) + δ(Ty, Ty∗)].

Hence, F satisfies the contractive condition (1) by α = β = 1
4 . Thus, by Theorem 2.3, F

has an unique coupled fixed point. Obviously, (0, 0) is a coupled fixed point of F .

3. An Application

Consider the following system of integral equations:{
x(t) =

∫ b
a M(t, s)K(s, x(s), y(s))ds,

y(t) =
∫ b
a M(t, s)K(s, y(s), x(s))ds,

(12)

for all t ∈ I = [a, b], where b > a, M ∈ C(I × I, [0,∞)) and K ∈ C(I × R× R,R).
Let C(I,R) be the Banach space of all real continuous functions defined on I with the

sup norm and C(I × I × C(I,R),R) be the space of all continuous functions defined on
I × I × C(I,R) endowed with the F-metric δ(u, v) = sup

∣∣u(t) − v(t)
∣∣ for all u, v ∈ X

and t ∈ I.

Theorem 3.1 Let (C(I,R), δ) be a complete F-metric space and f : C(I,R)×C(I,R) →
C(I,R) be a operator defined by f(x, y)t =

∫ b
a M(t, s)K(s, x(s), y(s))ds, where M ∈

C(I × I, [0,∞)) and K ∈ C(I × R × R,R) are two operators satisfying the following
conditions:

(i) ||K||∞ = sup
s∈I, x,y∈C(I,R)

|K(s, x(s), y(s))| < ∞;

(ii) for all x, y ∈ C(I,R) and for each t, s ∈ I, we have

∣∣∣K(
t, x(t), y(t)

)
−K

(
t, u(t), v(t)

)∣∣∣ ⩽ α
∣∣∣x(t)− u(t)

∣∣∣+ β
∣∣∣y(t)− v(t)

∣∣∣;
(iii) sup

t∈I

∫ b
a M(t, s)ds < 1.

Then the system of integral equations (12) has a solution in C(I,R)× C(I,R).
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Proof. It is easy to show that (x, y) is a solution of the system (12) if and only if (x, y)
is a coupled fixed point of f . To establish the existence of such a point, assume T is the
identity mapping and apply Theorem 2.3. Then, for x, y, x∗, y∗ ∈ X and for all t ∈ I, we
have

δ
(
Tf(x, y), T f(x∗, y∗)

)
= sup

t∈I

∣∣∣f(x, y)(t)− f(x∗, y∗)(t)
∣∣∣

= sup
t∈I

∣∣∣ ∫ b

a
M(t, s)K

(
s, x(s), y(s)

)
ds

−
∫ b

a
M(t, s)K

(
s, x∗(s), y∗(s)

)
ds
∣∣∣

= sup
t∈I

∣∣∣ ∫ b

a
M(t, s) [K

(
s, x(s), y(s)

)
−K

(
s, x∗(s), y∗(s)

)
]ds

∣∣∣
⩽

∫ b

a

∣∣M(t, s)
∣∣ ∣∣K(

s, x(s), y(s)
)
−K

(
s, x∗(s), y∗(s)

)∣∣ds.
By (ii), we obtain

∣∣∣f(x, y)(t)− f(x∗, y∗)(t)
∣∣∣ ⩽ ∫ b

a

∣∣M(t, s)
∣∣[α∣∣x(s)− x∗(s)

∣∣+ β
∣∣y(s)− y∗(s)

∣∣]ds
⩽

[
αδ(Tx, Tx∗) + βδ(Ty, Ty∗)

]( ∫ b

a

∣∣M(t, s)
∣∣ds).

Using condition (iii), we obtain∣∣∣f(x, y)(t)− f(x∗, y∗)(t)
∣∣∣ ⩽ αδ(Tx, Tx∗) + βδ(Ty, Ty∗).

Hence, we have

δ
(
Tf(x, y), T f(x∗, y∗)

)
⩽ αδ(Tx, Tx∗) + βδ(Ty, Ty∗)

for all x, y, x∗, y∗ ∈ X. Thus the contractive condition of Theorem 2.3 is satisfied. Thus,
f has an unique coupled fixed point in C

(
[a, b],R

)
. Consequently, the system of integral

equations (12) has a solution in C(I,R)× C(I,R). ■
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