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1. Introduction and preliminaries

Non-normed topological algebras were initially introduced around the year 1950 for the
investigation of certain classes of these algebras that appeared naturally in mathematics
and physics. Some results concerning such topological algebras had been obtained earlier
in 1950. It was in 1952 that Arens and Michael [4, 6] independently published the first
systematic study on locally m-convex algebras, which constitutes an important class of
non-normed topological algebras. Here, we would like to mention about the predictions
made by the famous Soviet mathematician Naimark, an expert in the area of Banach
algebras, in 1950 regarding the importance of non-normed algebras and the development
of their related theory. During his study concerning cosmology, Lassner [4] realized that
the theory of normed topological algebras was insufficient for his study purposes.

Pseudo-Michael algebras, in particular, k-Banach algebras are an important class of
non-normed topological algebras and play a crucial role in functional analysis.
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In this paper, we first generalize the Gelfand-Mazur theorem for pseudo-Michael Q-
algebras. Then some applications of the spectral mapping theorem are also investigated
in k-Banach algebras. Throughout this paper, all algebras will be assumed unital and
the units will be denoted by e.

2. Definitions and known results

In this section, we present a collection of definitions and known results, which are
included in the list of our references.

Definition 2.1 Let A be an algebra. The set of all invertible elements of A is denoted
by Inv(A), and the complement of Inv(A) by (Inv(A))c.

The following Lemma follows immediately from Exercise D.1.3 of [8].

Lemma 2.2 Let A be an algebra and x, y ∈ A. If at least two points of the set
{x, y, xy, yx} belong to Inv(A), then {x, y, xy, yx} ⊆ Inv(A).

Definition 2.3 For an algebra A, the spectrum spA(x) of an element x ∈ A is the set of
all λ ∈ C such that λe−x is not invertible in A. The spectral radius rA(x) of an element
x ∈ A is defined by rA(x) = sup{|λ| : λ ∈ spA(x)}.

Definition 2.4 [1] Let A be an algebra. An element x ∈ A is said to be nilpotent if
xm = 0 for some natural number m ⩾ 1. It is said to be quasinilpotent if spA(x) = {0}.

Lemma 2.5 [3] If A is an algebra, then

Rad(A) = {x ∈ A : rA(xy) = 0; for any y ∈ A},

where Rad(A) is the Jacobson radical of A.

Definition 2.6 By a topological algebra we mean an algebra over C endowed with a
topology that makes the multiplication separately continuous.

Definition 2.7 A topological algebra A is said to be a Q-algebra if and only if Inv(A)
is open.

Corollary 2.8 [5] If A is a Q-algebra, then spA(x) is compact for each x ∈ A.

Definition 2.9 [2] A k-seminorm on A with k ∈ (0, 1] is a function p : A → R+ ∪ {0}
such that, for each x, y ∈ A and λ ∈ C,

p(x+ y) ⩽ p(x) + p(y), (1)

p(λx) ⩽ |λ|kp(x). (2)

If, in addition, the function satisfies

p(xy) ⩽ p(x)p(y), (3)

then the k-seminorm is called submultiplicative.
A k-seminorm p is also called a pseudo-seminorm and k is called the homogenity index

of p. A pseudo-seminorm p is a pseudo-norm if p(x) = 0 implies x = 0.
If p is a k-seminorm (k-norm) on a linear space A, then the resulting topological

linear space A = (A, p) is called a k-seminormed (k-normed) linear space. A topological
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algebra whose topology is induced by a k-seminorm (k-norm) p is called a k-seminormed
(k-normed) algebra. We generally denote a k-norm p by the symbole ∥ · ∥k. A complete
k-normed algebra is called a k-Bunach algebra.

Definition 2.10 [2] A locally pseudo-convex space A is a topological linear space
equipped with a family P = (pα)α∈I of pseudo-seminorms on A which define its topology.
If each pα ∈ P is a k-seminorm, then A is called a locally k-convex space.

A locally pseudo-convex algebra A is a topological algebra such that its underlying
topological linear space is locally pseudo-convex. If its underlying topological linear space
is locally k-convex, then A is called a locally k-convex algebra. A is called a locally m-
pseudo-convex algebra (or locally m-(k-convex) algebra) if pα is submultiplicative for
each α ∈ I.

Definition 2.11 [2] We call a complete Hausdorff locally m-pseudo-convex algebra A
as a pseudo-Michael algebra.

Corollary 2.12 [2] Every pseudo-Michael algebra A is spectral, i.e. spA(x) ̸= ∅ for each
x ∈ A.

Definition 2.13 [1] The Hausdorff distance is defined by

∆(K1,K2) = max

(
sup
z∈K2

dist(z,K1), sup
z∈K1

dist(z,K2)

)
for K1,K2 compact subsets of C. Let r > 0 and K be a compact subset of C. If K + r
denotes {z : dist(z,K) ⩽ r}, then obviously K1 ⊆ K2 + ∆(K1,K2) and K2 ⊆ K1 +
∆(K1,K2).

As in [1, p. 48], we have the following definition.

Definition 2.14 Let A be a k-Banach algebra and E ⊆ A. The function x 7−→ spA(x) is
said to be continuous at a ∈ A if for every ϵ > 0, there exists δ > 0 such that ∥x−a∥k < δ
implies ∆(spA(x), spA(a)) < ϵ. As usual we say that x 7−→ spA(x) is continuous on E if
it is continuous at every point of E. If for a given ϵ > 0, the number δ > 0 is independent
of a on E, we say that x → spA(x) is uniformly continuous on E.

3. Generalization of the Gelfand-Mazur theorem

In this section, we generalize some results, in particular, the Gelfand-Mazur theorem
for pseudo-Michael Q-algebras.

Lemma 3.1 Let A be a pseudo-Michael Q-algebra. Then Rad(A) = (Inv(A))c if and
only if spA(x) = {0} for all x ∈ ∂(Inv(A)) the boundary of Inv(A) in A.

Proof. Assume that Rad(A) = (Inv(A))c. Let x ∈ ∂(Inv(A)). Since (A) is open in A,
x ∈ ((A))c. Hence x ∈ (A) and so rA(x) = 0 by Lemma 2.5. Therefore spA(x) = 0
because spA(x) is a non-empty set in C by Corollary 2.12.

Assume that spA(x) = {0} for each x ∈ ∂((A)). Let x ∈ (A). Then rA(x) = 0 by
Lemma 2.5. We show that x ∈ ((A))c. Suppose that x ∈ (A). Then xy = e = yx for some
y ∈ A, and hence we have

1 = rA(e) = rA(xy) ⩽ rA(x)rA(y) = 0,
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which is impossible. Therefore, (A) ⊆ ((A))c. Now, we claim that ((A))c ⊆ (A). Let
z ∈ ((A))c. Since spA(z) is non-empty and compact [5, Proposition 4.2], we can choose
λ0 ∈ spA(z) such that λ0 ∈ ∂(spA(z)). Then z − λ0e ∈ ∂((A)) by continuity. First we
prove that spA(z) = {0}. Let λ ∈ spA(z), then

z − λe = (z − λ0e)− (λ− λ0)e.

Hence, λ − λ0 ∈ spA(z − λ0e) = {0}. Thus, λ = λ0. Since z ∈ ((A))c, λ0 = 0. So
spA(z) = {0} for all z ∈ (A). Let y ∈ A. We claim that zy ∈ ((A))c or yz ∈ ((A))c.
Assume otherewise. Then, by Lemma 2.2, we have {zy, yz}, {z, y, zy, yz} ⊆ (A), which
is impossible, because z ∈ ((A))c. Hence, zy ∈ ((A))c or yz ∈ ((A))c. By the above
argument, we get rA(zy) = 0 or rA(yz) = 0. Since rA(zy) = rA(yz) for all y, z ∈ A [2,
Lemma 1.8.12], we have rA(zy) = rA(yz) = 0. Since y is arbitrary in A, by Lemma 2.5,
z ∈ (A). Therefore ((A))c ⊆ (A). Hence (A) = ((A))c. ■

Theorem 3.2 Let A be a semisimple commutative pseudo-Michael Q-algebra. If A has
only the trivial idempotents and spA(x) is countable for each x ∈ ∂((A)), then A = Ce.

Proof. Let x ∈ ∂((A)). Then spA(x) is a connected subset of C by Corollary 8.6.16
of [2]. Since spA(x) is a connected separable metric space, it has only one point or an
uncountable number of points of C. Our hypothesis implies that spA(x) has only one
point. Since x ∈ ((A))c, spA(x) = {0}. It follows that (A) = ((A))c by Lemma 3.1. Since
A is semisimple, ((A))c = {0}. By [2, Lemma 6.5.1], we have A = Ce. ■

Corollary 3.3 If A is a commutative pseudo-Michael Q-algebra with ((A))c = {0}, then
A = Ce.

Proof. Since {0} ⊆ (A) ⊆ ((A))c, so (A) = {0}. Therefore A is semisimple. Let x be an
idempotent element in A. Then x(x − e) = 0. Hence x ∈ ((A))c or x − e ∈ ((A))c. So
x = 0 or x = e. Let x ∈ ∂((A)). Then x ∈ ((A))c, hence x = 0 and so spA(x) = {0}; thus
spA(x) is countable for each x ∈ ∂((A)). Hence, by Theorem 3.2, the result follows. ■

Corollary 3.4 If A is a semisimple commutative pseudo-Michael Q-algebra such that
spA(x) = {0} for each x ∈ ∂((A)), then A = Ce.

Proof. By Lemma 3.1, it follows. ■

Remark 1 Every k-Banach algebra is a pseudo-Michael algebra [1]. Thus all the above
theorems and results which are true for pseudo-Michael algebras, also hold for k-Banach
algebras.

4. Some applications of the spectral mapping theorem

In this section, we investigate some applications of the spectral mapping theorem [2,
Theorem 7.5.13] in k-Banach algebras.

Theorem 4.1 Let A be a k-Banach algebra. If x ∈ A is nilpotent, then x is quasinilpo-
tent. The converse holds true if A is finite dimensional.

Proof. Suppose x ∈ A is nilpotent with xn = 0 for some n ⩾ 1. If λ ∈ spA(x), then
λn ∈ spA(x

n) = spA(0) = {0} by the spectral mapping theorem, so that λ = 0. This
shows that every nilpotent element is quasinilpotent.

Conversely, suppose that x ∈ A is quasinilpotent. Since A is finite-dimensional, the
powers of x must be linearly dependent; that is, x is algebraic over C. Let p(t) be the
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minimal polynomial of x, which is the unique monic polynomial of lowest degree such that
p(x) = 0. By the spectral mapping theorem, the roots of p(t) belong to spA(x) = {0}.
But then p(t) = tn for some n ⩾ 1, which means that xn = 0. ■

Remark 2 The converse of Therem 4.1, is false in general even in Banach algebras (see
for instance, [9, Example 4.2]).

Theorem 4.2 Let A be a k-Banach algebra. If a is a non-trivial idempotent and λ /∈
spA(a), then

(λ, spA(a)) =
1

r((λe− a)−1)

Proof. Suppose that a is a non-trivial idempotent. In this case spA(a) = {0, 1} by the
spectral mapping theorem. Since λ ̸= 0, 1, so (λe− a)−1 exists. Now, we claim that

(λe− a)−1 =
1

λ− 1
a+

1

λ
(e− a). (4)

First we observe that(
1

λ− 1
a+

1

λ
(e− a)

)
(λe− a) =

1

λ− 1
a(λe− a) +

1

λ
(e− a)(λe− a)

=
1

λ− 1
(λa− a) +

1

λ
(λe− a− λa+ a)

=
1

λ− 1
(λ− 1)a+

1

λ
λ(e− a)

= a+ (e− a)

= e.

similarly,

(λe− a)

(
1

λ− 1
a+

1

λ
(e− a)

)
= e.

Therefore, (4) follows.

Let p(µ) =
1

λ− 1
µ +

1

λ
(1 − µ) for every µ ∈ C. Then p(x) =

1

λ− 1
x +

1

λ
(e − x) for

every x ∈ A. If follows from the spectral mapping theorem that

spA((λe− a)−1) = spA

(
1

λ− 1
a+

1

λ
(e− a)

)
= spA(p(a)) = p(spA(a)) =

{
1

λ
,

1

λ− 1

}
.

Hence,

rA((λe− a)−1) = sup

{
1

|λ|
,

1

|λ− 1|

}
=

1

(λ, spA(a))
.

■

Now, we prove the following theorem without using the idempotent elements.
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Theorem 4.3 Let A be a k-Banach algebra. Suppose that x ∈ A and that λ /∈ spA(x).
Then

(λ, spA(x)) =
1

r((λe− x)−1)
.

Proof. Let Ω be an open set containing spA(x), but not λ. Clearly the function f(α) =
1

λ− α
is holomorphic on Ω. By the spectral mapping theorem we have

spA((λe− x)−1) =

{
1

λ− α
: α ∈ spA(x)

}
.

In particular,

rA((λe− x)−1) = sup

{
1

|λ− α|
: α ∈ spA(x)

}
.

Thus by the properties of the supremum and infimum

rA((λe− x)−1) =
1

inf{|λ− α| : α ∈ spA(x)}
=

1

(λ, spA(x))
.

■

Lemma 4.4 Let A be a k-Banach algebra. Suppose that x, y ∈ A commute. Then

spA(y) ⊆ spA(x) + rA(x− y).

Proof. Suppose that the inclusion is false. Then there exists λ ∈ spA(y) such that
λ /∈ spA(x) + rA(x− y). Thus, by Definition 2.13, rA(x− y) < (λ, spA(x)). This implies
that λ /∈ spA(x). Hence, by Theorem 4.3,

(λ, spA(x)) =
1

rA((λe− x)−1)
.

So, rA((λe − x)−1)rA(x − y) < 1. Since (λe − x)−1 and x − y commute, it follows from
[2, Corollary 7.2.23] that rA((λe − x)−1(x − y)) < 1. Hence, by [2, Corollary 3.3.20],
(e+ (λe− x)−1(x− y)) is invertible. But λe− y = λe− x+ x− y. Since λe− x ∈ (A), it
follows that

λe− y = (λe− x)(e+ (λe− x)−1(x− y))

is also invertible. Clearly this is a contradiction and the result follows. ■

Theorem 4.5 Let A be a commutative k-Banach algebra. Then the spectrum function
x 7−→ spA(x) is uniformly continuous on A.

Proof. Let x, y ∈ A. By Definition 2.13, we have

spA(x) + rA(x− y) = {z : (z, spA(x) ⩽ rA(x− y)}.
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It follows from Lemma 4.4 that

sup
z∈spA(y)

(z, spA(x)) ⩽ rA(x− y).

Similarly,

sup
z∈spA(x)

(z, spA(y)) ⩽ rA(x− y).

Hence,

max

(
sup

z∈spA(y)
(z, spA(x)), sup

z∈spA(x)
(z, spA(y))

)
⩽ rA(x− y).

Consequently, ∆(spA(x), spA(y)) ⩽ rA(x− y). On the other hand, since ∥ · ∥k is submul-

tiplicative, it follows from [7, Lemma 3.9] that rA(x− y) ⩽ ∥x− y∥
1

k

k . Thus,

∆(spA(x), spA(y)) ⩽ ∥x− y∥
1

k

k .

This implies that the spectrum function is uniformly continuous. ■

Remark 3 In Theorem 4.5, the commutativity of A is essential even in Banach algebra
(see the example in [1, p. 48]).
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