Some improvements of numerical radius inequalities via Specht's ratio

Y. Khatib ${ }^{\text {a }}$, M. Hassani ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran. Received 31 May 2020; Revised 14 September 2020; Accepted 20 September 2020.

Communicated by Mohammad Sadegh Asgari

Abstract

We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, B \in \mathcal{B}(\mathcal{H})$ satisfy in some conditions, it follows that

$$
\omega^{2}\left(A^{*} B\right) \leqslant \frac{1}{2 S(\sqrt{h})}\left\||A|^{4}+|B|^{4}\right\|-\inf _{\|x\|=1} \frac{1}{4 S(\sqrt{h})}\left(\left\langle\left(A^{*} A-B^{*} B\right) x, x\right\rangle\right)^{2}
$$

for some $h>0$, where $\|\cdot\|, \omega(\cdot)$ and $S(\cdot)$ denote the usual operator norm, numerical radius and the Specht's ratio, respectively.
(C) 2020 IAUCTB. All rights reserved.

Keywords: Positive operators, numerical radius, Specht's ratio, Hermite-Hadamard inequality.

2010 AMS Subject Classification: 47A12, 47A30, 47A63.

1. Introduction and preliminaries

Let $B(\mathcal{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} with inner product $\langle.,$.$\rangle . We recall some definitions and concepts from [11].$

An operator A in $B(\mathcal{H})$ is positive, denoted by $A \geqslant 0$, if A is self-adjoint ($A=A^{*}$) and $\langle A x, x\rangle \geqslant 0$ for every $x \in \mathcal{H}$; equivalently, A is positive if and only if $A=B^{*} B$ for some operator $B \in B(\mathcal{H})$. In particular, for some scalars m and M, we write $m I \leqslant A \leqslant M I$ if $m \leqslant\langle A x, x\rangle \leqslant M$ for every $x \in \mathcal{H},\|x\|=1$, where I stands for the identity operator of

[^0]$\mathcal{B}(\mathcal{H})$. The absolute value of A is denoted by $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$. Note that for a self-adjoint operator $A, m I \leqslant A \leqslant M I$ if and only if $s p(A) \subset[m, M]$. Also the set of all positive invertible operators is denoted by $\mathcal{B}^{+}(\mathcal{H})$.

For an operator $A \in \mathcal{B}(\mathcal{H})$, the usual operator norm is defined by $\|A\|=\sup \|A x\|$ for every $x \in \mathcal{H},\|x\|=1$ and the numerical radius of A is given by $\omega(A)=\sup \{|\langle A x, x\rangle|$: $x \in \mathcal{H},\|x\|=1\}$. The numerical radius satisfies

$$
\begin{equation*}
\frac{1}{2}\|A\| \leqslant \omega(A) \leqslant\|A\| . \tag{1}
\end{equation*}
$$

The second inequality in (1) has been improved in [7, Theorem 1] as follows:

$$
\begin{equation*}
\omega(A) \leqslant \frac{1}{2}\left\||A|+\left|A^{*}\right|\right\| \leqslant \frac{1}{2}\left(\|A\|+\left\|A^{2}\right\|^{\frac{1}{2}}\right) \tag{2}
\end{equation*}
$$

for every operator $A \in \mathcal{B}(\mathcal{H})$. The left hand of inequality (2) was extended in [4, Theorem 1] as follows:

$$
\begin{equation*}
\omega^{r}(A) \leqslant \frac{1}{2}\left\||A|^{2 r \nu}+\left|A^{*}\right|^{2 r(1-\nu)}\right\|, \quad r \geqslant 1,0<\nu<1, \tag{3}
\end{equation*}
$$

which this inequality will be improved in the end of this paper.
Dragomir in [2, Theorem 1], proved the following inequality by the product of two operators:

$$
\begin{equation*}
\omega^{r}\left(B^{*} A\right) \leqslant \frac{1}{2}\left\||A|^{2 r}+|B|^{2 r}\right\|, \quad r \geqslant 1 . \tag{4}
\end{equation*}
$$

By using of operator inequality, we improve the inequality (4).
Let $A \in \mathcal{B}^{+}(\mathcal{H})$ and let B be a positive operator in $B(\mathcal{H})$. The operator ν-weighted geometric mean of A and B is defined by $A \bigsqcup_{\nu} B \equiv A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\nu} A^{\frac{1}{2}}$, which $\nu \in[0,1]$.

Recall that the Specht's ratio [5, 13] was defined by $S(h)=\frac{h^{\frac{1}{n-1}}}{e \log h^{\frac{1}{n-1}}}$ for a positive real number $h \neq 1$, and it has some properties as follows:
(i) $S(1)=1$ and $S(h)=S\left(\frac{1}{h}\right)>1$ for $h>0$.
(ii) $S(h)$ is a monotone increasing function on $(1, \infty)$.
(iii) $S(h)$ is a monotone decreasing function on $(0,1)$.

Lemma 1.1 [6, Theorem 1] For $a, b>0$ and $\nu \in[0,1]$, it follows that $(1-\nu) a+\nu b \geqslant S\left(\left(\frac{b}{a}\right)^{r}\right) a^{1-\nu} b^{\nu}$, where $r=\min \{\nu, 1-\nu\}$ and $S($.$) is the Specht's ratio.$
Theorem 1.2 [6, Theorem 2] Let A and B be two positive operators and let $m, m^{\prime}, M, M^{\prime}$ be positive real numbers satisfying the following conditions (i) or (ii):
(i) $0<m^{\prime} I \leqslant A \leqslant m I<M I \leqslant B \leqslant M^{\prime} I$,
(ii) $0<m^{\prime} I \leqslant B \leqslant m I<M I \leqslant A \leqslant M^{\prime} I$,
with $h=\frac{M}{m}$. Then

$$
\begin{aligned}
(1-\nu) A+\nu B \geqslant S\left(h^{r}\right) A \natural_{\nu} B \geqslant A \natural_{\nu} B & \geqslant S\left(h^{r}\right)\left\{(1-\nu) A^{-1}+\nu B^{-1}\right\}^{-1} \\
& \geqslant\left\{(1-\nu) A^{-1}+\nu B^{-1}\right\}^{-1},
\end{aligned}
$$

where $\nu \in[0,1], r=\min \{\nu, 1-\nu\}$, and $S($.$) is the Specht's ratio.$

Remark 1 Note that if $A=a I, B=b I, \nu=\frac{1}{2}$, and $r=\frac{1}{2}$ in Theorem 1.2, then

$$
S(\sqrt{h}) \sqrt{a b} \leqslant \frac{a+b}{2},
$$

where $S($.$) is the Specht's ratio.$
The goal of this paper is to establish considerable generalizations of these inequalities that are based on some classical convexity inequalities for non-negative real numbers and some operator inequalities. Also, by using of operator inequality and Specht's ratio, we improve some numerical radius inequalities.

2. Main results

In this section, we state some useful lemmas that we need them for improving and generalizing some inequalities. The first lemma is a generalized form of the mixed Schwarz inequality, which was proved by Kittaneh [8, Theorem 1].

Lemma 2.1 Let A be an operator in $B(\mathcal{H})$ and let f and g be nonnegative continuous functions on $[0, \infty)$ satisfying $f(t) g(t)=t$ for all $t \in[0, \infty)$. Then

$$
|\langle A x, y\rangle| \leqslant\|f(|A|) x\|\left\|g\left(\left|A^{*}\right|\right) y\right\|
$$

for all $x, y \in \mathcal{H}$.
The well-known Hermite-Hadamard inequalities state that for a convex function f : $J \rightarrow \mathbb{R}$, it follows that

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leqslant \int_{0}^{1} f(t a+(1-t) b) d t \leqslant \frac{f(a)+f(b)}{2}, \tag{5}
\end{equation*}
$$

for every a, b in real interval J (see [1]).
Let f be a convex function on a real interval J containing $\operatorname{sp}(\mathrm{A})$, where A is a selfadjoint operator. Then for every $x \in \mathcal{H},\|x\|=1$ the inequality

$$
\begin{equation*}
f(\langle A x, x\rangle) \leqslant\langle f(A) x, x\rangle \tag{6}
\end{equation*}
$$

is an operator version of the Jensen inequality due to Mond and Pečarić [9, Theorem 1].
Utilizing the following lemma, leads to the improvement of some inequalities that prove by other mathematicians.

Lemma $2.2[10$, page 5$]$ Let f be a twice differentiable on $[a, b]$. If f is convex such that $f^{\prime \prime} \geqslant \lambda:=\min _{x \in[a, b]} f(x)>0$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2}-\frac{1}{8} \lambda(b-a)^{2} . \tag{7}
\end{equation*}
$$

Theorem 2.3 Let $A, B, X \in \mathcal{B}(\mathcal{H})$, let the continuous functions f and g be non-negative functions on $[0, \infty)$ satisfying the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$, and let k be a non-negative increasing convex function on $[0, \infty)$ and twice differentiable such that $k^{\prime \prime} \geqslant \lambda>0$, with $k(0)=0$. Also let the positive real numbers $m, m^{\prime}, M, M^{\prime}$ satisfy one of the following conditions:
(i) $0<m^{\prime} \leqslant\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle \leqslant m<M \leqslant\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle \leqslant M^{\prime}$,
(ii) $0<m^{\prime} \leqslant\left\langle A^{*} f^{2}(|X|) A x, x\right\rangle \leqslant m<M \leqslant\left\langle B^{*} g^{2}\left(\left|X^{*}\right|\right) B x, x\right\rangle \leqslant M^{\prime}$,
with $h=\frac{M}{m}$. Then

$$
\begin{equation*}
k\left(\omega\left(A^{*} X B\right)\right) \leqslant \frac{1}{2 S(\sqrt{h})}\left\|k\left(B^{*} f^{2}(|X|) B\right)+k\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right\|-\inf _{\|x\|=1} \xi(x) \tag{8}
\end{equation*}
$$

whenever

$$
\xi(x)=\frac{1}{8 S(\sqrt{h})} \lambda\left(\left\langle\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A-B^{*} f^{2}(|X|) B\right) x, x\right\rangle\right)^{2},
$$

where $S($.$) is the Specht's ratio and \lambda>0$.
Proof. Using Lemma 2.1, we get

$$
\begin{equation*}
\left|\left\langle A^{*} X B x, x\right\rangle\right|=|\langle X B x, A x\rangle| \leqslant \sqrt{\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle} . \tag{9}
\end{equation*}
$$

Now, Remark 1 implies that

$$
\begin{aligned}
\sqrt{\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle} & \leqslant \frac{1}{2 S(\sqrt{h}))}\left(\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle+\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle\right) \\
& =\frac{1}{2 S(\sqrt{h})}\left(\left\langle\left(B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right) x, x\right\rangle\right) .
\end{aligned}
$$

It follows from the last inequality and (9) that

$$
\left|\left\langle A^{*} X B x, x\right\rangle\right| \leqslant \frac{1}{2 S(\sqrt{h})}\left(\left\langle\left(B^{*} f^{2}(|X|) B+A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right) x, x\right\rangle\right) .
$$

Then we have

$$
\begin{align*}
k\left(\left|\left\langle A^{*} X B x, x\right\rangle\right|\right) \leqslant & k\left(\frac{1}{2 S(\sqrt{h})}\left(\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle+\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle\right)\right) \\
\leqslant & \frac{1}{S(\sqrt{h})} k\left(\frac{\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle+\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle}{2}\right) \tag{10}\\
\leqslant & \frac{1}{S(\sqrt{h})}\left[\frac{k\left(\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle\right)+k\left(\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle\right)}{2}\right. \\
& \left.-\frac{1}{8} \lambda\left(\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle-\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle\right)^{2}\right] \quad(\text { by Lemma 2.2) } \\
\leqslant & \frac{1}{2 S(\sqrt{h})}\left[\left(\left\langle k\left(B^{*} f^{2}(|X|) B\right) x, x\right\rangle\right)+\left(\left\langle k\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right) x, x\right\rangle\right)\right] \\
& -\frac{1}{8 S(\sqrt{h})} \lambda\left(\left\langle A^{*} g^{2}\left(\left|X^{*}\right|\right) A x, x\right\rangle-\left\langle B^{*} f^{2}(|X|) B x, x\right\rangle\right)^{2}(\text { by Lemma 2.1) } \\
= & \frac{1}{2 S(\sqrt{h})}\left[\left\langle\left(k\left(B^{*} f^{2}(|X|) B\right)+k\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right) x, x\right\rangle\right] \\
& -\frac{1}{8 S(\sqrt{h})} \lambda\left(\left\langle\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A-B^{*} f^{2}(|X|) B\right) x, x\right\rangle\right)^{2} .
\end{align*}
$$

Taking the supremum over $x \in \mathcal{H}$ with $\|x\|=1$, we reach

$$
k\left(\omega\left(A^{*} X B\right)\right) \leqslant \frac{1}{2 S(\sqrt{h})}\left\|k\left(B^{*} f^{2}(|X|) B\right)+k\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A\right)\right\|-\inf _{\|x\|=1} \xi(x)
$$

whenever

$$
\xi(x)=\frac{1}{8 S(\sqrt{h})} \lambda\left(\left\langle\left(A^{*} g^{2}\left(\left|X^{*}\right|\right) A-B^{*} f^{2}(|X|) B\right) x, x\right\rangle\right)^{2}
$$

This inequality completes proof and imlies inequality (8).
Note that inequality (10) follows from that if k is a non-negative increasing convex function, with $k(0)=0$ and $\alpha=\frac{1}{S(\sqrt{h})} \leqslant 1$ then $k(\alpha t) \leqslant \alpha k(t)$.

Shebrawi and Albadawi [12, Remark 2.10], for each $A, B, X \in \mathcal{B}(\mathcal{H})$, proved the following general numerical radius inequality:

$$
\begin{equation*}
\omega^{r}\left(A^{*} X B\right) \leqslant \frac{1}{2}\left\|\left(A^{*}\left|X^{*}\right| A\right)^{r}+\left(B^{*}|X| B\right)^{r}\right\|, \quad r \geqslant 1 \tag{11}
\end{equation*}
$$

From inequality (11) and Theorem 2.3, we obtain the following inequality.
Corollary 2.4 Let the assumptions of Theorem 2.3 hold. By taking $k(t)=t^{2}$ on $[0, \infty)$, thus the required λ would be ${ }^{\prime} 2^{\prime}$.
(i) If $0<m^{\prime} I<B^{*}|X| B \leqslant m I<M I \leqslant A^{*}\left|X^{*}\right| A<M^{\prime} I$ or $0<m^{\prime} I<A^{*}|X| A \leqslant$ $m I<M I \leqslant B^{*}|X| B<M^{\prime} I$ for positive real numbers $m, m^{\prime}, M, M^{\prime}$, then

$$
\begin{aligned}
\omega^{2}\left(A^{*} X B\right) \leqslant & \frac{1}{2 S(\sqrt{h})}\left\|\left(A^{*}\left|X^{*}\right| A\right)^{2}+\left(B^{*}|X| B\right)^{2}\right\| \\
& -\inf _{\|x\|=1} \frac{1}{4 S(\sqrt{h})}\left(\left\langle\left(A^{*}\left|X^{*}\right| A-B^{*}|X| B\right) x, x\right\rangle\right)^{2}
\end{aligned}
$$

which improves inequality (11) in especial conditions.
(ii) If $X=I$ holds in conditions of (i), then

$$
\omega^{2}\left(A^{*} B\right) \leqslant \frac{1}{2 S(\sqrt{h})}\left\||A|^{4}+|B|^{4}\right\|-\inf _{\|x\|=1} \frac{1}{4 S(\sqrt{h})}\left(\left\langle\left(A^{*} A-B^{*} B\right) x, x\right\rangle\right)^{2}
$$

which improves inequality (4) in especial conditions.
(iii) If $A=B=I$ holds in conditions of (i), then

$$
\omega^{2}(X) \leqslant \frac{1}{2 S(\sqrt{h})}\left\|\left|X^{*}\right|^{2}+|X|^{2}\right\|-\inf _{\|x\|=1} \frac{1}{4 S(\sqrt{h})}\left(\left\langle\left(\left|X^{*}\right|-|X|\right) x, x\right\rangle\right)^{2}
$$

where $S($.$) is the Specht's ratio and \lambda>0$.
In order to prove the following theorem, we need Lemmas 2.1 and 2.2. Recall that Dragomir provides an extension of Furuta's inequality as follows:

$$
\begin{equation*}
\left.\left.|\langle D C B A x, y\rangle|^{2} \leqslant\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle\left.\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle \tag{12}
\end{equation*}
$$

for every $A, B, C, D \in B(\mathcal{H})$ and any vectors $x, y \in \mathcal{H}$. In (12), the equality holds if and only if the vectors $B A x$ and $C^{*} D^{*} y$ are linearly dependent in \mathcal{H} (see [3]).

Theorem 2.5 Suppose that A, B, C, D in $B(\mathcal{H})$ are operators that f is a positive increasing operator convex function on \mathbb{R} and also that f is twice differentiable such that $f^{\prime \prime} \geqslant \lambda>0$, with $f(0)=0$. Let the positive real numbers $m, m^{\prime}, M, M^{\prime}$ satisfy one of the following conditions:
(i) $0<m^{\prime} I \leqslant A^{*}|B|^{2} A \leqslant m I \leqslant M I \leqslant D\left|C^{*}\right|^{2} D^{*} \leqslant M^{\prime} I$,
(ii) $0<m^{\prime} I \leqslant D\left|C^{*}\right|^{2} D^{*} \leqslant m I \leqslant M I \leqslant A^{*}|B|^{2} A \leqslant M^{\prime} I$,
with $h=\frac{M}{m}$. Then for every $x, y \in \mathcal{H}$, it follows that

$$
\begin{align*}
f(|\langle D C B A x, y\rangle|) \leqslant & \frac{1}{2 S(\sqrt{h})}\left[\left\langle f\left(A^{*}|B|^{2} A\right) x, x\right\rangle+\left\langle f\left(D\left|C^{*}\right|^{2} D^{*}\right) y, y\right\rangle\right. \tag{13}\\
& \left.\left.\left.-\frac{1}{4} \lambda\left(\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle-\left.\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle\right)^{2}\right]
\end{align*}
$$

where $S($.$) is the Specht's ratio and \lambda>0$.
Proof. Utilizing the monotonicity and convexity of increasing function f for the inequality (12), implies that

$$
\begin{align*}
f(|\langle D C B A x, y\rangle|) \leqslant & \left.\left.\left.f\left(\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle^{\frac{1}{2}}\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle^{\frac{1}{2}}\right) \\
\leqslant & \left.\left.f\left(\frac{1}{2 S(\sqrt{h})}\left(\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle+\left.\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle\right)\right) \quad \text { (by Remark 1) } \\
\leqslant & \frac{1}{S(\sqrt{h})} f\left(\frac{\left.\left.\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle+\left.\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle}{2}\right) \tag{14}\\
\leqslant & \frac{1}{S(\sqrt{h})}\left[\frac{\left.\left.f\left(\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle\right)+f\left(\left.\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle\right)}{2}\right. \\
& \left.\left.\left.\left.-\frac{1}{8} \lambda\left(\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle-\left.\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle\right)^{2}\right)\right] \quad \quad \text { (by Lemma 2.2) } \\
\leqslant & \frac{1}{2 S(\sqrt{h})}\left[\left\langle f\left(A^{*}|B|^{2} A\right) x, x\right\rangle+\left\langle f\left(D\left|C^{*}\right|^{2} D^{*}\right) y, y\right\rangle\right. \\
& \left.\left.\left.-\frac{1}{4} \lambda\left(\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle-\left.\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle\right)^{2}\right] \quad \quad \text { (by Lemma 2.1) }
\end{align*}
$$

for every vectors $x, y \in \mathcal{H}$, which proves the desired inequality.
Corollary 2.6 Suppose that T in $B(\mathcal{H})$ that f is a positive increasing operator convex function on \mathbb{R} and also that f is twice differentiable such that $f^{\prime \prime} \geqslant \lambda>0$. Let the positive real numbers $m, m^{\prime}, M, M^{\prime}$ satisfy one of the following conditions:
(i) $0<m^{\prime} I \leqslant|T|^{2 \alpha} \leqslant m I \leqslant M I \leqslant\left|T^{*}\right|^{2 \beta} \leqslant M^{\prime} I$,
(ii) $0<m^{\prime} I \leqslant\left|T^{*}\right|^{2 \beta} \leqslant m I \leqslant M I \leqslant|T|^{2 \alpha} \leqslant M^{\prime} I$,
with $h=\frac{M}{m}$. Then for every $x, y \in \mathcal{H}$ and $\alpha, \beta \in[0,1]$ (with $\alpha+\beta \geqslant 1$), it follows that

$$
\begin{align*}
& \left.f\left(|\langle T| T|^{\alpha+\beta-1} x, y\right\rangle \mid\right) \leqslant \frac{1}{2 S(\sqrt{h})}\left[\left\langle f\left(|T|^{2 \alpha}\right) x, x\right\rangle+\left\langle f\left(\left|T^{*}\right|^{2 \beta}\right) y, y\right\rangle\right. \tag{15}\\
& \left.\left.\left.-\frac{1}{4} \lambda\left(\left.\langle | T\right|^{2 \alpha} x, x\right\rangle-\left.\langle | T^{*}\right|^{2 \beta} y, y\right\rangle\right)^{2}\right]
\end{align*}
$$

where $S($.$) is the Specht's ratio and \lambda>0$.
Proof. Replacing D by U, B by $1_{\mathcal{H}}, C$ by $|T|^{\beta}$ and A by $|T|^{\alpha}$ in (13), implies that

$$
D C B A=U|T|^{\beta}|T|^{\alpha}=U|T||T|^{\alpha+\beta-1}=T|T|^{\alpha+\beta-1}
$$

Then, by utilizing

$$
A^{*}|B|^{2} A=|T|^{2 \alpha} \text { and } D\left|C^{*}\right|^{2} D^{*}=U|T|^{2 \beta} U^{*}=|T|^{2 \beta}
$$

we reach the interest inequality (15).
In resumption, we introduce improvement of inequality (3), in the following theorem.
Theorem 2.7 Let $T \in \mathcal{B}(\mathcal{H})$ and let f be a positive increasing operator convex function on \mathbb{R} and twice differentiable such that $f^{\prime \prime} \geqslant \lambda>0$. Also let positive real numbers $m, m^{\prime}, M, M^{\prime}$ satisfy in the following conditions (i) or (ii):
(i) $0<m^{\prime} I \leqslant|T|^{2 s} \leqslant m I<M I \leqslant\left|T^{*}\right|^{2 t} \leqslant M^{\prime} I$,
(ii) $0<m^{\prime} I \leqslant\left|T^{*}\right|^{2 t} \leqslant m I<M I \leqslant|T|^{2 s} \leqslant M^{\prime} I$,
with $h=\frac{M}{m}$ and $s+t=1$. Then for every $x \in \mathcal{H}$, we have

$$
\begin{align*}
f(\langle T x, x\rangle) \leqslant & \left.\frac{1}{2 S(\sqrt{h})}\left(\left\langle f\left(|T|^{2 s}\right) x, x\right\rangle\right)+\left\langle f\left(\left|T^{*}\right|^{2 t}\right) x, x\right\rangle\right) \tag{16}\\
& \left.\left.\left.-\frac{1}{4} \lambda\left(\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle-\left.\langle | T\right|^{2 s} x, x\right\rangle\right)^{2}\right)
\end{align*}
$$

Moreover, for every $r \geqslant 1$, it follows that

$$
\begin{equation*}
\omega^{r}(T) \leqslant \frac{1}{2 S(\sqrt{h})}\left\||T|^{2 r s}+\left|T^{*}\right|^{2 r t}\right\| \tag{17}
\end{equation*}
$$

where $S($.$) is the Specht's ratio.$
Proof. Suppose that $T=U|T|$ is the polar decomposition of T. Utilizing Schwarz inequality in the Hilbert space, Remark 1 and convexity of the function $h(t)=t^{r}$ for $r \geqslant 1$ imply that

$$
\begin{align*}
|\langle T x, x\rangle| & \left.=|\langle | T|^{s} x,|T|^{t} U^{*} x\right\rangle \mid \tag{18}\\
& \leqslant\left\||T|^{s} x\right\| \cdot\left\||T|^{t} U^{*} x\right\| \\
& \left.\left.=\left.\langle | T\right|^{2 s} x, x\right\rangle\left.^{\frac{1}{2}}\langle | T^{*}\right|^{2 t} x, x\right\rangle^{\frac{1}{2}} \\
& \leqslant \frac{\left.\left.\left.\langle | T\right|^{2 s} x, x\right\rangle+\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle}{2 S(\sqrt{h})} \\
& \leqslant\left(\frac{\left.\left.\left.\langle | T\right|^{2 s} x, x\right\rangle^{r}+\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle^{r}}{2 S(\sqrt{h})}\right)^{\frac{1}{r}} \tag{19}
\end{align*}
$$

for each $x \in \mathcal{H}$. Also, by using Remark 1 , we get

$$
\begin{align*}
\left.\left.\left.f\left(\left.\langle | T\right|^{2 s} x, x\right\rangle^{\frac{1}{2}}\langle | T^{*}\right|^{2 t} x, x\right\rangle^{\frac{1}{2}}\right) \leqslant & f\left(\frac{\left.\left.\left.\langle | T\right|^{2 s} x, x\right\rangle+\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle}{2 S(\sqrt{h})}\right) \\
\leqslant & \frac{1}{S(\sqrt{h})} f\left(\frac{\left.\left.\langle | T\right|^{2 s} x, x\right\rangle+\langle | T^{*}\left|{ }^{2 t} x, x\right\rangle}{2}\right) \tag{20}\\
\leqslant & \left.\frac{1}{2 S(\sqrt{h})}\left(f\left(\left.\langle | T\right|^{2 s} x, x\right\rangle\right)+f\left(\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle\right) \\
& \left.\left.\left.-\frac{1}{4} \lambda\left(\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle-\left.\langle | T\right|^{2 s} x, x\right\rangle\right)^{2}\right) \quad(\text { by Lemma } 2.2) \\
\leqslant & \left.\frac{1}{2 S(\sqrt{h})}\left(\left\langle f\left(|T|^{2 s}\right) x, x\right\rangle\right)+\left\langle f\left(\left|T^{*}\right|^{2 t}\right) x, x\right\rangle\right) \tag{21}\\
& \left.\left.\left.-\frac{1}{4} \lambda\left(\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle-\left.\langle | T\right|^{2 s} x, x\right\rangle\right)^{2}\right) \quad \quad \text { (by Lemma 2.1) }
\end{align*}
$$

Therefore, by combining inequalities (18) and (21), we imply the desired inequality (16).
From (19) and applying Holder-McCarthy inequality for the positive operator $|T|^{2 s}$ and $\left|T^{*}\right|^{2 t}$ and the convexity of the function $f(t)=t^{r}$ for $r \geqslant 1$ imply that

$$
\begin{align*}
\left(\frac{\left.\left.\left.\langle | T\right|^{2 s} x, x\right\rangle^{r}+\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle^{r}}{2 S(\sqrt{h})}\right)^{\frac{1}{r}} & \leqslant\left(\frac{\left.\left.\left.\langle | T\right|^{2 r s} x, x\right\rangle+\left.\langle | T^{*}\right|^{2 r t} x, x\right\rangle}{2 S(\sqrt{h})}\right)^{\frac{1}{r}} \tag{22}\\
& =\left(\frac{\left\langle\left(|T|^{2 r s}+\left|T^{*}\right|^{2 r t}\right) x, x\right\rangle}{2 S(\sqrt{h})}\right)^{\frac{1}{r}}
\end{align*}
$$

for each $x \in \mathcal{H}$ with $\|x\|=1$. Now, combining inequalities (18) and (22) implies that

$$
|\langle T x, x\rangle|^{r} \leqslant \frac{1}{2 S(\sqrt{h})}\left\langle\left(|T|^{2 r s}+\left|T^{*}\right|^{2 r t}\right) x, x\right\rangle
$$

for each $x \in \mathcal{H}$ with $\|x\|=1$. By taking the supremum over $x \in \mathcal{H}$ with $\|x\|=1$ and this fact the operator $|T|^{2 r s}+\left|T^{*}\right|^{2 t r}$ is self-adjoint, we have the desired inequality (17), which this improves (3).

Theorem 2.8 Let $T \in \mathcal{B}(\mathcal{H})$ and let positive real numbers $m, m^{\prime}, M, M^{\prime}$ satisfy in the following conditions (i) or (ii):
(i) $0<m^{\prime} I \leqslant|T|^{\frac{2 s}{\alpha}} \leqslant m I<M I \leqslant\left|T^{*}\right|^{\frac{2 t}{1-\alpha}} \leqslant M^{\prime} I$,
(ii) $0<m^{\prime} I \leqslant\left|T^{*}\right|^{\frac{2 t}{1-\alpha}} \leqslant m I<M I \leqslant|T|^{\frac{2 s}{\alpha}} \leqslant M^{\prime} I$,
with $h=\frac{M}{m}, 0<\alpha<1$ and $s+t=1$. Then for every $r \geqslant 1$, we have

$$
\begin{equation*}
\omega^{2 r}(T) \leqslant\left\|\frac{\alpha}{S\left(h^{r}\right)}|T|^{\frac{2 r s}{\alpha}}+\frac{1-\alpha}{S\left(h^{r}\right)}\left|T^{*}\right|^{\frac{2 r t}{1-\alpha}}\right\|, \tag{23}
\end{equation*}
$$

where $S($.$) is the Specht's ratio.$
Proof. Suppose that $T=U|T|$ is the polar decomposition of T. By using Schwarz
inequality, we get

$$
\begin{equation*}
\left.\left.|\langle T x, x\rangle|^{2} \leqslant\left.\langle | T\right|^{2 s} x, x\right\rangle\left.\langle | T^{*}\right|^{2 t} x, x\right\rangle=\left\langle\left(|T|^{\frac{2 s}{\alpha}}\right)^{\alpha} x, x\right\rangle\left\langle\left(\left|T^{*}\right|^{\frac{2 t}{1-\alpha}}\right)^{1-\alpha} x, x\right\rangle \tag{24}
\end{equation*}
$$

for every $x \in \mathcal{H}$. We note that, for positive operator Q and $0<w<1$ and unit vector $u \in \mathcal{H},\left\langle Q^{w} u, u\right\rangle \leqslant\langle Q u, u\rangle^{w}$. If we apply this property for positive operators $|T|^{\frac{2 s}{\alpha}}$ and $\left|T^{*}\right|^{\frac{2 t}{1-\alpha}}($ for $0<\alpha<1$), then

$$
\begin{equation*}
\left\langle\left(|T|^{\frac{2 s}{\alpha}}\right)^{\alpha} x, x\right\rangle\left\langle\left(\left|T^{*}\right|^{\frac{2 t}{1-\alpha}}\right)^{1-\alpha} x, x\right\rangle \leqslant\left\langle\left(|T|^{\frac{2 s}{\alpha}}\right) x, x\right\rangle^{\alpha}\left\langle\left(\left|T^{*}\right|^{\frac{2 t}{1-\alpha}}\right) x, x\right\rangle^{1-\alpha} \tag{25}
\end{equation*}
$$

for every $x \in \mathcal{H}$ with $\|x\|=1$. Now, using Theorem 1.2, it implies that

$$
\begin{equation*}
\left.\left.\left\langle\left(|T|^{\frac{2 s}{\alpha}}\right)^{\alpha} x, x\right\rangle\left\langle\left(\left|T^{*}\right|^{\frac{2 t}{1-\alpha}}\right)^{1-\alpha} x, x\right\rangle \leqslant\left.\frac{\alpha}{S\left(h^{r}\right)}\langle | T\right|^{\frac{2 s}{\alpha}} x, x\right\rangle+\left.\frac{1-\alpha}{S\left(h^{r}\right)}\langle | T^{*}\right|^{\frac{2 t}{1-\alpha}} x, x\right\rangle \tag{26}
\end{equation*}
$$

for every $x \in \mathcal{H}$ with $\|x\|=1$.
On the other hand, we have the elementary inequality from the convexity of $h(u)=u^{r}$ (for $r \geqslant 1$) in the following:

$$
\alpha a+(1-\alpha) b \leqslant\left(\alpha a^{r}+(1-\alpha) b^{r}\right)^{\frac{1}{r}}, \quad \alpha \in(0,1), a, b \geqslant 0 .
$$

Using this inequality leads to

$$
\begin{align*}
& \left.\left.\left.\frac{\alpha}{S\left(h^{r}\right)}\langle | T\right|^{\frac{2 s}{\alpha}} x, x\right\rangle+\left.\frac{1-\alpha}{S\left(h^{r}\right)}\langle | T^{*}\right|^{\frac{2 t}{1-\alpha}} x, x\right\rangle \\
& \left.\left.\leqslant\left(\left.\frac{\alpha}{S\left(h^{r}\right)}\langle | T\right|^{\frac{2 s}{\alpha}} x, x\right\rangle^{r}+\left.\frac{1-\alpha}{S\left(h^{r}\right)}\langle | T^{*}\right|^{\frac{2 t}{1-\alpha}} x, x\right\rangle^{r}\right)^{\frac{1}{r}} \\
& \left.\left.\leqslant\left(\left.\frac{\alpha}{S\left(h^{r}\right)}\langle | T\right|^{\frac{2 r s}{\alpha}} x, x\right\rangle+\left.\frac{1-\alpha}{S\left(h^{r}\right)}\langle | T^{*}\right|^{\frac{2 r t}{1-\alpha}} x, x\right\rangle\right)^{\frac{1}{r}} \tag{27}
\end{align*}
$$

for every $x \in \mathcal{H}$ with $\|x\|=1$. Now, by using inequalities (24), (25), (26) and (27) we reach

$$
\begin{equation*}
|\langle T x, x\rangle|^{2 r} \leqslant\left\langle\left(\frac{\alpha}{S\left(h^{r}\right)}|T|^{\frac{2 r s}{\alpha}}+\frac{1-\alpha}{S\left(h^{r}\right)}\left|T^{*}\right|^{\frac{2 r t}{1-\alpha}}\right) x, x\right\rangle \tag{28}
\end{equation*}
$$

for every $x \in \mathcal{H}$ with $\|x\|=1$. At the end, we take the supremum over $x \in \mathcal{H}$ with $\|x\|=1$ in the inequality (28) and we get the interest inequality (23).

Acknowledgments

The authors would like to thank the referees for their useful comments.

References

[1] C. P. Constantin, L-E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange. 29 (2) (2003-04), 663-685.
[2] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J Math. 5 (18) (2009), 269-278.
[3] S. S. Dragomir, Some inequalities generalizing Katoś and Furutaś results, Filomat. 28 (1) (2014), 179-195.
[4] M. El-Haddad, F. Kittaneh, Numerical radius inequalities for Hilbert space operators, II, Studia Math. 182 (2) (2007), 133-140.
[5] J. I. Fujii, S. Izumino, Y. Seo, Determinant for positive operators and Specht's theorem, Sci. Math. 1 (3) (1998), 307-310.
[6] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (1) (2012), 46-49.
[7] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 158 (1) (2003), 11-17.
[8] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (2) (1988), 283-293.
[9] B. Mond, J. E. Pečarić, Convex inequalities in Hilbert space, Houston J. Math. 19 (3) (1993), 405-420.
[10] H. R. Moradi, S. Furuichi, F. C. Mitroi, R. Naseri, An extension of Jensen's operator inequality and its application to Young inequality, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. 113 (2) (2019), 605-614.
[11] J. E. Pečarić, T. Furuta, J. Mićić Hot, Y. Seo, Mond-Pečarić, Method in Operator Inequalities, Inequalities for bounded selfadjoint operators on a Hilbert space, Monographs in Inequalities, Zagreb, 2005.
[12] K. Shebrawi, H. Albadawi, Numerical radius and operator norm inequalities, J. Inequal. Appl. 2009, 2009:492154.
[13] W. Specht, Zur theorie der elementaren mittel, Math. Z. 74 (1960), 91-98.

[^0]: *Corresponding author.
 E-mail address: yaserkhatibam@yahoo.com (Y. Khatib); mhassanimath@gmail.com (M. Hassani).

